Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review
Abstract
:1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Selection Criteria
2.3. Screening of Search Results
2.4. Data Extraction and Analysis
- Clinician-reported outcome measures (CROM): measurement of clinical signs or findings performed by a health professional.
- Performance outcome measures (PerfOM): measurement with a standardized task, either administered by a trained individual or undertaken by the patient without assistance.
- Patient-reported outcome measures (PROM): measurement of patient-reported health status.
- Laboratory-based biomarkers;
- Neuroimaging biomarkers;
- Neurophysiology biomarkers;
- Other biomarkers.
3. Results
3.1. Search Results
3.2. Study Characteristics
3.3. Clinical Outcome Assessments
3.3.1. Clinician Reported Outcome Measures
3.3.2. Performance Outcome Measures
3.3.3. Patient Reported Outcome Measures
3.4. Biomarkers
3.4.1. Laboratory-Based Biomarkers
3.4.2. Neuroimaging Biomarkers
3.4.3. Neurophysiology Biomarkers
3.4.4. Other Biomarkers
3.4.5. Genotype-Specific Biomarkers in HSP
3.5. Randomized Controlled Trials in HSP
4. Discussion
4.1. Recommendations for Future Research
4.1.1. Choice of Outcome Measure
4.1.2. Recommendations for Trial Design
4.1.3. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- Embase search
- Embase Classic <1947 to 1973>
- Embase <1974 to 9 August 2022>
- spastic paraplegia/or spastic para*.mp. 11219
- hereditary motor sensory neuropathy/or hereditary spastic parap*.mp. 13564
- 1 or 2 21406
- pharmacological biomarker/or biomarker*.mp. or biological marker/ 660089
- patient-reported outcome/or outcome assessment/or “outcome measure*”.mp. or “quality of life”/ 1469067
- 4 or 5 2095172
- 3 and 6 1267
- remove duplicates from 7 1256
- Medline search
- Ovid MEDLINE(R) ALL <1946 to 9 August 2022>
- Spastic Paraplegia, Hereditary/or “spastic para*”.mp. 6979
- Spastic Paraplegia, Hereditary/or “hereditary spastic para*”.mp. or Paraparesis, Spastic/ 2875
- biomarker*.mp. or Biomarkers, Pharmacological/or Biomarkers/ 719216
- “outcome measure”.mp. or Outcome Assessment, Health Care/ 147938
- “patient reported outcome measure”.mp. or Patient Reported Outcome Measures/ 13303
- 1 or 2 7101
- 3 or 4 or 5 873824
- 6 and 7 199
- Scopus search
- TITLE-ABS-KEY ((“hereditary spastic parap*” OR “spastic parap*”) AND (biomarker* OR “outcome measure*”))
- 210 results
- Web of Science search
- (“hereditary spastic parap*” OR “spastic parap*”) AND (biomarker* OR “outcome measure*”)
- 230 results
- Central Cochrane Database
- EBM Reviews—Cochrane Central Register of Controlled Trials <July 2022>
- “hereditary spastic paraplegia”.mp. or Spastic Paraplegia, Hereditary/ 35
References
- Ruano, L.; Melo, C.; Silva, M.C.; Coutinho, P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology 2014, 42, 174–183. [Google Scholar] [CrossRef]
- Erichsen, A.K.; Koht, J.; Stray-Pedersen, A.; Abdelnoor, M.; Tallaksen, C.M.E. Prevalence of hereditary ataxia and spastic paraplegia in southeast Norway: A population-based study. Brain 2009, 132, 1577–1588. [Google Scholar] [CrossRef] [PubMed]
- Coutinho, P.; Ruano, L.; Loureiro, J.L.; Cruz, V.T.; Barros, J.; Tuna, A.; Barbot, C.; Guimarães, J.; Alonso, I.; Silveira, I.; et al. Hereditary ataxia and spastic paraplegia in Portugal: A population-based prevalence study. JAMA Neurol. 2013, 70, 746–755. [Google Scholar] [CrossRef]
- Vander Stichele, G.; Durr, A.; Yoon, G.; Schüle, R.; Blackstone, C.; Esposito, G.; Buffel, C.; Oliveira, I.; Freitag, C.; van Rooijen, S.; et al. An integrated modelling methodology for estimating global incidence and prevalence of hereditary spastic paraplegia subtypes SPG4, SPG7, SPG11, and SPG15. BMC Neurol. 2022, 22, 115. [Google Scholar] [CrossRef]
- Kerstens, H.C.J.W.; Lith, B.J.H.v.; Nijkrake, M.J.; Swart, B.J.M.d.; Bemd, L.A.C.v.d.; Smeets, R.; Klemens, F.; Warrenburg, B.P.C.v.d.; Wees, P.J.v.d.; Geurts, A.C.H. Healthcare needs, expectations, utilization, and experienced treatment effects in patients with hereditary spastic paraplegia: A web-based survey in the Netherlands. Orphanet J. Rare Dis. 2021, 16, 1–283. [Google Scholar] [CrossRef]
- Shribman, S.; Reid, E.; Crosby, A.H.; Houlden, H.; Warner, T.T. Hereditary spastic paraplegia: From diagnosis to emerging therapeutic approaches. Lancet Neurol. 2019, 18, 1136–1146. [Google Scholar] [CrossRef] [PubMed]
- Meyyazhagan, A.; Orlacchio, A. Hereditary Spastic Paraplegia: An Update. Int. J. Mol. Sci. 2022, 23, 1697. [Google Scholar] [CrossRef]
- Saputra, L.; Kumar, K.R. Challenges and Controversies in the Genetic Diagnosis of Hereditary Spastic Paraplegia. Curr. Neurol. Neurosci. Rep. 2021, 21, 15. [Google Scholar] [CrossRef]
- Harding, A.E. Classification of the hereditary ataxias and paraplegias. Lancet 1983, 1, 1151–1155. [Google Scholar] [CrossRef]
- Méreaux, J.-L.; Banneau, G.; Papin, M.; Coarelli, G.; Valter, R.; Raymond, L.; Kol, B.; Ariste, O.; Parodi, L.; Tissier, L.; et al. Clinical and genetic spectra of 1550 index patients with hereditary spastic paraplegia. Brain 2022, 145, 1029–1037. [Google Scholar] [CrossRef]
- Wali, G.; Sutharsan, R.; Fan, Y.; Stewart, R.; Tello Velasquez, J.; Sue, C.M.; Crane, D.I.; Mackay-Sim, A. Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Sci. Rep. 2016, 6, 27004. [Google Scholar] [CrossRef]
- Denton, K.R.; Lei, L.; Grenier, J.; Rodionov, V.; Blackstone, C.; Li, X.J. Loss of Spastin Function Results in Disease-Specific Axonal Defects in Human Pluripotent Stem Cell-Based Models of Hereditary Spastic Paraplegia. Stem Cells 2014, 32, 414–423. [Google Scholar] [CrossRef]
- Fassier, C.; Tarrade, A.; Peris, L.; Courageot, S.; Mailly, P.; Dalard, C.; Delga, S.; Roblot, N.; Lefèvre, J.; Job, D.; et al. Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis. Model. Mech. 2013, 6, 72–83. [Google Scholar] [CrossRef]
- Wali, G.; Liyanage, E.; Blair, N.F.; Sutharsan, R.; Park, J.S.; Mackay-Sim, A.; Sue, C.M. Oxidative Stress-Induced Axon Fragmentation Is a Consequence of Reduced Axonal Transport in Hereditary Spastic Paraplegia SPAST Patient Neurons. Front. Neurosci. 2020, 14, 401. [Google Scholar] [CrossRef]
- Fan, Y.; Wali, G.; Sutharsan, R.; Bellette, B.; Crane, D.I.; Sue, C.M.; Mackay-Sim, A. Low dose tubulin-binding drugs rescue peroxisome trafficking deficit in patient-derived stem cells in Hereditary Spastic Paraplegia. Biol. Open 2014, 3, 494–502. [Google Scholar] [CrossRef]
- Halley, M.C.; Smith, H.S.; Ashley, E.A.; Goldenberg, A.J.; Tabor, H.K. A call for an integrated approach to improve efficiency, equity and sustainability in rare disease research in the United States. Nat. Genet. 2022, 54, 219–222. [Google Scholar] [CrossRef] [PubMed]
- Bellofatto, M.; De Michele, G.; Iovino, A.; Filla, A.; Santorelli, F.M. Management of Hereditary Spastic Paraplegia: A Systematic Review of the Literature. Front. Neurol. 2019, 10, 3. [Google Scholar] [CrossRef]
- Chan, A.-W.; Tetzlaff, J.M.; Gøtzsche, P.C.; Altman, D.G.; Mann, H.; Berlin, J.A.; Dickersin, K.; Hróbjartsson, A.; Schulz, K.F.; Parulekar, W.R.; et al. SPIRIT 2013 explanation and elaboration: Guidance for protocols of clinical trials. BMJ 2013, 346, e7586. [Google Scholar] [CrossRef]
- Prinsen, C.A.C.; Vohra, S.; Rose, M.R.; Boers, M.; Tugwell, P.; Clarke, M.; Williamson, P.R.; Terwee, C.B. How to select outcome measurement instruments for outcomes included in a "Core Outcome Set"—A practical guideline. Curr. Control. Trials Cardiovasc. Med. 2016, 17, 449. [Google Scholar] [CrossRef]
- Trummer, B.; Haubenberger, D.; Blackstone, C. Clinical Trial Designs and Measures in Hereditary Spastic Paraplegias. Front. Neurol. 2018, 9, 1017. [Google Scholar] [CrossRef]
- Williamson, P.R.; Altman, D.G.; Blazeby, J.M.; Clarke, M.; Devane, D.; Gargon, E.; Tugwell, P. Developing core outcome sets for clinical trials: Issues to consider. Curr. Control. Trials Cardiovasc. Med. 2012, 13, 132. [Google Scholar] [CrossRef] [PubMed]
- Peters, M.D.J.; Godfrey, C.M.; Khalil, H.; McInerney, P.; Parker, D.; Soares, C.B. Guidance for conducting systematic scoping reviews. Int. J. Evid. Based Healthc. 2015, 13, 141–146. [Google Scholar] [CrossRef]
- Peters, M.D.J.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Synth. 2020, 18, 2119–2126. [Google Scholar] [CrossRef] [PubMed]
- Veritas Health Innovation, Melbourne Australia. Covidence Systematic Review Software. Available online: www.covidence.org. (accessed on 12 July 2023).
- U.S. Food and Drug Administration. Clinical Outcome Assessment (COA): Frequently Asked Questions. Available online: https://www.fda.gov/about-fda/clinical-outcome-assessment-coa-frequently-asked-questions#COADefinition (accessed on 2 June 2023).
- Group OCfE-BMLoEW. The Oxford 2011 Levels of Evidence. Available online: http://www.cebm.net/index.aspx?o=56532011 (accessed on 12 July 2023).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, C.; Ilg, W.; Schneider, M.; Volker, M.; Haeufle, D.F.B.; Schule, R.; Giese, M.; Schols, L.; Rattay, T.W. Specific gait changes in prodromal hereditary spastic paraplegia type 4—preSPG4 study. Medrxiv 2022, 21. [Google Scholar] [CrossRef]
- Rattay, T.W.; Volker, M.; Rautenberg, M.; Kessler, C.; Wurster, I.; Winter, N.; Haack, T.B.; Lindig, T.; Hengel, H.; Synofzik, M.; et al. The prodromal phase of hereditary spastic paraplegia type 4: The preSPG4 cohort study. Brain 2023, 146, 1093–1102. [Google Scholar] [CrossRef] [PubMed]
- Cubillos-Arcila, D.M.; Machado, G.D.; Sehnem, L.; Burguez, D.; Zanardi, A.P.J.; Martins, V.F.; Peyre-Tartaruga, L.A.; Saute, J.A.M. Progression of Functional Gait in Hereditary Spastic Paraplegias. Cerebellum 2022, 21, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Faber, I.; Martinez, A.R.M.; de Rezende, T.J.R.; Martins, C.R.; Martins, M.P.; Lourenço, C.M.; Marques, W.; Montecchiani, C.; Orlacchio, A.; Pedroso, J.L.; et al. SPG11 mutations cause widespread white matter and basal ganglia abnormalities, but restricted cortical damage. NeuroImage Clin. 2018, 19, 848–857. [Google Scholar] [CrossRef]
- Kessler, C.; Serna-Higuita, L.M.; Wilke, C.; Rattay, T.W.; Hengel, H.; Reichbauer, J.; Stransky, E.; Leyva-Gutierrez, A.; Mengel, D.; Synofzik, M.; et al. Characteristics of serum neurofilament light chain as a biomarker in hereditary spastic paraplegia type 4. Ann. Clin. Transl. Neurol. 2022, 9, 326–338. [Google Scholar] [CrossRef]
- Musacchio, T.; Nohl, K.; Boelmans, K.; Maltese, V.; Zeller, D.; Isaias, I.; Volkmann, J.; Klebe, S. Biological course and natural history of hereditary spastic paraplegia type 11 (SPG11). Mov. Disord. 2018, 33 (Suppl. 2), S225. [Google Scholar]
- Regensburger, M.; Spatz, I.T.; Ollenschlager, M.; Martindale, C.F.; Lindeburg, P.; Kohl, Z.; Eskofier, B.; Klucken, J.; Schule, R.; Klebe, S.; et al. Inertial Gait Sensors to Measure Mobility and Functioning in Hereditary Spastic Paraplegia: A Cross-Sectional Multicenter Clinical Study. Neurology 2022, 99, e1079–e1089. [Google Scholar] [CrossRef] [PubMed]
- Schols, L.; Rattay, T.W.; Martus, P.; Meisner, C.; Baets, J.; Fischer, I.; Jagle, C.; Fraidakis, M.J.; Martinuzzi, A.; Saute, J.A.; et al. Hereditary spastic paraplegia type 5: Natural history, biomarkers and a randomized controlled trial. Brain 2017, 140, 3112–3127. [Google Scholar] [CrossRef] [PubMed]
- Paparella, G.; Vavla, M.; Bernardi, L.; Girardi, G.; Stefan, C.; Martinuzzi, A. Efficacy of a Combined Treatment of Botulinum Toxin and Intensive Physiotherapy in Hereditary Spastic Paraplegia. Front. Neurosci. 2020, 14, 111. [Google Scholar] [CrossRef] [PubMed]
- Scheuer, K.H.; Svenstrup, K.; Jennum, P.; Rogvi-Hansen, B.; Werdelin, L.; Fenger, K.; Nielsen, J.E. Double-blind crossover trial of gabapentin in SPG4-linked hereditary spastic paraplegia. Eur. J. Neurol. 2007, 14, 663–666. [Google Scholar] [CrossRef]
- Du Montcel, S.T.; Charles, P.; Ribai, P.; Goizet, C.; Le Bayon, A.; Labauge, P.; Guyant-Marechal, L.; Forlani, S.; Jauffret, C.; Vandenberghe, N.; et al. Composite cerebellar functional severity score: Validation of a quantitative score of cerebellar impairment. Brain 2008, 131, 1352–1361. [Google Scholar] [CrossRef]
- Du Montcel, S.T.; Charles, P.; Goizet, C.; Marelli, C.; Ribai, P.; Vincitorio, C.; Anheim, M.; Guyant-Marechal, L.; Le Bayon, A.; Vandenberghe, N.; et al. Factors influencing disease progression in autosomal dominant cerebellar ataxia and spastic paraplegia. Arch. Neurol. 2012, 69, 500–508. [Google Scholar] [CrossRef]
- Simonini, C.; Zucchi, E.; Bedin, R.; Martinelli, I.; Gianferrari, G.; Fini, N.; Sorau, G.; Liguori, R.; Vacchiano, V.; Mandrioli, J. CSF Heavy Neurofilament May Discriminate and Predict Motor Neuron Diseases with Upper Motor Neuron Involvement. Biomedicines 2021, 9, 1623. [Google Scholar] [CrossRef]
- Zucchi, E.; Bedin, R.; Fasano, A.; Fini, N.; Gessani, A.; Vinceti, M.; Mandrioli, J. Cerebrospinal Fluid Neurofilaments May Discriminate Upper Motor Neuron Syndromes: A Pilot Study. Neurodegener. Dis. 2018, 18, 255–261. [Google Scholar] [CrossRef]
- Wilke, C.; Rattay, T.W.; Hengel, H.; Zimmermann, M.; Brockmann, K.; Schols, L.; Jens, K.A.; Schule, R.; Synofzik, M. Serum neurofilament light chain is increased in hereditary spastic paraplegias. Ann. Clin. Transl. Neurol. 2018, 5, 876–882. [Google Scholar] [CrossRef]
- Lin, Q.; Liu, Y.; Ye, Z.; Hu, J.; Cai, W.; Weng, Q.; Chen, W.J.; Wang, N.; Cao, D.; Lin, Y.; et al. Potential markers for sample size estimations in hereditary spastic paraplegia type 5. Orphanet J. Rare Dis. 2021, 16, 1–9. [Google Scholar] [CrossRef]
- Marelli, C.; Lamari, F.; Rainteau, D.; Lafourcade, A.; Banneau, G.; Humbert, L.; Monin, M.L.; Petit, E.; Debs, R.; Castelnovo, G.; et al. Plasma oxysterols: Biomarkers for diagnosis and treatment in spastic paraplegia type 5. Brain 2018, 141, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Prestsaeter, S.; Koht, J.; Lamari, F.; Tallaksen, C.M.E.; Hoven, S.T.J.; Vigeland, M.D.; Selmer, K.K.; Rydning, S.L. Elevated hydroxycholesterols in Norwegian patients with hereditary spastic paraplegia SPG5. J. Neurol. Sci. 2020, 419, 117211. [Google Scholar] [CrossRef] [PubMed]
- Sarret, C.; Lemaire, J.J.; Tonduti, D.; Sontheimer, A.; Coste, J.; Pereira, B.; Feschet, F.; Roche, B.; Boespflug-Tanguy, O. Time-course of myelination and atrophy on cerebral imaging in 35 patients with PLP1-related disorders. Dev. Med. Child Neurol. 2016, 58, 706–713. [Google Scholar] [CrossRef] [PubMed]
- Bonnefoy-Mazure, A.; Turcot, K.; Kaelin, A.; De Coulon, G.; Armand, S. Full body gait analysis may improve diagnostic discrimination between hereditary spastic paraplegia and spastic diplegia: A preliminary study. Res. Dev. Disabil. 2013, 34, 495–504. [Google Scholar] [CrossRef]
- Adair, B.; Rodda, J.; McGinley, J.L.; Graham, H.K.; Morris, M.E. Kinematic gait deficits at the trunk and pelvis: Characteristic features in children with hereditary spastic paraplegia. Dev. Med. Child Neurol. 2016, 58, 829–835. [Google Scholar] [CrossRef]
- Zhang, Y.; Roxburgh, R.; Huang, L.; Parsons, J.; Davies, T.C. The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients. Gait Posture 2014, 39, 1074–1079. [Google Scholar] [CrossRef]
- Lith, B.J.H.v.; Boer, J.J.d.; Warrenburg, B.P.C.v.d.; Weerdesteyn, V.G.M.; Geurts, A.C.H. Functional effects of botulinum toxin type a in the hip adductors and subsequent stretching in patients with hereditary spastic paraplegia. J. Rehabil. Med. 2019, 51, 434–441. [Google Scholar] [CrossRef]
- Pointon, R.; Whelan, H.; Raza, R.; Peacock, S.; Wilsmore, C.; Mulkeen, A.; Goodden, J.; Lodh, R. The use of intrathecal baclofen for management of spasticity in hereditary spastic paraparesis: A case series. Eur. J. Paediatr. Neurol. 2022, 36, 14–18. [Google Scholar] [CrossRef]
- Henderson, G.; De Gheldere, A.; Gilman, J.; Hewart, P.; Clements, P.; Bliss, W.; Henman, P. A service evaluation of gait correction surgery for patients with hereditary spastic paraplegia. Gait Posture 2019, 73 (Suppl. 1), 251–252. [Google Scholar] [CrossRef]
- Milenkovic, I.; Klotz, S.; Zulehner, G.; Sycha, T.; Wiest, G. Slowed vertical saccades as a hallmark of hereditary spastic paraplegia type 7. Ann. Clin. Transl. Neurol. 2019, 6, 2127–2132. [Google Scholar] [CrossRef]
- Olchik, M.; Scudeiro, L.; Dos Santos, V.; Ayres, A.; Rech, R.; Burguez, D.; Machado, G.; Gonzalez-Salazar, C.; Padovani, M.; Franca, M.; et al. Speech biomarkers in hereditary spastic paraplegia. Mov. Disord. 2021, 36 (Suppl. 1), S490. [Google Scholar] [CrossRef]
- Marelli, C.; Badiou, S.; Genestet, S.; Larrieu, L.; Damier, P.; Camu, W.; Planes, M.; Koenig, M.; Guissart, C. Autosomal dominant SPG9: Intrafamilial variability and onset during pregnancy. Neurol. Sci. 2020, 41, 1931–1933. [Google Scholar] [CrossRef] [PubMed]
- Coutelier, M.; Goizet, C.; Durr, A.; Habarou, F.; Morais, S.; Dionne-Laporte, A.; Tao, F.; Konop, J.; Stoll, M.; Charles, P.; et al. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain 2015, 138, 2191–2205. [Google Scholar] [CrossRef]
- Vaz, F.M.; McDermott, J.H.; Alders, M.; Wortmann, S.B.; Kolker, S.; Pras-Raves, M.L.; Vervaart, M.A.T.; van Lenthe, H.; Luyf, A.C.M.; Elfrink, H.L.; et al. Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain 2019, 142, 3382–3397. [Google Scholar] [CrossRef] [PubMed]
- Kloth, K.; Cozma, C.; Bester, M.; Gerloff, C.; Biskup, S.; Zittel, S. Dystonia as initial presentation of compound heterozygous GBA2 mutations: Expanding the phenotypic spectrum of SPG46. Eur. J. Med. Genet. 2020, 63, 5. [Google Scholar] [CrossRef]
- Ebrahimi-Fakhari, D.; Alecu, J.E.; Brechmann, B.; Ziegler, M.; Eberhardt, K.; Jumo, H.; D’Amore, A.; Habibzadeh, P.; Faghihi, M.A.; De Bleecker, J.L.; et al. High-throughput imaging of ATG9A distribution as a diagnostic functional assay for adaptor protein complex 4-associated hereditary spastic paraplegia. Brain Commun. 2021, 3, fcab221. [Google Scholar] [CrossRef]
- De la Casa-Fages, B.; Fernandez-Eulate, G.; Gamez, J.; Barahona-Hernando, R.; Moris, G.; Garcia-Barcina, M.; Infante, J.; Zulaica, M.; Fernandez-Pelayo, U.; Munoz-Oreja, M.; et al. Parkinsonism and spastic paraplegia type 7: Expanding the spectrum of mitochondrial Parkinsonism. Mov. Disord. 2019, 34, 1547–1561. [Google Scholar] [CrossRef]
- Rattay, T.W.; Lindig, T.; Baets, J.; Smets, K.; Deconinck, T.; Sohn, A.S.; Hortnagel, K.; Eckstein, K.N.; Wiethoff, S.; Reichbauer, J.; et al. FAHN/SPG35: A narrow phenotypic spectrum across disease classifications. Brain 2019, 142, 1561–1572. [Google Scholar] [CrossRef]
- Ardolino, G.; Bocci, T.; Nigro, M.; Vergari, M.; Di Fonzo, A.; Bonato, S.; Cogiamanian, F.; Cortese, F.; Cova, I.; Barbieri, S.; et al. Spinal direct current stimulation (tsDCS) in hereditary spastic paraplegias (HSP): A sham-controlled crossover study. J. Spinal Cord. Med. 2021, 44, 46–53. [Google Scholar] [CrossRef]
- Bastani, P.B.; Kordjazi, M.; Oveisgharan, S.; Abdi, S. A Randomized Controlled Trial of the Effect of Repetitive Transcranial Magnetic Stimulation of the Motor Cortex on Lower Extremity Spasticity in Hereditary Spastic Paraplegia. J. Clin. Neurophysiol. Off. Publ. Am. Electroencephalogr. Soc. 2021, 40, 173–179. [Google Scholar] [CrossRef]
- de Lima, F.D.; Faber, I.; Servelhere, K.R.; Bittar, M.F.R.; Martinez, A.R.M.; Piovesana, L.G.; Martins, M.P.; Martins, C.R.; Benaglia, T.; Carvalho, B.D.; et al. Randomized Trial of Botulinum Toxin Type A in Hereditary Spastic Paraplegia—The SPASTOX Trial. Mov. Disord. 2021, 36, 1654–1663. [Google Scholar] [CrossRef]
- Mitchell, J.W.; Noble, A.; Baker, G.; Batchelor, R.; Brigo, F.; Christensen, J.; French, J.; Gil-Nagel, A.; Guekht, A.; Jette, N.; et al. Protocol for the development of an international Core Outcome Set for treatment trials in adults with epilepsy: The EPilepsy outcome Set for Effectiveness Trials Project (EPSET). Trials 2022, 23, 943. [Google Scholar] [CrossRef] [PubMed]
- Mokkink, L.B.; de Vet, H.C.W.; Prinsen, C.A.C.; Patrick, D.L.; Alonso, J.; Bouter, L.M.; Terwee, C.B. COSMIN Risk of Bias checklist for systematic reviews of Patient-Reported Outcome Measures. Qual. Life Res. 2018, 27, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- SchÜLe, R.; Holland-Letz, T.; Klimpe, S.; Kassubek, J.; Klopstock, T.; Mall, V.; Otto, S.; Winner, B.; Schols, L. The Spastic Paraplegia Rating Scale (SPRS): A reliable and valid measure of disease severity. Neurology 2006, 67, 430–434. [Google Scholar] [CrossRef]
- Servelhere, K.R.; Faber, I.; Coan, A.C.; França, J.M. Translation and validation into Brazilian Portuguese of the Spastic Paraplegia Rating Scale (SPRS). Arq. De Neuro-Psiquiatr. 2016, 74, 489–494. [Google Scholar] [CrossRef]
- Montanaro, D.; Vavla, M.; Frijia, F.; Aghakhanyan, G.; Baratto, A.; Coi, A.; Stefan, C. Multimodal MRI Longitudinal Assessment of White and Gray Matter in Different SPG Types of Hereditary Spastic Paraparesis. Front. Neurosci. 2020, 14, 325. [Google Scholar] [CrossRef]
- Meseguer-Henarejos, A.B.; Sánchez-Meca, J.; López-Pina, J.A.; Carles-Hernández, R. Inter- and intra-rater reliability of the Modified Ashworth Scale: A systematic review and meta-analysis. Eur. J. Phys. Rehabil. Med. 2018, 54, 576–590. [Google Scholar] [CrossRef]
- ATS statement: Guidelines for the six-minute walk test. Am. J. Respir. Crit. Care Med. 2002, 166, 111–117. [CrossRef]
- Stewart, A.; Sherbourne, C.D.; Ware, J.E.; Hays, R.D.; Wells, K.B.; Berry, S.H.; Kamberg, C.; Nelson, E.C.; Davies, A.R.; Rogers, W.H.; et al. Measuring Functioning and Well Being: The Medical Outcomes Study Approach; Duke University Press: Durham, UK; London, UK, 1992. [Google Scholar]
- Lins, L.; Carvalho, F.M. SF-36 total score as a single measure of health-related quality of life: Scoping review. SAGE Open Med. 2016, 4, 2050312116671725. [Google Scholar] [CrossRef]
- Braschinsky, M.; Rannikmae, K.; Krikmann, U.; Luus, S.M.; Raidvee, A.; Gross-Paju, K.; Haldre, S. Health-related quality of life in patients with hereditary spastic paraplegia in Estonia. Spinal Cord. 2011, 49, 175–181. [Google Scholar] [CrossRef]
- Gassner, H.; List, J.; Martindale, C.F.; Regensburger, M.; Klucken, J.; Winkler, J.; Kohl, Z. Functional gait measures correlate to fear of falling, and quality of life in patients with Hereditary Spastic Paraplegia: A cross-sectional study. Clin. Neurol. Neurosurg. 2021, 209, 106888. [Google Scholar] [CrossRef] [PubMed]
- Rabin, R.; de Charro, F. EQ-5D: A measure of health status from the EuroQol Group. Ann. Med. 2001, 33, 337–343. [Google Scholar] [CrossRef] [PubMed]
- Kessler, C.; Serna-Higuita, L.M.; Rattay, T.W.; Maetzler, W.; Wurster, I.; Hayer, S.; Wilke, C.; Hengel, H.; Reichbauer, J.; Armbruster, M.; et al. Neurofilament light chain is a cerebrospinal fluid biomarker in hereditary spastic paraplegia. Ann. Clin. Transl. Neurol. 2021, 8, 1122–1131. [Google Scholar] [CrossRef]
- Alecu, J.E.; Saffari, A.; Ziegler, M.; Jordan, C.; Tam, A.; Kim, S.; Leung, E.; Szczaluba, K.; Mierzewska, H.; King, S.D.; et al. Plasma Neurofilament Light Chain Is Elevated in Adaptor Protein Complex 4-Related Hereditary Spastic Paraplegia. Mov. Disord. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Gaiottino, J.; Norgren, N.; Dobson, R.; Topping, J.; Nissim, A.; Malaspina, A.; Bestwick, J.P.; Monsch, A.U.; Regeniter, A.; Lindberg, R.L.; et al. Increased neurofilament light chain blood levels in neurodegenerative neurological diseases. PLoS ONE 2013, 8, e75091. [Google Scholar] [CrossRef]
- Navas-Sanchez, F.J.; Fernandez-Pena, A.; de Blas, D.M.; Aleman-Gomez, Y.; Marcos-Vidal, L.; Guzman-de-Villoria, J.A.; Fernandez-Garcia, P.; Romero, J.; Catalina, I.; Lillo, L.; et al. Thalamic atrophy in patients with pure hereditary spastic paraplegia type 4. J. Neurol. 2021, 268, 2429–2440. [Google Scholar] [CrossRef]
- Mishra, V.; Guo, X.; Delgado, M.R.; Huang, H. Toward tract-specific fractional anisotropy (TSFA) at crossing-fiber regions with clinical diffusion MRI. Magn. Reson. Med. 2015, 74, 1768–1779. [Google Scholar] [CrossRef]
- Rezende, T.J.R.; de Albuquerque, M.; Lamas, G.M.; Martinez, A.R.M.; Campos, B.M.; Casseb, R.F.; Silva, C.B.; Branco, L.M.T.; D’Abreu, A.; Lopes-Cendes, I.; et al. Multimodal MRI-based study in patients with SPG4 mutations. PLoS ONE 2015, 10, e0117666. [Google Scholar] [CrossRef]
- Martinuzzi, A.; Montanaro, D.; Vavla, M.; Paparella, G.; Bonanni, P.; Musumeci, O.; Brighina, E.; Hlavata, H.; Rossi, G.; Aghakhanyan, G.; et al. Clinical and Paraclinical Indicators of Motor System Impairment in Hereditary Spastic Paraplegia: A Pilot Study. PLoS ONE 2016, 11, e0153283. [Google Scholar] [CrossRef]
- Groppa, S.; Oliviero, A.; Eisen, A.; Quartarone, A.; Cohen, L.G.; Mall, V.; Kaelin-Lang, A.; Mima, T.; Rossi, S.; Thickbroom, G.W.; et al. A practical guide to diagnostic transcranial magnetic stimulation: Report of an IFCN committee. Clin. Neurophysiol. 2012, 123, 858–882. [Google Scholar] [CrossRef]
- Siow, S.-F.; Smail, R.C.; Ng, K.; Kumar, K.R.; Sue, C.M. Motor Evoked Potentials in Hereditary Spastic Paraplegia—A Systematic Review. Front. Neurol. 2019, 10, 967. [Google Scholar] [CrossRef]
- Loris, E.; Ollenschläger, M.; Greinwalder, T.; Eskofier, B.; Winkler, J.; Gaßner, H.; Regensburger, M. Mobile digital gait analysis objectively measures progression in hereditary spastic paraplegia. Ann. Clin. Transl. Neurol. 2023, 10, 447–452. [Google Scholar] [CrossRef]
- Vavla, M.; Paparella, G.; Papayannis, A.; Pascuzzo, R.; Girardi, G.; Pellegrini, F.; Capello, G.; Prosdocimo, G.; Martinuzzi, A. Optical Coherence Tomography in a Cohort of Genetically Defined Hereditary Spastic Paraplegia: A Brief Research Report. Front. Neurol. 2019, 10, 1193. [Google Scholar] [CrossRef] [PubMed]
- Amprosi, M.; Indelicato, E.; Eigentler, A.; Fritz, J.; Nachbauer, W.; Boesch, S. Toward the Definition of Patient-Reported Outcome Measurements in Hereditary Spastic Paraplegia. Neurol. Genet. 2023, 9, e200052. [Google Scholar] [CrossRef] [PubMed]
- Klimpe, S.; Schule, R.; Kassubek, J.; Otto, S.; Kohl, Z.; Klebe, S.; Klopstock, T.; Ratzka, S.; Karle, K.; Schols, L. Disease severity affects quality of life of hereditary spastic paraplegia patients. Eur. J. Neurol. 2012, 19, 168–171. [Google Scholar] [CrossRef] [PubMed]
- Orsucci, D.; Petrucci, L.; Caldarazzo Ienco, E.; Chico, L.; Simi, P.; Fogli, A.; Baldinotti, F.; Simoncini, C.; Logerfo, A.; Carlesi, C.; et al. Hereditary spastic paraparesis in adults. A clinical and genetic perspective from Tuscany. Clin. Neurol. Neurosurg. 2014, 120, 14–19. [Google Scholar] [CrossRef] [PubMed]
- Patrick, D.L.; Deyo, R.A. Generic and Disease-Specific Measures in Assessing Health Status and Quality of Life. Med. Care 1989, 27, S217–S232. [Google Scholar] [CrossRef]
- Wali, G.; Siow, S.F.; Liyanage, E.; Kumar, K.R.; Mackay-Sim, A.; Sue, C.M. Reduced acetylated α-tubulin in SPAST hereditary spastic paraplegia patient PBMCs. Front Neurosci. 2023, 17, 1073516. [Google Scholar] [CrossRef]
- Sardina, F.; Valente, D.; Fattorini, G.; Cioffi, E.; Zanna, G.D.; Tessa, A.; Trisciuoglio, D.; Soddu, S.; Santorelli, F.M.; Casali, C.; et al. New cellular imaging-based method to distinguish the SPG4 subtype of hereditary spastic paraplegia. Eur. J. Neurol. 2023, 30, 1734–1744. [Google Scholar] [CrossRef]
- Kirkham, J.J.; Davis, K.; Altman, D.G.; Blazeby, J.M.; Clarke, M.; Tunis, S.; Williamson, P.R. Core Outcome Set-STAndards for Development: The COS-STAD recommendations. PLoS Med. 2017, 14, e1002447. [Google Scholar] [CrossRef]
- da Graça, F.F.; de Rezende, T.J.R.; Vasconcellos, L.F.R.; Pedroso, J.L.; Barsottini, O.G.P.; França, J.M.C. Neuroimaging in Hereditary Spastic Paraplegias: Current Use and Future Perspectives. Front. Neurol. 2019, 9, 1117. [Google Scholar] [CrossRef]
- Vavla, M.; Montanaro, D.; Pizzighello, S.; Frijia, F.; Arrigoni, F.; Baratto, A.; Piccoli, G.; Paparella, G.; Martinuzzi, A. Brain Magnetic Spectroscopy Imaging and Hereditary Spastic Paraplegia: A Focused Systematic Review on Current Landmarks and Future Perspectives. Front. Neurol. 2020, 11, 515. [Google Scholar] [CrossRef]
- de Freitas, J.L.; Rezende Filho, F.M.; Sallum, J.M.F.; França, M.C.; Pedroso, J.L.; Barsottini, O.G.P. Ophthalmological changes in hereditary spastic paraplegia and other genetic diseases with spastic paraplegia. J. Neurol. Sci. 2020, 409, 116620. [Google Scholar] [CrossRef] [PubMed]
- Wali, G.; Berkovsky, S.; Whiten, D.R.; Mackay-Sim, A.; Sue, C.M. Single cell morphology distinguishes genotype and drug effect in Hereditary Spastic Paraplegia. Sci. Rep. 2021, 11, 16635. [Google Scholar] [CrossRef] [PubMed]
Study Type | Number of Studies (%) |
---|---|
Observational (total)
| 55 (78.6) 9 14 2 30 |
Diagnostic test accuracy | 1 (1.4) |
Non-randomized interventional studies | 7 (10) |
Randomized controlled trials | 6 (8.6) |
Study Characteristics | N (%) |
Longitudinal data presented | 17 (24.3) |
Control group included | 34 (48.6) |
Intervention | 18 (25.7) |
Participant Genotype | N (%) |
Single genotype | 24 (34.3) |
Mixed known and unknown genotypes | 35 (50) |
Unknown genotype | 11 (15.7) |
Participant Characteristics | N (%) |
Number of participants | 37.0 people (range 2–239, SD 42.2) |
Mean of mean ages (n = 64) | 39.9 years (range 4.8–62, SD 14.9) |
Outcome Measure | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
HSP-specific CROM | ||||
SPRS | 27 | 12 (2) | 8 (6) | 5 (1) |
SPATAX-EUROSPA disability score | 4 | 1 (0) | 1 (1) | 1 (0) |
CROM for other neurological disorders | ||||
SARA | 3 | 1 (1) | 1 (1) | 0 (0) |
ALSFRS-R | 2 | 1 (0) | 2 (1) | 0 (0) |
Unified Huntington’s Disease Rating Scale Part IV | 1 | 1 (0) | 0 (0) | 0 (0) |
Multiple Sclerosis Impairment Scale | 1 | 0 (0) | 0 (0) | 1 (0) |
Generic CROM | ||||
Functional questionnaire score | 1 | 0 (0) | 0 (0) | 1 (0) |
Modified Rankin Scale | 1 | 1 (0) | 1 (0) | 0 (0) |
Disability Score (DIS) | 1 | 0 (0) | 0 (0) | 1 (0) |
Functional Independence Measure (FIM) | 1 | 0 (0) | 0 (0) | 0 (0) |
Outcome Measure | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
Motor Function PerfOMS | ||||
Modified Ashworth Scale | 18 | 2 (0) | 3 (1) | 13 (11) |
10MWT, 6MWT, 2MWT, 5MWT, 20MWT, 3-min endurance walk | 14 | 3 (2) | 1 (1) | 9 (3) |
Timed Up-and-Go test (TUG) | 6 | 3 (2) | 2 (2) | 3 (1) |
Medical Research Council muscle strength | 4 | 0 (0) | 0 (0) | 2 (1) |
Gross motor function measure (GMFM-66, GMFM-88) | 2 | 0 (0) | 0 (0) | 2 (1) |
Gross motor function classification score (GMFCS) | 2 | 1 (0) | 0 (0) | 1 (0) |
Falls Efficacy Scale-International (FES-I) | 2 | 2 (1) | 1 (0) | 0 (0) |
Berg balance scale | 2 | 0 (0) | 0 (0) | 2 (1) |
Composite cerebellar functional severity score (CCFSw) | 2 | 1 (1) | 1 (0) | 0 (0) |
Nine-hole pegboard test, click test, writing test, tapping test | 2 | 1 (0) | 0 (0) | 1 (1) |
Physiological Cost Index | 2 | 1 (0) | 1 (0) | 2 (0) |
Four-stage functional scale of motor disability (4SMD or 4FMS) | 2 | 0 (0) | 0 (0) | 0 (0) |
Activities specific Balance Confidence scale (ABC) | 1 | 0 (0) | 0 (0) | 1 (0) |
Modified version of Gillette Functional Assessment Questionnaire | 1 | 0 (0) | 0 (0) | 1 (1) |
Walking Handicap scale | 1 | 0 (0) | 0 (0) | 1 (1) |
Lower extremity subclass of Fugl–Meyer assessment | 1 | 0 (0) | 0 (0) | 1 (0) |
Ambulatory score (AMB) | 1 | 0 (0) | 0 (0) | 1 (0) |
AMBUS | 1 | 0 (0) | 1 (0) | 0 (0) |
Spasm Frequency Scale | 1 | 0 (0) | 1 (1) | 1 (1) |
Strength with microFET 2 hand-held dynamometer | 1 | 0 (0) | 0 (0) | 1 (1) |
Walking ability (landmarks of disability) | 1 | 0 (0) | 0 (0) | 0 (0) |
Cognitive Function PerfOMs | ||||
Montreal Cognitive Assessment | 4 | 4 (0) | 1 (0) | 0 (0) |
Wechsler Adult Intelligence Scale—revised | 3 | 1 (0) | 1 (1) | 0 (0) |
Mini-Mental State Exam | 2 | 2 (0) | 0 (0) | 0 (0) |
Addenbrooke’s Cognitive Exam | 1 | 1 (0) | 1 (0) | 0 (0) |
CANTAB assessment | 1 | 1 (0) | 0 (0) | 0 (0) |
VLMT, FWIT, TMT A/B, FAB, d2-R, RWT * | 1 | 0 (0) | 1 (1) | 0 (0) |
Outcome Measure | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
Quality of Life PROMs | ||||
SF-36, SF-12, RAND 36-Item Health Survey | 7 | 3 (2) | 1 (0) | 2 (1) |
EQ-5D | 3 | 3 (1) | 0 (0) | 0 (0) |
Becks Depression Inventory (BDI-V) | 2 | 2 (1) | 0 (0) | 0 (0) |
Visual analogue score | 2 | 0 (0) | 0 (0) | 2 (1) |
Patient Health Questionnaire (PHQ-9) | 1 | 1 (0) | 0 (0) | 0 (0) |
Modified Goal Attainment Scale (mGAS) | 1 | 0 (0) | 0 (0) | 1 (1) |
International Consultation of Incontinence Questionnaire (ICIQ)—LUTSqol | 1 | 0 (0) | 0 (0) | 0 (0) |
Cerebral Palsy QoL questionnaire (CPQoL) | 1 | 0 (0) | 0 (0) | 1 (1) |
Caregiver Priorities and Child Health Index of Life with Disabilities (CPCHILD) | 1 | 0 (0) | 0 (0) | 0 (0) |
Zung depression score | 1 | 1 (1) | 0 (0) | 0 (0) |
ICIQ-Short Form | 1 | 0 (0) | 0 (0) | 0 (0) |
Hospital Anxiety and Depression Scale | 1 | 0 (0) | 0 (0) | 1 (1) |
Other PROMs | ||||
Brief pain inventory | 3 | 2 (1) | 0 (0) | 1 (0) |
Modified Fatigue Impact Scale (MFI) | 2 | 1 (1) | 0 (0) | 1 (0) |
Multidimensional fatigue inventory | 1 | 1 (0) | 0 (0) | 0 (0) |
Scale for Outcomes in Parkinson’s Disease for Autonomic Symptoms (SCOPA-AUT) | 1 | 0 (0) | 0 (0) | 0 (0) |
Numeric rating scale for pain | 1 | 0 (0) | 0 (0) | 1 (1) |
Biomarker | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
Serum and CSF NfL | 6 | 6 (5) | 1 (0) | 0 (0) |
Serum and CSF 25-OHC and 27-OHC | 4 | 3 (2) | 2 (0) | 2 (2) |
Blood(plasma) and CSF amino acids | 2 | 1 (1) | 0 (0) | 1 (0) |
Lipidomics: fibroblast and plasma | 1 | 1 (1) | 0 (0) | 0 (0) |
Citrulline | 1 | 0 (0) | 0 (0) | 0 (0) |
Glycosylceramide profile | 1 | 0 (0) | 0 (0) | 0 (0) |
Neurofilament heavy chain: CSF and serum | 2 | 1 (1) | 1 (0) | 0 (0) |
Autophagy-related protein (ATG9A) ratio | 1 | 1 (1) | 0 (0) | 0 (0) |
CSF Aβ 1–42, total tau, phospho tau | 1 | 1 (0) | 0 (0) | 0 (0) |
Mitochondrial DNA levels; Muscle biopsy | 1 | 1 (1) | 0 (0) | 0 (0) |
Cell morphomics | 1 | 1 (1) | 0 (0) | 1 (1) |
Scanning electron microscopy of hair shafts | 1 | 1 (1) | 0 (0) | 0 (0) |
Biomarker | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
MRI brain and spine | 17 | 8 (5) | 4 (1) | 1 (0) |
DTI | 7 | 7 (7) | 2 (1) | 0 (0) |
MRS | 4 | 3 (2) | 1 (0) | 0 (0) |
Ioflupane Single Photon Emission Computed Tomography (SPECT) | 1 | 0 (0) | 0 (0) | 0 (0) |
Biomarker | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
MEPs | 10 | 2 (1) | 2 (0) | 3 (0) |
NCS/EMG | 9 | 2 (0) | 2 (0) | 1 (0) |
SSEP | 5 | 1 (1) | 0 (0) | 0 (0) |
VEP | 2 | 0 (0) | 0 (0) | 0 (0) |
BAEP | 1 | 0 (0) | 0 (0) | 0 (0) |
Biomarker | Studies 1 | Control Group (Patient vs. Control Difference) 2 | Longitudinal (Disease Progression) 3 | Intervention (Response to Intervention) 4 |
---|---|---|---|---|
Laboratory and mobile gait analysis | 8 | 4 (4) | 1 (1) | 4 (2) |
Spectral-domain optical coherence tomography (SD-OCT) | 4 | 0 (0) | 2 (0) | 0 (0) |
Video-oculography and rotational chair testing | 1 | 1 (1) | 0 (0) | 0 (0) |
Goniometer | 2 | 0 (0) | 0 (0) | 1 (1) |
Instrumented dynamic balance assessment | 1 | 0 (0) | 0 (0) | 1 (1) |
Urodynamic assessment | 1 | 0 (0) | 0 (0) | 0 (0) |
Video supported posturography | 1 | 0 (0) | 1 (0) | 0 (0) |
Protocol for Evaluation of Acquired Speech Disorders (PADAF) | 1 | 1 (1) | 0 (0) | 0 (0) |
Biomarker | Studies | Genotype | Finding |
---|---|---|---|
Serum hydroxycholesterols [35,43,44,45] | 4 | HSP-CYP7B1 | Higher 25- and 27-OHC levels in patients compared to controls |
Plasma citrulline [55,56] | 2 | HSP-ALDH18A1 | Low citrulline levels in patients (n = 3 and n = 4) |
Lipidomics [57] | 1 | HSP-PCYT2 | Accumulation of plasma phosphatidylcholine [O] etherphospholipids in patients (n = 3) compared to controls (n = 20) |
Glycosylceramide profile [58] | 1 | HSP-GBA2 | Elevated glycosylceramide levels in affected patient and carrier parent |
ATG9A ratio (automated high-throughput imaging) [59] | 1 | HSP-AP-4 | Increase in ATG9A ratio (intracellular distribution of ATG9A in trans-Golgi network compared to the remainder of the cell) in patient fibroblasts (n = 18) compared to asymptomatic carriers (n = 14) |
mtDNA levels [60] | 1 | HSP-SPG7 | Reduced mtDNA levels from whole blood in patients (n = 27) and carriers (n = 5) compared to controls (n = 17). |
Scanning electron microscopy of hair shafts [61] | 1 | HSP-FAHN | Subtle to pronounced longitudinal grooves in hair shafts from 4/4 patients and adhesive plaques in 3/4 patients compared to controls. |
Outcome Measure | Advantages | Disadvantages |
---|---|---|
SPRS | HSP-specific. Validated against other measures of disability. Cross-cultural validation [67,68]. Longitudinal measurement [30,33,35,69]. | Not validated in a pediatric cohort. Inter-rater reliability only measured between two raters from same center [67]. Requires 10 m space and stairs to measure walking time. |
SPATAX-EUROSPA disability score | HSP-specific. | Not validated. Does not measure pain, bladder or bowel function. |
Modified Ashworth scale | Accessible. Moderate reliability [70]. | Potential for inter-rater variation particularly for lower limb assessment [70]. Variation depends on when test is performed (e.g., the timing of anti-spasticity medication). |
6MWT, 10MWT, TUG and variations | Accessible. | Not suitable for patients who are unable to mobilize. Potential variation depending on hallway lengths used due to time taken to change directions [71]. |
SF-36 | Validated [72]. Published population norms [73]. Some versions easily accessible. Cross-cultural validity [73,74]. Demonstrated worse QoL in patients with HSP compared to controls [74,75]. | Generic and does not address HSP-specific aspects of QoL. |
EQ-5D | Validated [76]. Easily accessible. Cross-cultural validity [76]. Published population norms. | Generic and does not address HSP-specific aspects of QoL. Not as widely used as SF-36 in HSP population. |
Serum and CSF neurofilament light chain (NfL) | Able to distinguish patients vs. controls, pre-symptomatic and symptomatic patients [29,77,78]. | Non-specific, elevated in other conditions such as ALS, Alzheimer’s dementia, Parkinson’s Disease [79]. CSF collection requires an invasive procedure with potential adverse effects, such as a low-pressure headache. |
27 and 25 hydroxycholesterol (OHC) | Specific to SPG5 (HSP-CYP7B1). Decrease in serum and plasma 27-OHC levels in response to atorvastatin [35,44]. Good diagnostic biomarker. | Biochemical response to treatment not reflected in clinical benefit as measured with SPRS. Role as prognostic or monitoring biomarker yet to be determined. |
MRI brain and spine | Accessible. Volumetric analysis showed atrophy in certain parts of the brain or spine in patients with HSP [29,31,43,80]. | Heterogenous findings between and within genotypes [81]. |
DTI | Abnormal in patients vs. controls (see results section). Correlate with other outcome measures [82,83,84]. Imaging can be performed with most MRI machines. Able to identify axonal damage not seen on MRI. | No longitudinal data. Requires analysis by experienced personnel. |
MEPs | Able to measure upper motor neuron abnormalities seen in HSP [85]. Lower limb CMCT abnormal in 78% patients with HSP [86]. | Inconsistent findings across various studies [86]. Requires specialized equipment and technical expertise. Some patients may find MEP studies uncomfortable. |
NCS/EMG | Majority of patients with HSP-SPG11 have axonal neuropathy [31,33]. | Inconsistent findings across various studies. |
Gait analysis | Able to differentiate patients vs. controls (see results). Able to demonstrate response to intervention [49,50]. Correlate with SPRS scores [28,34]. Mobile gait analysis system able to show disease progression over time [87]. | Require expensive equipment. Data analysis can be complex depending on parameters used. Not suitable for participants who are unable to walk. |
Retinal nerve fiber layer with OCT | Abnormal in 39% of patients with HSP [88]. | No change in RNFL over time. No clinical correlation with SPRS. Inconsistent findings [88]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Siow, S.-F.; Yeow, D.; Rudaks, L.I.; Jia, F.; Wali, G.; Sue, C.M.; Kumar, K.R. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes 2023, 14, 1756. https://doi.org/10.3390/genes14091756
Siow S-F, Yeow D, Rudaks LI, Jia F, Wali G, Sue CM, Kumar KR. Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes. 2023; 14(9):1756. https://doi.org/10.3390/genes14091756
Chicago/Turabian StyleSiow, Sue-Faye, Dennis Yeow, Laura I. Rudaks, Fangzhi Jia, Gautam Wali, Carolyn M. Sue, and Kishore R. Kumar. 2023. "Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review" Genes 14, no. 9: 1756. https://doi.org/10.3390/genes14091756
APA StyleSiow, S. -F., Yeow, D., Rudaks, L. I., Jia, F., Wali, G., Sue, C. M., & Kumar, K. R. (2023). Outcome Measures and Biomarkers for Clinical Trials in Hereditary Spastic Paraplegia: A Scoping Review. Genes, 14(9), 1756. https://doi.org/10.3390/genes14091756