Genetic Diversity and Population Structure in Ethiopian Mustard (Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Genotyping and SNP Marker Filtration
2.3. Population Structure
2.4. Genetic Diversity
2.5. Polymorphism Information Content (PIC)
3. Results
3.1. SNP Analysis
3.2. Population Structure
3.3. Analysis of Molecular Variance
3.4. Genetic Diversity
3.5. Polymorphism Information Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagaharu, U.; Nagaharu, N. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 1935, 7, 389–452. [Google Scholar]
- Shyam, P.; Wu, X.; Bhat, S. History, evolution, and domestication of Brassica crops. Plant Breed. Rev. 2012, 35, 19–84. [Google Scholar]
- Simmonds, N.W. Principles of Crop Improvement; Longman Group Ltd.: London, UK, 1979. [Google Scholar]
- Alemayehu, N.; Becker, H. Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genet. Resour. Crop Evol. 2002, 49, 573–582. [Google Scholar] [CrossRef]
- Seepaul, R.; George, S.; Wright, D.L. Comparative response of Brassica carinata and B. napus vegetative growth, development and photosynthesis to nitrogen nutrition. Ind. Crops Prod. 2016, 94, 872–883. [Google Scholar] [CrossRef]
- Taylor, D.C.; Falk, K.C.; Palmer, C.D.; Hammerlindl, J.; Babic, V.; Mietkiewska, E.; Keller, W.A. Brassica carinata—A new molecular farming platform for delivering bio-industrial oil feedstocks: Case studies of genetic modifications to improve very long-chain fatty acid and oil content in seeds. Biofuels Bioprod. Biorefin. 2010, 4, 538–561. [Google Scholar] [CrossRef]
- Alemayehu, A. Germplasm Diversity and Genetics of Quality and Agronomic Traits in Ethiopian Mustard (Brassica carinata A. Braun). Ph.D. Thesis, Faculty of Agricultural Sciences, Göttingen Georg-August University of Gottingen, Göttingen, Germany, 2001. [Google Scholar]
- Leonard, E.C. High-erucic vegetable oils. Ind. Crops Prod. 1992, 1, 119–123. [Google Scholar] [CrossRef]
- McVetty, P.B.E.; Scarth, R. Breeding for improved oil quality in Brassica oilseed species. J. Crop. Prod. 2002, 5, 345–369. [Google Scholar] [CrossRef]
- Schulmeister, T.M.; Ruiz-Moreno, M.; Silva, G.M.; Garcia-Ascolani, M.; Ciriaco, F.M.; Henry, D.D.; Lamb, G.C.; Dubeux, J.C.B.; Dilorenzo, N. Evaluation of Brassica carinata meal as a protein supplement for growing beef heifers. J. Anim. Sci. 2019, 97, 4334–4340. [Google Scholar] [CrossRef]
- Zanetti, F.; Mosca, G.; Rampin, E.; Vamerali, T. Adaptability and sustainable management of high-erucic Brassicaceae in Mediterranean environment. In Oilseeds; Springer: Berlin/Heidelberg, Germany, 2012; pp. 99–116. [Google Scholar]
- George, S.; Seepaul, R.; Geller, D.; Dwivedi, P.; DiLorenzo, N.; Altman, R.; Coppola, E.; Miller, S.A.; Bennett, R.; Johnston, G.; et al. A regional inter-disciplinary partnership focusing on the development of a carinata-centered bioeconomy. GCB Bioenergy 2021, 13, 1018–1029. [Google Scholar] [CrossRef]
- Naimoli, S. Decarbonizing heavy industry. In Climate Solutions Series; CSIS: Washington, DC, USA, 2020. [Google Scholar]
- Seepaul, R.; Kumar, S.; Iboyi, J.E.; Bashyal, M.; Stansly, T.L.; Bennett, R.; Boote, K.J.; Mulvaney, M.J.; Small, I.M.; George, S.; et al. Brassica carinata: Biology and agronomy as a biofuel crop. GCB Bioenergy 2021, 13, 582–599. [Google Scholar] [CrossRef]
- Getinet, A.; Rakow, G.; Downey, R.K. Agronomic performance and seed quality of Ethiopian mustard in Saskatchewan. Can. J. Plant Sci. 1996, 76, 387–392. [Google Scholar] [CrossRef]
- Semeane, Y. Pathological research on noug, linseed, gomenzer and rapeseed in Ethiopia. In Oilseeds Research and Development in Ethiopia; IAR: Addis Ababa, Ethiopia, 1991; p. 151. [Google Scholar]
- Zada, M.; Shinwari, Z.K.; Zakir, N.; Rabbani, M.A. Study of total seed storage proteins in Ethiopian mustard (Brassica carinata A. Braun) germplasm. Pak. J. Bot. 2013, 45, 443–448. [Google Scholar]
- Winter, P.; Kahl, G. Molecular marker technologies for plant improvement. World J. Microbiol. Biotechnol. 1995, 11, 438–448. [Google Scholar] [PubMed]
- Collard, B.C.Y.; Jahufer, M.Z.Z.; Brouwer, J.B.; Pang, E.C.K. An introduction to markers, quantitative trait loci (QTL) mapping and marker-assisted selection for crop improvement: The basic concepts. Euphytica 2005, 142, 169–196. [Google Scholar]
- Thakur, A.; Singh, K.; Sharma, D.; Parmar, N.; Nanjundan, J. Breeding and genomics interventions in Ethiopian mustard (Brassica carinata A. Braun) improvement—A mini review. S. Afr. J. Bot. 2019, 125, 457–465. [Google Scholar] [CrossRef]
- Genet, T.; Viljoen, C.; Labuschagne, M. Genetic analysis of Ethiopian mustard genotypes using amplified fragment length polymorphism (AFLP) markers. Afr. J. Biotechnol. 2005, 4, 891–897. [Google Scholar]
- Teklewold, A.; Becker, H.C. Geographic pattern of genetic diversity among 43 Ethiopian mustard (Brassica carinata A. Braun) accessions as revealed by RAPD analysis. Genet. Resour. Crop Evol. 2006, 53, 1173–1185. [Google Scholar]
- Warwick, S.; Gugel, R.; McDonald, T.; Falk, K. Genetic variation of Ethiopian mustard (Brassica carinata A. Braun) germplasm in western Canada. Genet. Resour. Crop Evol. 2006, 53, 297–312. [Google Scholar] [CrossRef]
- Thakur, A.K.; Singh, K.H.; Parmar, N.; Sharma, D.; Mishra, D.C.; Singh, L.; Nanjundan, J.; Yadav, S. Population structure and genetic diversity as revealed by SSR markers in Ethiopian mustard (Brassica carinata A. Braun): A potential edible and industrially important oilseed crop. Genet. Resour. Crop Evol. 2021, 68, 321–333. [Google Scholar] [CrossRef]
- Khedikar, Y.; Clarke, W.E.; Chen, L.; Higgins, E.E.; Kagale, S.; Koh, C.S. BenettNarrow genetic base shapes population structure and linkage disequilibrium in an industrial oilseed crop, Brassica carinata A. Braun. Sci. Rep. 2020, 10, 12629. [Google Scholar]
- Clarke, W.E.; Higgins, E.E.; Plieske, J.; Wieseke, R.; Sidebottom, C.; Khedikar, Y.; Batley, J.; Edwards, D.; Meng, J.; Li, R.; et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor. Appl. Genet. 2016, 129, 1887–1899. [Google Scholar] [CrossRef] [PubMed]
- Mason, A.S.; Higgins, E.E.; Snowdon, R.J.; Batley, J.; Stein, A.; Werner, C.; Parkin, I.A.P. A user guide to the Brassica 60K Illumina Infinium™ SNP genotyping array. Theor. Appl. Genet. 2017, 130, 621–633. [Google Scholar] [CrossRef] [PubMed]
- Hatzig, S.V.; Frisch, M.; Breuer, F.; Nesi, N.; Ducournau, S.; Wagner, M.-H.; Leckband, G.; Abbadi, A.; Snowdon, R.J. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front. Plant Sci. 2015, 6, 221. [Google Scholar] [CrossRef]
- Liu, L.; Li, J. QTL Mapping of oleic acid, linolenic acid and erucic acid content in Brassica napus by using the high density SNP genetic map. Sci. Agric. Sin. 2014, 47, 24–32. [Google Scholar]
- Qian, L.; Qian, W.; Snowdon, R.J. Sub-genomic selection patterns as a signature of breeding in the allopolyploid Brassica napus genome. BMC Genom. 2014, 15, 1170. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Mason, A.S.; Wu, J.; Liu, S.; Zhang, X.; Luo, T.; Redden, R.; Batley, J.; Hu, L.; Yan, G. Identification of Putative Candidate Genes for Water Stress Tolerance in Canola (Brassica napus). Front. Plant Sci. 2015, 6, 1058. [Google Scholar] [CrossRef]
- Brown, A.F.; Yousef, G.G.; Chebrolu, K.K.; Byrd, R.W.; Everhart, K.W.; Thomas, A.; Reid, R.W.; Parkin, I.A.P.; Sharpe, A.G.; Oliver, R.; et al. High-density single nucleotide polymorphism (SNP) array mapping in Brassica oleracea: Identification of QTL associated with carotenoid variation in broccoli florets. Theor. Appl. Genet. 2014, 127, 2051–2064. [Google Scholar] [CrossRef] [PubMed]
- Pelc, S.E.; Couillard, D.M.; Stansell, Z.J.; Farnham, M.W. Genetic Diversity and Population Structure of Collard Landraces and their Relationship to Other Brassica oleracea Crops. Plant Genome 2015, 8, eplantgenome2015.04.0023. [Google Scholar] [CrossRef]
- Clarke, J.D. Cetyltrimethyl Ammonium Bromide (CTAB) DNA Miniprep for Plant DNA Isolation. Cold Spring Harb. Protoc. 2009, 2009, pdb.prot5177. [Google Scholar] [CrossRef]
- Lee, H.; Chawla, H.S.; Obermeier, C.; Dreyer, F.; Abbadi, A.; Snowdon, R. Chromosome-scale assembly of winter oilseed rape Brassica napus. Front. Plant Sci. 2020, 11, 496. [Google Scholar] [CrossRef]
- Scheben, A.; Verpaalen, B.; Lawley, C.T.; Chan, C.K.; Bayer, P.E.; Batley, J.; Edwards, D. CropSNPdb: A database of SNP array data for Brassica crops and hexaploid bread wheat. Plant J. 2019, 98, 142–152. [Google Scholar] [CrossRef] [PubMed]
- Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 2007, 23, 2633–2635. [Google Scholar] [CrossRef] [PubMed]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar] [CrossRef] [PubMed]
- Earl, D.A.; vonHoldt, B.M. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Peakall, R.O.D.; Smouse, P.E. Genalex 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Nei, M.; Takezaki, N. Estimation of genetic distances and phylogenetic trees from DNA analysis. In Proceedings of the 5th World Congress on Genetics Applied to Livestock Production, Guelph, ON, Canada, 7–12 August 1994; Volume 21, pp. 405–412. [Google Scholar]
- Liu, K.; Muse, S.V. PowerMarker: An integrated analysis environment for genetic marker analysis. Bioinformatics 2005, 21, 2128–2129. [Google Scholar] [CrossRef]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar]
- Zou, J.; Raman, H.; Guo, S.; Hu, D.; Wei, Z.; Luo, Z.; Long, Y.; Shi, W.; Fu, Z.; Du, D.; et al. Constructing a dense genetic linkage map and mapping QTL for the traits of flower development in Brassica carinata. Theor. Appl. Genet. 2014, 127, 1593–1605. [Google Scholar] [CrossRef]
- Lysak, M.A.; Koch, M.A.; Pecinka, A.; Schubert, I. Chromosome triplication found across the tribe Brassiceae. Genome Res. 2005, 15, 516–525. [Google Scholar] [CrossRef]
- Bus, A.; Hecht, J.; Huettel, B.; Reinhardt, R.; Stich, B. High-throughput polymorphism detection and genotyping in Brassica napus using next-generation RAD sequencing. BMC Genom. 2012, 13, 281. [Google Scholar] [CrossRef]
- Clarke, W.E.; Parkin, I.A.; Gajardo, H.A.; Gerhardt, D.J.; Higgins, E.; Sidebottom, C.; Iniguez-Luy, F.L. Genomic DNA enrichment using sequence capture microarrays: A novel approach to discover sequence nucleotide polymorphisms (SNP) in Brassica napus L. PLoS ONE 2013, 8, e81992. [Google Scholar] [CrossRef]
- Rahman, M.; Hoque, A.; Roy, J. Linkage disequilibrium and population structure in a core collection of Brassica napus (L.). PLoS ONE 2022, 17, e0250310. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Haleem, H.; Luo, Z.; Szczepanek, A. Genetic diversity and population structure of the USDA collection of Brassica juncea L. Ind. Crop. Prod. 2022, 187, 115379. [Google Scholar] [CrossRef]
- Kim, S.J.; Park, J.S.; Shin, Y.H.; Park, Y.D. Identification and validation of genetic variations in transgenic Chinese cabbage plants (Brassica rapa ssp. pekinensis) by next-generation sequencing. Genes 2021, 12, 621. [Google Scholar] [CrossRef] [PubMed]
- Bancroft, I.; Morgan, C.; Fraser, F.; Higgins, J.; Wells, R.; Clissold, L.; Baker, D.; Long, Y.; Meng, J.; Wang, X.; et al. Dissecting the genome of the polyploid crop oilseed rape by transcriptome sequencing. Nat. Biotechnol. 2011, 29, 762–766. [Google Scholar] [CrossRef] [PubMed]
- Delourme, R. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genom. 2013, 14, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Wright, S. Evolution and The Genetics of Populations: Volume 2. The Theory of Gene Frequencies; University of Chicago Press: Chicago, IL, USA, 1969. [Google Scholar]
- Raman, R.; Qiu, Y.; Coombes, N.; Song, J.; Kilian, A.; Raman, H. Molecular diversity analysis and genetic mapping of pod shatter resistance loci in Brassica carinata L. Front. Plant Sci. 2017, 8, 1765. [Google Scholar] [CrossRef]
- Nei, M. Analysis of Gene Diversity in Subdivided Populations. Proc. Natl. Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef]
- Gyawali, S.; Hegedus, D.D.; Parkin, I.A.; Poon, J.; Higgins, E.; Horner, K.; Buchwaldt, L. Genetic diversity and population structure in a world collection of Brassica napus accessions with emphasis on South Korea, Japan, and Pakistan. Crop Sci. 2013, 53, 1537–1545. [Google Scholar] [CrossRef]
- Li, L.; Chokchai, W.; Huang, X.; Huang, T.; Li, Q.; Peng, Y.; Huang, G. Comparison of AFLP and SSR for genetic diversity analysis of Brassica napus hybrids. J. Agric. Sci. 2011, 3, 101–110. [Google Scholar] [CrossRef]
- Dixon, G.R. Vegetable Brassicas and Related Crucifers; no. 14; CABI: Wallingford, UK, 2007. [Google Scholar]
- Serrote, C.M.L.; Reiniger, L.R.S.; Silva, K.B.; dos Santos Rabaiolli, S.M.; Stefanel, C.M. Determining the Polymorphism Information Content of a molecular marker. Gene 2020, 726, 144175. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Li, F.; Xu, K.; Gao, G.; Chen, B.; Yan, G.; Wang, N.; Qiao, J.; Li, J.; Li, H.; et al. Assessing and broadening genetic diversity of a rapeseed germplasm collection. Breed. Sci. 2014, 64, 321–330. [Google Scholar] [CrossRef] [PubMed]
- Singh, L.; Nanjundan, J.; Sharma, D.; Singh, K.; Parmar, N.; Jain, R.; Thakur, A.K. Agro-morphological traits and SSR markers reveal genetic variations in germplasm accessions of Indian mustard—An industrially important oilseed crop. Heliyon 2022, e12519. [Google Scholar] [CrossRef] [PubMed]
Genome | SNP Type | Model | No of SNP Loci | Frequency of SNPs (%) | Total SNP Number | SNPs (%) |
---|---|---|---|---|---|---|
B | Transition | A/G | 3017 | 26.24 | 5990 | 52.09 |
C/T | 2973 | 25.85 | ||||
Transversion | A/C | 1187 | 10.32 | 2357 | 20.48 | |
G/T | 1170 | 10.17 | ||||
C | Transition | A/G | 1116 | 9.71 | 2195 | 19.09 |
C/T | 1079 | 9.38 | ||||
Transversion | A/T | 23 | 0.2 | 957 | 8.32 | |
A/C | 458 | 3.98 | ||||
G/T | 457 | 3.98 | ||||
G/C | 19 | 0.17 |
Source of Genotypes | Total Germplasms | Pop1 | Pop2 | ||
---|---|---|---|---|---|
Number | % | Number | % | ||
Oromia | 25 | 21 | 84.0 | 4 | 16.0 |
Amhara | 25 | 13 | 52.0 | 12 | 48.0 |
SNNP* | 10 | 6 | 60.0 | 4 | 40.0 |
SWEP* | 5 | 4 | 80.0 | 1 | 20.0 |
BNG* | 10 | 5 | 50.0 | 5 | 50.0 |
HARC* | 15 | 0 | 6.7 | 14 | 93.3 |
Total | 90 | 49 | 54.4 | 41 | 45.6 |
Source | DF | SS | MS | EV | %V | PhiPT | Nm |
---|---|---|---|---|---|---|---|
Between populations | 1 | 10,681.1 | 10,681.1 | 184.3 | 7% | 0.07 ** | 6.65 |
Within populations | 88 | 215,850.7 | 2452.8 | 2452.8 | 93% | ||
Total | 89 | 226,531.8 | 2637.2 | 100% |
Genetic Indices | Carinata Genomes | Subpopulation | |||
---|---|---|---|---|---|
B | C | BC | Pop1 | Pop2 | |
Sample size | 90 | 90 | 90 | 49 | 41 |
Number of SNPs | 8347 | 3152 | 11,499 | 11,499 | 11,499 |
Genetic diversity/expected heterozygosity (HE) | 0.315 | 0.309 | 0.314 | 0.317 | 0.299 |
Observed heterozygosity (HO) | 0.179 | 0.168 | 0.176 | 0.257 | 0.079 |
B Genome | C Genome | ||||
---|---|---|---|---|---|
Chromosome | PIC | No. of SNPs | Chromosome | PIC | No. of SNPs |
B1 | 0.27 | 731 | C01 | 0.29 | 202 |
B2 | 0.26 | 1163 | C02 | 0.22 | 296 |
B3 | 0.27 | 964 | C03 | 0.27 | 580 |
B4 | 0.23 | 976 | C04 | 0.18 | 652 |
B5 | 0.24 | 993 | C05 | 0.30 | 236 |
B6 | 0.26 | 1022 | C06 | 0.26 | 308 |
B7 | 0.26 | 1172 | C07 | 0.30 | 420 |
B8 | 0.26 | 1326 | C08 | 0.29 | 203 |
C09 | 0.25 | 255 | |||
Mean | 0.26 | Mean | 0.26 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfaye, M.; Feyissa, T.; Hailesilassie, T.; Kanagarajan, S.; Zhu, L.-H. Genetic Diversity and Population Structure in Ethiopian Mustard (Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers. Genes 2023, 14, 1757. https://doi.org/10.3390/genes14091757
Tesfaye M, Feyissa T, Hailesilassie T, Kanagarajan S, Zhu L-H. Genetic Diversity and Population Structure in Ethiopian Mustard (Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers. Genes. 2023; 14(9):1757. https://doi.org/10.3390/genes14091757
Chicago/Turabian StyleTesfaye, Misteru, Tileye Feyissa, Teklehaimanot Hailesilassie, Selvaraju Kanagarajan, and Li-Hua Zhu. 2023. "Genetic Diversity and Population Structure in Ethiopian Mustard (Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers" Genes 14, no. 9: 1757. https://doi.org/10.3390/genes14091757
APA StyleTesfaye, M., Feyissa, T., Hailesilassie, T., Kanagarajan, S., & Zhu, L. -H. (2023). Genetic Diversity and Population Structure in Ethiopian Mustard (Brassica carinata A. Braun) as Revealed by Single Nucleotide Polymorphism Markers. Genes, 14(9), 1757. https://doi.org/10.3390/genes14091757