Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype–Phenotype Analysis in Neurodevelopmentally Delayed Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subject and Genomic Sequencing
2.2. In Silico Analysis
2.3. In Vitro Functional Studies
2.4. Literature Review and Genotype–Phenotype Summary
3. Results
3.1. Clinical Report
3.2. Genetic Findings of This Study
3.3. In Vitro Functional Assays
3.4. Genotype–Phenotype Correlation Analysis of Patients with PPP2R1A Gene Pathogenic Variations
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Investigators, G.P.P.; Smedley, D.; Smith, K.R.; Martin, A.; Thomas, E.A.; McDonagh, E.M.; Cipriani, V.; Ellingford, J.M.; Arno, G.; Tucci, A.; et al. 100,000 Genomes Pilot on Rare-Disease Diagnosis in Health Care—Preliminary Report. N. Engl. J. Med. 2021, 385, 1868–1880. [Google Scholar]
- Verbinnen, I.; Vaneynde, P.; Reynhout, S.; Lenaerts, L.; Derua, R.; Houge, G.; Janssens, V. Protein Phosphatase 2A (PP2A) mutations in brain function, development, and neurologic disease. Biochem. Soc. Trans. 2021, 49, 1567–1588. [Google Scholar] [CrossRef] [PubMed]
- Sharabi, A.; Kasper, I.R.; Tsokos, G.C. The serine/threonine protein phosphatase 2A controls autoimmunity. Clin. Immunol. 2018, 186, 38–42. [Google Scholar] [CrossRef] [PubMed]
- Sandal, P.; Jong, C.J.; Merrill, R.A.; Song, J.; Strack, S. Protein phosphatase 2A—Structure, function and role in neurodevelopmental disorders. J. Cell Sci. 2021, 134, jcs248187. [Google Scholar] [CrossRef] [PubMed]
- Yen, Y.T.; Chien, M.; Wu, P.Y.; Ho, C.C.; Ho, C.T.; Huang, K.C.; Chiang, S.F.; Chao, K.S.C.; Chen, W.T.; Hung, S.C. Protein phosphatase 2A inactivation induces microsatellite instability, neoantigen production and immune response. Nat. Commun. 2021, 12, 7297. [Google Scholar] [CrossRef]
- Javadpour, P.; Dargahi, L.; Ahmadiani, A.; Ghasemi, R. To be or not to be: PP2A as a dual player in CNS functions, its role in neurodegeneration, and its interaction with brain insulin signaling. Cell Mol. Life Sci. 2019, 76, 2277–2297. [Google Scholar] [CrossRef]
- Houge, G.; Haesen, D.; Vissers, L.E.; Mehta, S.; Parker, M.J.; Wright, M.; Vogt, J.; McKee, S.; Tolmie, J.L.; Cordeiro, N.; et al. B56delta-related protein phosphatase 2A dysfunction identified in patients with intellectual disability. J. Clin. Investig. 2015, 125, 3051–3062. [Google Scholar] [CrossRef]
- Loveday, C.; Tatton-Brown, K.; Clarke, M.; Westwood, I.; Renwick, A.; Ramsay, E.; Nemeth, A.; Campbell, J.; Joss, S.; Gardner, M.; et al. Mutations in the PP2A regulatory subunit B family genes PPP2R5B, PPP2R5C and PPP2R5D cause human overgrowth. Hum. Mol. Genet. 2015, 24, 4775–4779. [Google Scholar] [CrossRef]
- Reynhout, S.; Jansen, S.; Haesen, D.; van Belle, S.; de Munnik, S.A.; Bongers, E.; Schieving, J.H.; Marcelis, C.; Amiel, J.; Rio, M.; et al. De Novo Mutations Affecting the Catalytic Calpha Subunit of PP2A, PPP2CA, Cause Syndromic Intellectual Disability Resembling Other PP2A-Related Neurodevelopmental Disorders. Am. J. Hum. Genet. 2019, 104, 139–156. [Google Scholar] [CrossRef]
- Lenaerts, L.; Reynhout, S.; Verbinnen, I.; Laumonnier, F.; Toutain, A.; Bonnet-Brilhault, F.; Hoorne, Y.; Joss, S.; Chassevent, A.K.; Smith-Hicks, C.; et al. The broad phenotypic spectrum of PPP2R1A-related neurodevelopmental disorders correlates with the degree of biochemical dysfunction. Genet. Med. 2021, 23, 352–362. [Google Scholar] [CrossRef]
- Oyama, N.; Vaneynde, P.; Reynhout, S.; Pao, E.M.; Timms, A.; Fan, X.; Foss, K.; Derua, R.; Janssens, V.; Chung, W.; et al. Clinical, neuroimaging and molecular characteristics of PPP2R5D-related neurodevelopmental disorders: An expanded series with functional characterisation and genotype-phenotype analysis. J. Med. Genet. 2023, 60, 511–522. [Google Scholar] [CrossRef]
- Douzgou, S.; Janssens, V.; Houge, G. PPP2R1A-Related Neurodevelopmental Disorder. In GeneReviews((R)); Adam, M.P., Everman, D.B., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; University of Washington: Seattle, WA, USA, 1993. [Google Scholar]
- Wallace, A.; Caruso, P.; Karaa, A. A Newborn with Severe Ventriculomegaly: Expanding the PPP2R1A Gene Mutation Phenotype. J. Pediatr. Genet. 2019, 8, 240–243. [Google Scholar] [CrossRef] [PubMed]
- Baker, E.K.; Solivio, B.; Pode-Shakked, B.; Cross, L.A.; Sullivan, B.; Raas-Rothschild, A.; Chorin, O.; Barel, O.; Bar-Yosef, O.; Husami, A.; et al. PPP2R1A neurodevelopmental disorder is associated with congenital heart defects. Am. J. Med. Genet. A 2022, 188, 3262–3277. [Google Scholar] [CrossRef] [PubMed]
- Lei, T.; Zhen, L.; Yang, X.; Pan, M.; Fu, F.; Han, J.; Li, L.; Li, D.; Liao, C. Prenatal Diagnosis of PPP2R1A-Related Neurodevelopmental Disorders Using Whole Exome Sequencing: Clinical Report and Review of Literature. Genes 2023, 14, 126. [Google Scholar] [CrossRef] [PubMed]
- Janssens, V.; Goris, J. Protein phosphatase 2A: A highly regulated family of serine/threonine phosphatases implicated in cell growth and signalling. Biochem. J. 2001, 353 Pt 3, 417–439. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Chen, L.; Ye, L.; Jiang, Y.; Li, Q.; Zhang, H.; Zhang, R.; Li, H.; Yu, D.; Zhang, R.; et al. PP2A-mTOR-p70S6K/4E-BP1 axis regulates M1 polarization of pulmonary macrophages and promotes ambient particulate matter induced mouse lung injury. J. Hazard. Mater. 2022, 424 Pt C, 127624. [Google Scholar] [CrossRef]
- Haesen, D.; Abbasi Asbagh, L.; Derua, R.; Hubert, A.; Schrauwen, S.; Hoorne, Y.; Amant, F.; Waelkens, E.; Sablina, A.; Janssens, V. Recurrent PPP2R1A Mutations in Uterine Cancer Act through a Dominant-Negative Mechanism to Promote Malignant Cell Growth. Cancer Res. 2016, 76, 5719–5731. [Google Scholar] [CrossRef]
- Wang, H.; Xiao, F.; Qian, Y.; Wu, B.; Dong, X.; Lu, Y.; Cheng, G.; Wang, L.; Yan, K.; Yang, L.; et al. Genetic architecture in neonatal intensive care unit patients with congenital heart defects: A retrospective study from the China Neonatal Genomes Project. J. Med. Genet. 2023, 60, 247–253. [Google Scholar] [CrossRef]
- Shang, L.; Henderson, L.B.; Cho, M.T.; Petrey, D.S.; Fong, C.T.; Haude, K.M.; Shur, N.; Lundberg, J.; Hauser, N.; Carmichael, J.; et al. De novo missense variants in PPP2R5D are associated with intellectual disability, macrocephaly, hypotonia, and autism. Neurogenetics 2016, 17, 43–49. [Google Scholar] [CrossRef]
- Biswas, D.; Cary, W.; Nolta, J.A. PPP2R5D-Related Intellectual Disability and Neurodevelopmental Delay: A Review of the Current Understanding of the Genetics and Biochemical Basis of the Disorder. Int. J. Mol. Sci. 2020, 21, 1286. [Google Scholar] [CrossRef]
- Melas, M.; Mathew, M.T.; Mori, M.; Jayaraman, V.; Wilson, S.A.; Martin, C.; Jacobson-Kelly, A.E.; Kelly, B.J.; Magrini, V.; Mardis, E.R.; et al. Somatic variation as an incidental finding in the pediatric next-generation sequencing era. Cold Spring Harb. Mol. Case Stud. 2021, 7, a006135. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Sun, L.H.; Huang, Y.F.; Guo, L.J.; Luo, L.S. Protein phosphatase 2ACalpha gene knock-out results in cortical atrophy through activating hippo cascade in neuronal progenitor cells. Int. J. Biochem. Cell Biol. 2018, 95, 53–62. [Google Scholar] [CrossRef] [PubMed]
- Riviere, J.B.; Mirzaa, G.M.; O’Roak, B.J.; Beddaoui, M.; Alcantara, D.; Conway, R.L.; St-Onge, J.; Schwartzentruber, J.A.; Gripp, K.W.; Nikkel, S.M.; et al. De novo germline and postzygotic mutations in AKT3, PIK3R2 and PIK3CA cause a spectrum of related megalencephaly syndromes. Nat. Genet. 2012, 44, 934–940. [Google Scholar] [CrossRef] [PubMed]
- Maines, E.; Franceschi, R.; Martinelli, D.; Soli, F.; Lepri, F.R.; Piccoli, G.; Soffiati, M. Hypoglycemia due to PI3K/AKT/mTOR signaling pathway defects: Two novel cases and review of the literature. Hormones 2021, 20, 623–640. [Google Scholar] [CrossRef]
- Orloff, M.S.; He, X.; Peterson, C.; Chen, F.; Chen, J.L.; Mester, J.L.; Eng, C. Germline PIK3CA and AKT1 mutations in Cowden and Cowden-like syndromes. Am. J. Hum. Genet. 2013, 92, 76–80. [Google Scholar] [CrossRef] [PubMed]
ID | Patient 1 | Patient 2 | Patient 3 | Patient 4 | Patient 5 |
---|---|---|---|---|---|
Sex/Age | F/8m | F/1y2m | M/1y6m | F/2y4m | M/1y3m |
Genotype | |||||
Variants (NM_014225) | c.538A>G, p.Met180Val | c.539T>C, p.Met180Thr | c.843dupA, p.Asp282Argfs*14 | c.1409T>C, p.Val470Ala | c.1493G>T, p.Arg498Leu |
Conservation | Y | Y | Y | Y | Y |
Heat repeats | HR5 | HR 5 | HR 8 | HR 12 | HR 13 |
ExAC|Gnomad|in-house | 0|0|0 | 0|0|0 | 0|0|0 | 0|0|0 | 0|0|0 |
SIFT/PP2/MT | D(0.014)/B(0.267)/D(1) | D(0)/D(0.953)/D(1) | ././. | T(0.384)/P(0.535)/D(1) | D(0)/D(1)/D(1) |
CADD/REVEL | 23.3/0.342 | 25.4/0.422 | ./0 | 22.8/0.179 | 26.6/0.592 |
Class and evidence code combinations based on ACMG | Pathogenic (PS3+PS4+PM2_PP +PS2+PP2) | Pathogenic (PS2+PS3+PS4+ PM2_PP+PP2) | Likely pathogenic (PS2+PS3_P+ PM2_PP) | VUS (PM2_PP+PP2) | Likely Pathogenic (PM2_PP+PM6+ PS3_P+PP2+PP3) |
Inheritance | De novo | De novo | De novo | NA | De novo |
Recurrence | 4 cases | 6 cases | Novel | Novel | Novel |
Phenotype | |||||
Birth length | Normal | Normal | SGA | Normal | Normal |
Macrocephaly/ microcephaly | macrocephaly | macrocephaly | microcephaly | Normal | Normal |
DD/ID | DD | ID | DD | DD | DD |
Language delay | No words/language | Just “baba, mama” at 1y5m | Just “baba, mama” at 1y6m | No language | No language |
Motor delay | +, could not control head at 6 m | +, Sit at 1 y | -, Walk 13 m | +, Walk unsteadily | - |
Behavior | NA | NA | NA | hyperactivity | Normal (at 1y3m) |
Hypotonia | + | + | - | - | - |
Feeding problem | - | - | + | + | - |
Epilepsy | - | - | +, onset 7d, partial or GTCS | +, 2–3 times/year | +, onset 10 m |
Brain MRI | Brain dysplasia, V-R space dilated, thin corpus callosum | Ventriculomegaly | Dysmyelination | Delayed myelination | Large patchy abnormal signal shadow in the right temporo-occipital lobe |
Hearing loss | - | - | - | +, right ear 40 dB | - |
Extremities/spine | Lower extremities dystrophy | - | - | - | - |
Others | Hypospadias, phallocampsis | Sturge–Weber syndrome, glaucoma |
Phenotypic Features | Patients (Had Features/Had Records) | Percentage (%) | 23 Patients with Microcephaly (Less Than −2SD) | 18 Patients with Macrocephaly (Large Than +2SD) |
---|---|---|---|---|
DD/ID | 56/57 | 98.2% | 22/22 | 15/15 |
Language delay | 39/39 | 100% | 15/15 | 10/10 |
Motor delay | 30/36 | 83.3% | 12/13 | 9/11 |
Brain abnormal | 47/55 | 85.5% | 22/22 | 9/14 |
CCA/CCH | 37/55 | 67.2% | 19/22 | 5/14 |
Hypotonia | 44/50 | 88% | 13/17 | 16/16 |
Epilepsy | 25/50 | 50% | 10/17 | 3/16 |
Behavioral problem | 22/27 | 81.5% | 7/9 | 7/9 |
Feeding problem | 23/38 | 60.5% | 9/14 | 9/13 |
Heart defects | 11/28 | 39.3% | 3/8 | 5/10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Jiang, Y.; Wang, J.; Li, G.; Wu, B.; Zhou, Y.; Xu, X.; Wang, H. Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype–Phenotype Analysis in Neurodevelopmentally Delayed Patients. Genes 2023, 14, 1750. https://doi.org/10.3390/genes14091750
Qian Y, Jiang Y, Wang J, Li G, Wu B, Zhou Y, Xu X, Wang H. Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype–Phenotype Analysis in Neurodevelopmentally Delayed Patients. Genes. 2023; 14(9):1750. https://doi.org/10.3390/genes14091750
Chicago/Turabian StyleQian, Yanyan, Yinmo Jiang, Ji Wang, Gang Li, Bingbing Wu, Yuanfeng Zhou, Xiu Xu, and Huijun Wang. 2023. "Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype–Phenotype Analysis in Neurodevelopmentally Delayed Patients" Genes 14, no. 9: 1750. https://doi.org/10.3390/genes14091750
APA StyleQian, Y., Jiang, Y., Wang, J., Li, G., Wu, B., Zhou, Y., Xu, X., & Wang, H. (2023). Novel Variants of PPP2R1A in Catalytic Subunit Binding Domain and Genotype–Phenotype Analysis in Neurodevelopmentally Delayed Patients. Genes, 14(9), 1750. https://doi.org/10.3390/genes14091750