
Citation: Vishweswaraiah, S.; Yilmaz,

A.; Saiyed, N.; Khalid, A.; Koladiya,

P.R.; Pan, X.; Macias, S.; Robinson,

A.C.; Mann, D.; Green, B.D.; et al.

Integrative Analysis Unveils the

Correlation of Aminoacyl-tRNA

Biosynthesis Metabolites with the

Methylation of the SEPSECS Gene in

Huntington’s Disease Brain Tissue.

Genes 2023, 14, 1752. https://

doi.org/10.3390/genes14091752

Academic Editor: Claudia Ricci

Received: 2 August 2023

Revised: 28 August 2023

Accepted: 30 August 2023

Published: 2 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

genes
G C A T

T A C G

G C A T

Article

Integrative Analysis Unveils the Correlation of
Aminoacyl-tRNA Biosynthesis Metabolites with the
Methylation of the SEPSECS Gene in Huntington’s Disease
Brain Tissue
Sangeetha Vishweswaraiah 1, Ali Yilmaz 2, Nazia Saiyed 2, Abdullah Khalid 2, Purvesh R. Koladiya 2,
Xiaobei Pan 3, Shirin Macias 3, Andrew C. Robinson 4 , David Mann 4, Brian D. Green 3 , Ieva Kerševičiūte 5,
Juozas Gordevičius 5, Uppala Radhakrishna 1 and Stewart F. Graham 1,2,6,*

1 Department of Obstetrics and Gynecology, Corewell Health William Beaumont University Hospital, 3601 W.
13 Mile Road, Royal Oak, MI 48073, USA; sangeetha.vishweswaraiah@corewellhealth.org (S.V.);
uppalar99@gmail.com (U.R.)

2 Metabolomics Department, Corewell Health Research Institute, 3811 W. 13 Mile Road,
Royal Oak, MI 48073, USA; ali.yilmaz@corewellhealth.org (A.Y.); nazia.saiyed@corewellhealth.org (N.S.);
abdullah.khalid@corewellhealth.org (A.K.); purveshrohitkumar.koladiya@corewellhealth.org (P.R.K.)

3 Advanced Asset Technology Centre, Institute for Global Food Security, Queen’s University Belfast,
Belfast BT9 5DL, UK; x.pan@qub.ac.uk (X.P.); smacias01@qub.ac.uk (S.M.); b.green@qub.ac.uk (B.D.G.)

4 Faculty of Biology, Medicine and Health, School of Biological Sciences, Division of Neuroscience,
The University of Manchester, Salford Royal Hospital, Salford M6 8HD, UK;
andrew.c.robinson@manchester.ac.uk (A.C.R.); davidmann1948@hotmail.com (D.M.)

5 VUGENE, LLC, 625 Kenmoor Ave Suite 301 PMB 96578, Grand Rapids, MI 49546, USA; ieva@vugene.us (I.K.);
juozas@vugene.us (J.G.)

6 Department of Obstetrics and Gynecology, Oakland University-William Beaumont School of Medicine,
Rochester, MI 48309, USA

* Correspondence: stewart.graham@corewellhealth.org

Abstract: The impact of environmental factors on epigenetic changes is well established, and cellular
function is determined not only by the genome but also by interacting partners such as metabo-
lites. Given the significant impact of metabolism on disease progression, exploring the interaction
between the metabolome and epigenome may offer new insights into Huntington’s disease (HD)
diagnosis and treatment. Using fourteen post-mortem HD cases and fourteen control subjects, we
performed metabolomic profiling of human postmortem brain tissue (striatum and frontal lobe), and
we performed DNA methylome profiling using the same frontal lobe tissue. Along with finding
several perturbed metabolites and differentially methylated loci, Aminoacyl-tRNA biosynthesis
(adj p-value = 0.0098) was the most significantly perturbed metabolic pathway with which two
CpGs of the SEPSECS gene were correlated. This study improves our understanding of molecular
biomarker connections and, importantly, increases our knowledge of metabolic alterations driving
HD progression.

Keywords: metabolomics; epigenetics; integrative omics; epi-metabolomics; Huntington’s
disease; brain

1. Introduction

Huntington’s disease (HD) is a neurodegenerative disorder that results in a decline
of neurological function, characterized by worsening motor skills, cognitive abilities, and
psychological symptoms [1]. The root cause of HD is the expansion of a CAG trinu-
cleotide repeat in the huntingtin (HTT) gene, producing a toxic protein that adversely
affects the brain’s cells [2]. The average age for symptom onset in HD is between 30 and
50 years, although, in certain instances, symptoms may begin before the age of 20. The
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early indications of HD include irritability, depression, small uncontrolled movements,
impaired coordination, and difficulty with learning or decision-making. In advanced stages,
many individuals with HD experience involuntary twitching movements that become more
severe over time. Walking, speaking, and swallowing may also become difficult [3,4]. The
global prevalence of HD is estimated to be around 5–10 cases per 100,000 individuals,
and it is inherited in an autosomal dominant pattern [5]. The onset and severity of HD
symptoms can vary significantly among individuals, even within families with identical
genetic mutations. Presently, no cure exists for HD, and available treatments only provide
relief for symptoms associated with the disease [6].

HD involves neurodegeneration, mainly in the basal ganglia, particularly the stria-
tum, impacting movement and reward-related neural activity [7]. The neocortex, which
connects to the striatum, shrinks during HD, affecting other brain areas later [8]. Disease
development involves complex mechanisms like transcription dysfunction and abnormal
trafficking [9]. Mood and behavior changes related to frontal lobe dysfunction serve as
early HD indicators [10–13].

In the pursuit of comprehending complex biological systems, multi-omics studies
hold significant importance. Such studies involve the integration and analysis of data from
various “-omics” fields, such as genomics, transcriptomics, proteomics, and metabolomics,
to obtain a holistic view of biological processes. By exploring the interactions between
different molecular levels, multi-omics studies can reveal novel pathways and mechanisms
that contribute to complex diseases such as neurodegenerative diseases [14,15]. Multi-omics
studies can aid in identifying new drug targets and developing more effective therapeutic
strategies [16].

DNA methylation is an epigenetic mechanism that plays a crucial role in regulating
gene expression, and numerous studies have revealed the involvement of altered DNA
methylation in the pathogenesis of neurodegenerative disorders, including HD [17,18]. In
recent years, DNA methylation has emerged as a promising biomarker for HD diagnosis
and prognosis [18]. For instance, a study has indicated that differences in DNA methylation
levels of the HTT gene may contribute to the tissue-specific variation of its expression.
Additionally, the mutant HTT gene appears to impact the epigenetic age of individuals with
HD [18]. Another study reported that DNA methylation levels in certain genes correlated
with the advancement and severity of the disease [19]. Furthermore, some studies have
explored the therapeutic potential of targeting DNA methylation in HD [18,20,21].

Metabolomics possesses the capability to reveal the underlying mechanisms of disease
progression that have the potential to function as prognostic biomarkers for risk assess-
ment [22]. The discovery of metabolic biomarkers and their corresponding pathways linked
to the progression of HD can enhance comprehension of the disease’s pathophysiological
mechanisms. Moreover, this can stimulate the development of efficacious treatments by
providing precise assessments of the disease advancement [23,24]. Several metabolomics
investigations involving human subjects and other models have produced intriguing out-
comes, indicating significant alterations in metabolic pathways associated with HD [23,25].
Several -omics studies, including some in the field of metabolomics, have showcased
metabolic modifications, encompassing alterations in protein, carbohydrate, cholesterol,
lipid, and amino acid metabolism [26–29].

Given the potential impact of both DNA methylation and metabolomics on the patho-
genesis of HD, and the potential for interplay between these two -omics technologies, we
proposed that investigating them in tandem could reveal potential signaling mechanisms
for therapeutic targeting. To this end, we conducted DNA methylation profiling of the
frontal lobe, as well as metabolite profiling in both the striatum and frontal lobe of post-
mortem individuals with HD. The implications of dysregulated pathways are presented
and discussed.
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2. Methods
2.1. Study Samples

This research was carried out by utilizing brain tissue samples collected posthumously
from HD-affected patients and from normal controls. The Manchester Brain Bank provided
the brain tissue [30]. The use of post-mortem human brain samples was approved by the
Manchester Brain Bank Management Committee working under conditions agreed upon
with the Newcastle and North Tyneside 1 Research Ethics Committee (REC Reference#
09/H0906/52 + 5). Further ethical approval was granted by the Beaumont Institutional
Review Board (IRB# 2014–353). Fourteen post-mortem HD cases and fourteen controls were
used for metabolomics profiling, and the same fourteen cases, and thirteen controls, were
considered for the methylation analysis. Control subjects had no evidence of Huntington’s
pathology and there was no recent history of dementia-associated medication use among
them. Both striatum and frontal lobe tissues were metabolically profiled, whereas only
frontal lobe tissue was available for epigenetic analysis. The HD cases all exhibited a
moderate to severely atrophied corpus striatum consistent with grades 2 or 3. The exact
CAG repeat numbers were not available, but the diagnosis of HD was confirmed using
genetic testing except for in two cases, where the diagnosis was based on the presence of
ubiquitinated/p62 positive intra-nuclear inclusions within cortical and striatal neurons, as
observed in all other HD cases but not in control cases. The demographic characteristics of
the study group are provided in Table 1.

Table 1. A comparison of demographic features between individuals diagnosed with Huntington’s
disease and control subjects without the condition.

HD Patients Controls p-Value

Number of subjects 14 14 n/a

Age, Mean (SD) 54.64 (12.39) 78.5 (13.46)

<0.0001

Individual age in years:
Patient/control–1 70 84
Patient/control–2 57 84
Patient/control–3 51 81
Patient/control–4 52 87
Patient/control–5 67 90
Patient/control–6 51 89
Patient/control–7 33 89
Patient/control–8 47 54
Patient/control–9 48 53

Patient/control–10 na 84
Patient/control–11 50 60
Patient/control–12 68 89
Patient/control–13 72 83
Patient/control–14 75 90

Sex

Males 8 (57.1) 8 (57.1)
0.45

Females 6 (42.8) 6 (42.8)

Postmortem delay
(PMD)-Minutes

Mean (SD) 77.35 (71.63) 69.28 (38.09) 0.65

2.2. 1H NMR Analysis

The samples were first stored at −80 ◦C before being prepared. To minimize the
amount of heat produced, the samples were subsequently lyophilized and milled into a
fine powder under liquid nitrogen. To analyze the samples using 1H NMR, previously
optimized methods were employed [31]. The 50 mg samples of the lyophilized and milled
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tissue were extracted in 50% methanol/water (1 mg per 10 µL; 0.1 g/mL) in a sterile
2 mL Eppendorf tube. The samples were mixed and sonicated for 20 min at a frequency of
50–60 Hz to achieve homogenization, cell disruption, and compound extraction, and
centrifuged at 13,000× g at 4 ◦C for 30 min to remove any macro molecules that may
affect the NMR signal. After collecting the supernatants, they were dried under vacuum
using a Savant DNA Speedvac (Thermo Scientific, USA) and reconstituted in 285 µL of
50 mM potassium phosphate buffer (pH 7.0), 30 µL of Sodium 2,2-dimethyl-2-silapentane-
5-sulfonate (DSS), and 35 µL of D2O. A volume of 200 µL of the reconstituted sample was
then transferred to a 3 mm Bruker NMR tube for analysis. All samples were stored at
4 ◦C in a thermostatically controlled SampleJet autosampler (Bruker-Biospin, Billerica, MA,
USA) and heated to room temperature over 3 min prior to NMR analysis.

To record all 1D 1H NMR data, a randomized running order was utilized on a Bruker
ASCEND HD 600 MHz spectrometer (Bruker-Biospin, Billerica, MA, USA) coupled with a
5 mm TCI cryoprobe at a temperature of 300 (±0.5) K. For each sample, 256 transients were
collected as 64k data points with a spectral width of 12 kHz (20 ppm) using a pulse sequence
called CPP WaterSupp (Bruker pulse program: pusenoesypr1d), which was developed by
Mercier et al. (2011) [32], with an inter-pulse delay of 9.65 s. The data collection protocol
involved a 180 s temperature equilibration period, fast 3D shimming utilizing the z-axis
profile of the 2H NMR solvent signal, receiver gain adjustment, and acquisition. The free
induction decay signal was zero-filled to 128 k points and exponentially multiplied with
a 0.1 Hz line broadening factor. After Fourier transformation, the zero and first-order
phase constants were manually optimized, and a polynomial baseline correction of the FID
(degree 5) was applied for precise quantitation. Chenomx NMR Suite (ver. 8.1, Chenomx,
Edmonton, AB, Canada) was used for processing and analyzing all spectra.

2.3. Direct Injection/Liquid Chromatography–Mass Spectral Analysis (DI/LC-MS/MS)

Post-mortem brain samples were prepared and analyzed using a method previously
reported by Urban et al. and our group [33,34]. Post-mortem brain samples were subjected
to freeze drying using a Christ α 1-4LD Plus freeze dryer (IMA Life) and milled to a fine
powder under liquid nitrogen using a 6870-freezer mill (SpexSamplePrep, Metuchen, NJ,
USA). Subsequently, 10 mg of tissue was mixed with 300 µL of 85% ethanol and 15%
phosphate-buffered saline. Samples were sonicated for 5 min in ice water, mixed for 30 s,
and then centrifuged at 10,000× g for 5 min at 4 ◦C.

A total of 10 µL of the subsequent supernatant was analyzed using the targeted,
commercially available quantitative DI/LC-MS/MS AbsoluteIDQ p180 kit (Biocrates, Inns-
bruck, Austria), as previously described [35], and all sample preparatory steps were com-
pleted as detailed by the manufacturer. Metabolites were separated and quantified using a
reverse phase column (Waters ACQUITY UPLC BEH C18 2.1 × 50 mm, 1.7 µm; Wexford,
Ireland) on a UPLC system (I-Class, Waters Corporation, Budapest, Hungary) coupled
to a triple quadrupole mass spectrometer (Xevo TQ-S, Waters Corporation) operating in
the multiple reaction monitoring (MRM) mode. All remaining compounds (acylcarnitines,
hexoses, glycerophospholipids, and sphingolipids) were quantified using the same mass
spectrometer using flow injection analysis, operating in multiple reaction monitoring mode.
Metabolite concentrations were calculated and expressed in micromolar (µM).

2.4. Genome-Wide DNA Methylation Assay

The QIAamp DNA Mini Kit (Qiagen) was used to extract genomic DNA from the
lyophilized and milled brain tissue for the genome-wide DNA methylation assay. The
Illumina Infinium Epic HumanMethylation850K arrays were employed to profile DNA
methylation (Illumina, Inc., San Diego, CA, USA), which covers >850,000 methylation sites
per sample, including translation start sites, enhancers, gene bodies, promoters, intronic
regions, and also the CpG islands all over the genome at a single-nucleotide resolution. A
total of 500 ng of genomic DNA was utilized from each sample that was subjected to bisulfite
conversion using the EZ DNA Methylation-Direct Kit (Zymo Research, Orange, CA, USA).
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The BeadChips were handled in accordance with the manufacturer’s guidelines, and the
Illumina iScan (Illumina, USA) was used to image the fluorescently stained BeadChips.

2.5. Data Analysis

Metabolomic profiling: The raw metabolomic data underwent sum normalization,
autoscaling, and log transformation. Principal Component Analysis (PCA) was employed
to detect outliers; any sample deviating by more than 3 standard deviations away from
the center of the first three principal components was considered an outlier (i.e., 99.7%
confidence). No outliers were identified. To estimate sample diagnosis, a logistic regression
model was applied, using the first five principal components, as well as sample age, sex,
and post-mortem interval as inputs. To identify differentially expressed metabolites, a
robust linear regression model was fitted to each metabolite, with sample diagnosis, age,
sex, and PMI as covariates. p-values for diagnosis were calculated using empirical Bayes
treatment of fitted models. Metabolites with FDR q < 0.05 were deemed significantly
differentially expressed in the disease. To estimate metabolite pathway enrichment, the
metabolites were ranked based on their log-transformed p value multiplied by the sign
of fold change. This ranking method ensured that metabolites with a significant increase
in abundance were at the top of the list, while those with the most significant decrease
in abundance were at the bottom. Any metabolites without an HMDB ID were removed
from the ranked list. Metabolomic pathways were downloaded from the KEGG database
using the R package multiGSEA, and then metabolite set enrichment was calculated with
10,000 permutations using the fgsea package (version 1.16.0).

DNA methylation profiling: The raw *idat files were read using minfi package of
bioconductor, which was also considered to mark the failed methylation probes. To identify
outliers in the data, several quality control measures were performed. First, samples
with more than 20% of failed probes were considered outliers based on the proportion of
failed probes. The median probe intensity of U and M probes was then calculated, and
samples in the lower-left corner of the plot were marked as outliers. Gender prediction was
performed by comparing the median signal in X and Y chromosomes, and samples with a
mismatch between the predicted and known gender were marked as outliers. Principal
component analysis of the centered, unnormalized β value matrix was used to identify
samples deviating by more than 2 standard deviations from the mean of the first three
principal components and marked as outliers. Noob normalization was used to normalize
the samples, and methylation β values were extracted for the remaining probes. To adjust
for the effect of sample position on the EPIC array, the empiricalBayesLM function from the
WGCNA package was used, and the effect was modeled as a second-degree polynomial.
The proportion of neuronal cells in each sample was estimated using the flow-sorted PFC
samples and the estimateCellCount function from the minfi package. The sample DNA
methylation age was estimated using the ENmix package. Age acceleration was defined as
the residuals of a linear model, where DNAmAge was the dependent variable, and sample
chronological age, sex, postmortem interval, and proportion of neuronal cells were the
independent variables. To identify differentially methylated CpGs, robust linear regression
was employed using the R package limma with sample diagnosis, age, sex, postmortem
interval, and proportion of neuronal nuclei as covariates. p-value estimates for diagnosis
were obtained after the empirical Bayes treatment of the fitted models. Cytosines with a
false discovery rate (FDR) q-value of less than 0.05 were considered significantly altered in
HD individuals.

To conduct an epigenome enrichment analysis, cytosines were mapped to gene names
using the UCSC_RefGene_Name column specified in the Bioconductor EPIC array anno-
tation package IlluminaHumanMethylationEPICanno.ilm10b4.hg19. When a CpG locus
was annotated with multiple genes multiple times, the one that was most frequently as-
sociated with the locus was chosen. The genes were ranked based on the significance of
the affected cytosines multiplied by the sign of fold change. For genes that mapped to
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multiple cytosines, the one with the smallest p-value was selected. To conduct the pathway
enrichment analysis, KEGG pathways were downloaded and the fgsea function was used.

2.6. Epigenome–Metabolome Interactions

To establish epigenome–metabolome interactions within each pathway, metabolites
and transcripts pertaining to the pathway were selected. Pathway–protein associations
were obtained from SMPDB 63 (https://smpdb.ca). Only CpGs that were associated
with any of the transcripts in the pathway were further considered. The concordance
of each metabolite–CpG pair was established by fitting a robust linear regression model
without an intercept, where the standardized methylation value was the response variable,
and standardized metabolite abundance, as well as diagnosis, age, and sex were the
independent variables. Concordance p values were adjusted using FDR, and those with
FDR q < 0.2 were reported.

2.7. Diagnostic Models

To evaluate the diagnostic models based on metabolome, the normalized data were
used, and no other additional data preprocessing was performed. Two basic diagnostic
models were trained: glmnet (LASSO), and Random Forest (rf). In addition, an ensemble of
those models was built using either linear (ensemble linear) or glmnet-weighted (ensemble
glmnet) combination of basic predictors. The area under the curve (AUC) metric was used
as the training objective. The data were randomly split into ten training and validation sets.
Within each training set, bootstrapping was performed to train and select the best models.
The models were then evaluated on the validation set.

For the methylome, we transformed the normalized β values into M values and
applied batch correction to remove Sentrix array ID and Position effects from the data.
We randomly split the data into a training (N = 20) and validation (N = 4) sets. For each
such split, we used the training data to filter the loci by applying a t-test and selecting top
50.000 loci for further use in training the models. We used glmnet, random forest, and SVM
with linear and radial kernel algorithms to build and evaluate the models. In addition,
we combined these models into ensembles using either linear weighting of predictors
(ensemble linear) or glmnet inferred weights of predictors (ensemble glmnet). Finally, we
trained a classifier using each of the above algorithms on the full dataset.

3. Results
3.1. HD Brain Metabolomic Profile

To study any underlying metabolic alterations in the brain of people who died from
HD, we profiled the striatum and the frontal lobe of these individuals and compared
them with controls. In both the striatum and frontal lobes, the variance inflation analysis
showed that the control subjects were more likely to be younger, which correlates with
the chronological age. However, age was controlled for in all linear models. Variance
inflation for the striatum and frontal lobe are shown in Supplementary Figures S1 and S2,
respectively. Normalized intensities using the striatum and frontal lobe data are provided
in Supplementary Figures S3 and S4, respectively.

Targeted metabolomic profiling revealed that, of the 166 metabolites, 4 were sig-
nificantly upregulated in the striatum of HD brains when compared to controls (FDR
adjusted q-value < 0.05). This included taurine, SM.C16.0, PC.aa.C40.3, and SM.C18.1
(Supplementary Table S1). In the frontal lobe, we identified 14 metabolites that were signifi-
cantly different between HD and control brains (FDR adjusted q-value < 0.05). Eight were
upregulated and the remaining six were downregulated in HD brains. The top four were
PC.aa.C38.4, lysoPC.a.C18.2, C18.1.OH, and C2 (Supplementary Table S2).

We also performed metabolomic set enrichment analysis for both the striatum
(Figure 1) and the frontal lobe (Figure 2). Interestingly, both analyses highlighted the
same two pathways as being significantly perturbed. These include aminoacyl-tRNA
biosynthesis and the biosynthesis of amino acids (FDR adjusted q-value less than 0.05).

https://smpdb.ca
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Figure 2. The metabolic pathways that are significantly enriched with metabolites have been identi-
fied using the frontal lobe region of HD patients.

3.2. HD Brain Methylation Profile

The Sentrix ID of the sample wells was found to be inflated and adjusted
(Supplementary Figure S5). Further, the enrichment of genomic regions by methy-
lation markers using the frontal lobe of HD patients vs. the control group revealed
enrichment of hypomethylated markers in the intron and 3′ UTRs. CGI shores are
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enriched with hyper-methylated loci, and the open sea areas are enriched with hypo-
methylated loci. In terms of genomic features, hypo-methylated loci tend to overlap
introns and 3′UTR regions of genes. The enrichment of genomic regions is depicted
in Supplementary Figure S6, and the details are provided in Supplementary Table S3.
There were 11,955 significantly differentially methylated CpGs identified (FDR ad-
justed q-value = 0.05) when the frontal lobes of HD patients were compared with
those of control subjects. Among them, 11,292 CpGs were hypomethylated, and the
remaining 663 were significantly hypermethylated (Supplementary Table S4).

3.3. Epigenome and Metabolome Correlation

This study found correlations between DNA methylation and the metabolome, specifically
identifying several genes (Trafficking Protein Particle Complex Subunit 10 [TRAPPC10], CUB
And Sushi Multiple Domains 3 [CSMD3], 5-Methyltetrahydrofolate-Homocysteine Methyltrans-
ferase Reductase [MTRR], Pecanex 1 [PCNX], PC-Esterase Domain Containing 1B [PCED1B],
Glucose-6-Phosphatase Catalytic Subunit 2 [G6PC2], Protocadherin 7 [PCDH7], Glypican 6
[GPC6], Ribosomal Protein S25 [RPS25], and Casein Kinase 1 γ 3 [CSNK1G3]) that are corre-
lated with the metabolites, phenylalanine, and methionine. Further details are available in
Supplementary Table S5.

The linear model interaction network between CpGs and metabolites was estab-
lished. The most significantly affected pathway in this study was the Aminoacyl-tRNA
biosynthesis pathway. Within this pathway, two metabolites, valine and phenylalanine,
were found to interact significantly with two CpGs of the same gene, SEPSECS. Specifi-
cally, HMDB0000159 (phenylalanine) interacted with cg17068512 (p-value = 0.0005),
HMDB0000159 interacted with cg14837557 (p-value = 0.004), and HMDB0000883 (va-
line) interacted with cg17068512 (p-value = 0.007). These CpGs were located on differ-
ent transcripts of the SEPSECS gene body. Interestingly, both metabolites were found
to be negatively correlated with the methylation of sites belonging to the SEPSECS
gene (see Figure 3 and Supplementary Table S6).
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The linear model interaction network between CpGs and metabolites was estab-
lished. The most significantly affected pathway in this study was the Aminoacyl-tRNA 
biosynthesis pathway. Within this pathway, two metabolites, valine and phenylalanine, 
were found to interact significantly with two CpGs of the same gene, SEPSECS. Specifi-
cally, HMDB0000159 (phenylalanine) interacted with cg17068512 (p-value = 0.0005), 
HMDB0000159 interacted with cg14837557 (p-value = 0.004), and HMDB0000883 (valine) 
interacted with cg17068512 (p-value = 0.007). These CpGs were located on different tran-
scripts of the SEPSECS gene body. Interestingly, both metabolites were found to be nega-
tively correlated with the methylation of sites belonging to the SEPSECS gene (see Figure 
3 and Supplementary Table S6). 

 Figure 3. The “circos plot” displays the negative correlation between significantly differentially
methylated cytosines and metabolites related to the aminoacyl-tRNA biosynthesis pathway. Metabo-
lites Val and Phe have been downregulated in metabolome analysis, as indicated by the blue color on
the edge of the circos plot. The cytosines pertaining to SEPSECS gene have been hypo-methylated as
well. The blue strips connecting metabolites and cytosines indicate a negative correlation between
methylation and metabolite abundance when adjusted for age, sex, postmortem delay, and condition.
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3.4. Diagnostic Models

Using metabolomics data acquired from striatal tissue (Supplementary Figure S7),
we were able to develop a predictive model with an AUC of 0.82 on glmnet. This was
followed by ensemble Linear AUC with 0.79, rf AUC with 0.75, and ensembleGlmnet
AUC with 0.74. Using frontal lobe metabolomics data (Supplementary Figure S8), we
developed a predictive model with an AUC of 0.84 on glmnet, while both ensembleLinear
and ensembleGlmnet had an AUC of 0.8. The rf analysis achieved an AUC of 0.74.

Based on the methylome data, we evaluated the performance of several models.
Our results indicate that the svmRadial model achieved the highest AUC value of 0.95.
Additionally, both ensembleGlmnet and ensembleLinear models performed well, with an
AUC value of 0.9. The glmnet, random forest, and svmLinear models achieved an AUC of
0.85 (Supplementary Figure S9).

4. Discussion

Earlier studies [36] have shown that alterations in DNA methylation can contribute
to the development of Huntington’s disease (HD). However, the relationship between
methylation and the metabolome in HD has not been extensively studied. The goal of
our study was to investigate the potential interaction between DNA methylation and the
metabolome in the human brain of HD individuals compared to controls. We analyzed the
metabolome in two brain regions, the striatum and frontal lobe, and performed methylome
profiling only in the frontal lobe.

Environmental factors can lead to epigenetic changes, and metabolites can act as
interacting partners that determine cellular function. Even minor and short-term changes
in nutrition can have significant and long-lasting effects on gene expression, possibly by
interacting with epigenetic factors. This “memory” of past metabolic conditions may also
contribute to the development of certain diseases over time [37]. We hypothesized that there
exists a robust connection between DNA methylation patterns and metabolic measures.
We aimed to discover diagnostic indicators and understand the methylome–metabolome
interplay in HD. Our study reveals the complex relationship between the epigenome and
metabolome, potentially impacting HD development.

Our study highlights the complex interplay between the epigenome and metabolome,
which may play a role in the development of HD.

Analysis of the acquired data showed that there was a significant correlation between
phenylalanine and methionine, and the CpGs of GPC6, CSNK1G3, and PCNX genes. While
phenylalanine is not directly involved in the development of HD or the formation of pro-
tein aggregates, it can influence the levels of neurotransmitters, which are critical in the
pathogenesis of HD [38,39]. Similarly, while methionine is not directly implicated in the de-
velopment of HD, it may play a role in the neurodegeneration [40,41] and the pathogenesis
of HD through its involvement in the generation of reactive oxygen species [42] and im-
paired homocysteine metabolism [43,44]. According to previously reported research, GPC6
is a significant protein involved in synapse formation [45]. CSNK1G3 is a member of the
casein kinase family of genes, which play a critical role in neuronal and synaptic network
functions. It has been studied in relation to neurodegenerative disorders, including HD [46].
Meanwhile, PCNX is a member of the pecanex family of genes, which act as maternal-effect
neurogenic genes studied in Drosophila. This gene is thought to potentially contribute
to nervous system development [47]. Additionally, genes including TRAPPC10, CSMD3,
MTRR, G6PC2, PCDH7, PCED1B, RPS25, and TRAPPC4 were found to be highly correlated
with phenylalanine. Specifically, CSMD3 has been linked to synaptogenesis and neuroge-
nesis in the context of neurodevelopmental disorders. This gene may also play a role in
regulating a network of genes involved in synaptic organization and immune activity [48].
The MTRR gene encodes for 5-methyltetrahydrofolate-homocysteine methyltransferase
reductase, which is necessary for the normal function of the MTHFR gene. Dysregulation
of S-adenosyl methionine, methionine, and homocysteine, which are all involved with
the MTHFR gene, can lead to neurotoxicity [18,49]. PCDH7 has been shown to play a role
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in regulating dendritic spine morphology and synaptic function [50]. RPS25 participates
in nucleotide repeat expansions through the regulation of an unconventional translation
process that is commonly associated with the pathogenesis of Huntington’s disease [51,52].
Our study identified methylation on the promoter region of the TRAPPC4 gene, which
has been associated with splice variants linked to a neurodegenerative syndrome in in-
fants. This finding suggests a possible involvement of TRAPPC4 in the neurodegenerative
process [53].

Aminoacyl-tRNA Biosynthesis

Metabolic enrichment analysis highlighted the aminoacyl-tRNA biosynthesis path-
way as being significantly perturbed. This signaling mechanism plays a crucial role in
protein synthesis and in ensuring the precision of translation [54,55]. It is noteworthy that
a study utilizing cerebrospinal fluid identified a strong association of aminoacyl-tRNA
biosynthesis with HD [39]. Several studies have also suggested that cytosolic tRNAs play
a crucial role in HD [56,57]. Elongated Gln repeat in the huntingtin protein, consisting of
40–100 repeated CAG codons, is known to cause HD. However, shorter CAG repeats can
also contribute to HD, indicating the involvement of additional disease modifiers. The
constant process of translation of the repeat sequence depletes charged tRNAGln–CUG,
resulting in more frequent frameshifting translation of the huntingtin gene, which can
exacerbate HD pathogenesis. The process also signifies the role of tRNA in the disease
process [56–58]. Our study investigated the potential impact of epigenetic modifications,
specifically DNA methylation, on the above-mentioned metabolomic changes in the stria-
tum and frontal lobe regions of the brain in individuals with HD.

In our study, the aminoacyl-tRNA biosynthesis pathway was found to show a correla-
tion between valine and phenylalanine with two CpGs of SEPSECS gene. Valine plays a
vital role in protein synthesis and various cellular functions and has been found to be asso-
ciated with HD. A study observed lower levels of valine in the HD patient group compared
to the control group. The study also found a correlation between valine levels, weight loss,
and the number of CAG repeats [59]. Also, the decreased levels of phenylalanine were
identified, along with valine, in postmortem brain tissues, CSF, and serum samples of HD
patients [39].

The SEPSECS gene codes for the enzyme Sep tRNA:Sec tRNA Synthase, which syn-
thesizes selenocysteine. This unique amino acid has antioxidants and appears in proteins
for oxidative stress defense and redox signaling [60,61]. Several studies have suggested
that oxidative stress and damage contribute to the pathogenesis of HD, especially in the
striatum and cerebral cortex [62–64]. In this context, it has been proposed that selenocys-
teine and other antioxidants might have neuroprotective effects against the oxidative stress
that occurs in HD.

Moreover, recent evidence suggests that alterations in the expression of the SEPSECS
gene and the levels of selenocysteine in the brain might be involved in the pathogene-
sis of HD [65–67]. Selenoproteins have been found to participate in various biological
processes, such as antioxidant defense, anti-inflammation, anti-apoptosis, and immune
response regulation, as well as the regulation of oxidative stress and endoplasmic reticulum
stress [68]. A study by Lu et al., 2014 suggests that, when sodium selenite was given, mouse
models of HD showed marked improvements in motor endurance, decreased loss of brain
weight, reduced burden of mutant huntingtin aggregates, and decreased levels of brain
oxidized glutathione [69]. In summary, the SEPSECS gene and its product selenocysteine
might play an important role in the pathogenesis of HD by regulating oxidative stress and
neuroprotection. Further research is needed to fully understand the mechanisms under-
lying the association of the metabolites noted in our study with this gene and to explore
their potential therapeutic applications in HD. Notably, there were perturbations in the
aminoacyl-tRNA biosynthesis pathway, which is linked to protein synthesis and translation
precision [54,55]. A previous study, which used cerebrospinal fluid, also connected this
pathway with HD [39]. Cytosolic tRNAs are implicated in HD, with the elongated Gln
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repeat in the huntingtin protein driving the disease process [56–58]. One of the genes, the
SEPSECS gene, responsible for producing the Sep (O-Phosphoserine) tRNA:Sec (Seleno-
cysteine) tRNA Synthase enzyme, is a focal point. This enzyme facilitates selenocysteine
synthesis, a rare amino acid with antioxidant properties [60,61]. Given the oxidative stress
implications in HD pathogenesis, exploring selenocysteine’s neuroprotective potential is
significant [62–64]. Our study sheds light on these interconnected mechanisms and their
contribution to HD’s complex pathology.

In conclusion, we have used an epimetabolomics approach to highlight the signifi-
cance of the aminoacyl-tRNA biosynthesis pathway in the development of HD. However,
this study was performed on a limited number of samples, and this is due to the diffi-
culty of obtaining PM brain tissue. However, as a proof-of-concept study, we aimed to
demonstrate the feasibility of the proposed methodology combining metabolomics and
DNA methylation, which is the first of its kind in studying the pathogenesis of HD. For the
analysis of methylome, we have considered known, potentially confounding, factors, such
as sample age, gender, estimated proportion of neurons, and postmortem delay. The effects
of nutrition or stress are assumed to be equally distributed between sample groups, and
they should not have a significant impact on the outcome. We have also experimented with
the use of RUV [70], the method used to estimate unknown confounding variables, but
that did not impact the outcome. Further, we emphasize that the regulation of metabolites
and genes is tightly intertwined and plays a critical role in maintaining cellular home-
ostasis in the brain. Dysregulation of these processes can lead to the accumulation of
toxic metabolites, oxidative stress, and inflammation, which contribute to the development
and progression of HD. Understanding the complex interplay between metabolites and
genes in HD has the potential to uncover novel therapeutic targets for this devastating
disease. We suggest that these biomarkers of HD should be the focus of future translational
research efforts.
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