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Abstract: Microbiome data are subject to experimental bias that is caused by DNA extraction and
PCR amplification, among other sources, but this important feature is often ignored when developing
statistical methods for analyzing microbiome data. McLaren, Willis, and Callahan (2019) proposed a
model for how such biases affect the observed taxonomic profiles; this model assumes the main effects
of bias without taxon–taxon interactions. Our newly developed method for testing the differential
abundance of taxa, LOCOM, is the first method to account for experimental bias and is robust to the
main effect biases. However, there is also evidence for taxon–taxon interactions. In this report, we
formulated a model for interaction biases and used simulations based on this model to evaluate the
impact of interaction biases on the performance of LOCOM as well as other available compositional
analysis methods. Our simulation results indicate that LOCOM remained robust to a reasonable
range of interaction biases. The other methods tend to have an inflated FDR even when there were
only main effect biases. LOCOM maintained the highest sensitivity even when the other methods
could not control the FDR. We thus conclude that LOCOM outperforms the other methods for
compositional analysis of microbiome data considered here.

Keywords: compositional effect; false-discovery rate (FDR); LOCOM; interaction bias; main effect
bias; taxon ratios; test differential abundance

1. Introduction

Experimental bias is a pervasive feature of microbiome data because each step in
the sequencing experiment workflow (i.e., DNA extraction, PCR amplification, amplicon
sequencing, and bioinformatics processing) favors certain taxa over others [1–3]. Absent
experimental procedures that produce unbiased data, it is therefore necessary to account
for experimental bias when analyzing microbiome data. Fortunately, McLaren, Willis, and
Callahan (MWC) [4] have proposed a model explaining how experimental bias affects
microbiome data. In this model, the observed relative abundance of each taxon is a product
of the taxon’s true relative abundance and a taxon-specific bias factor, normalized over all
taxa observed in the sample. Each taxon-specific bias factor represents the accumulation of
multiplicative biases over all steps in the experimental pipeline so that multiple sources
of bias are described by a single factor. With the MWC model in mind, we developed
LOCOM [5], a logistic regression-based compositional analysis method for detecting differ-
entially abundant taxa, that only estimates parameters that are free from bias, i.e., are not
affected by bias factors. To the best of our knowledge, LOCOM was the first method that
accounted for experimental bias and was shown both analytically and numerically to be
fully robust to any bias that follows the MWC model; none of the other existing methods
for testing taxon differential abundance have considered experimental bias.

The MWC model assumes no between-taxon “interaction” bias, i.e., the presence or
abundance of one taxon does not affect the bias factors of any other taxa in the sample.
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LOCOM may not be bias-robust if the “main effect” biases of the MWC model were
supplemented by interaction biases. In fact, Zhao and Satten [6] investigated the existence
of interaction biases by expanding the MWC model to include interaction terms and then
fitting this generalized model to mock community samples [7]. They found a small amount
of evidence for interaction biases, albeit with smaller magnitudes than the main effect
biases in the MWC model. This finding is the motivation for this study. Here, we formulate
a new model for generating interaction biases and use simulations based on this model
to evaluate the impact of these interaction biases on the performance of LOCOM, as well
as a number of existing approaches (ANCOM [8], ANCOM-BC [9], fastANCOM [10],
ALDEx2 [11], WRENCH [12], DACOMP (v1.26) [13], LinDA [14], and the Wilcoxon rank-
sum test of log-ratio transformed data after adding pseudo counts of either 0.5 or 1). Thus,
this report provides the first assessment of the impact of interaction biases on the analysis of
microbiome data. Note that this assessment can only be achieved by simulations instead of
real data since we cannot control the nature of the bias even using model community data.

2. Methods

We generalize the MWC model using the framework of Zhao and Satten [6] by adding
an interaction bias θjj′ to the log-linear model:

log(pij) = log(πij) + γj + ∑
j′ 6=j

θjj′πij′ + αi , (1)

where πij is the true relative abundance of taxon j in sample i, pij is the expected value of
the observed relative abundance, γj is the main effect bias for taxon j in the MWC model,
and αi is the sample-specific normalization factor that ensures the compositional constraint
on pij. We followed [6] to introduce the effects of covariates Xi on taxon j by replacing
log(πij) in (1) with log(π0

j ) + XT
i β j, where β j contains the effect sizes, and π0

j is the true
relative abundance of taxon j when Xi = 0. Note that, similar to all compositional analysis
methods, the effect size parameters β j here characterize differences in “absolute” abun-
dances rather than “relative” abundances; relative abundances are further modulated by
the normalization factor αi which is a function of all the β js. The interaction θjj′ determines
the extent to which taxon j′ affects the bias factor for taxon j. The assumption underlying
the MWC model is θjj′ = 0 for all j and j′. We adopt the following model for generating the
interaction biases relative to the main effect biases in our simulation studies:

θjj′ = −sign(γj′)φεjj′ |γj| , (2)

where φ is a constant for all taxa pairs that we call the magnitude of interaction biases, and
εjj′ is a non-negative error term with a mean of one.

The value of φ and the minus sign in (2) reflect the findings of Zhao and Satten [6], who
considered a model similar to (1) but with an interaction that depended on the presence of
a taxon rather than its relative abundance. In particular, they considered the model

log(pij) = log(πij) + γj + ∑
j′ 6=j

θ̃jj′ I[πij′ > 0] + αi , (3)

where θ̃jj′ determines the extent to which the presence of taxon j′ affects the bias factor
for taxon j. Using data from all seven taxa in the Brooks mock community samples, they
estimated the main effect biases γjs and interaction biases θ̃jj′s and presented the results
in their Table 4. For the convenience of our readers, we display their results in Figure 1.
First, we observe that the interaction biases have smaller magnitudes than the main effect
biases; we calculated the mean of the interaction–main effect ratios (i.e., |θ̃jj′/γj|) to be
0.204. Because θ̃jj′ in model (3) corresponds to the product θjj′πij′ in our model (1) and
because most of the Brooks samples have three taxa with equal proportions, i.e., πij′ = 1/3,
we obtained the (approximate) mean of |θjj′/γj| and, thus, an estimate for φ of 0.612. In our
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simulations, we varied the value of φ from 0 to 4, which includes our empirical estimate
of 0.612 while also extending the range of φ to allow for stronger interaction biases than
those found in the Brooks data. In addition, Figure 1 shows that the interaction bias
in taxon j caused by taxon j′ has an opposite sign to the sign of the main effect bias in
taxon j′, except for some very small interaction biases. This implies that if taxon j′ has
a measured abundance higher than its true abundance, it is associated with decreased
measured abundances of other taxa, which seems plausible if we assume that only a
relatively constant total number of amplicons are sequenced. Finally, interaction biases are
not necessarily symmetric between a pair of taxa, as also noted by Zhao and Satten [6], so
our model (2) also does not guarantee such symmetry.
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Figure 1. Main effect biases (red dots) of the seven taxa in the Brooks mock community samples and
interaction biases (black dots) that each taxon (in the x-axis) caused to the other six taxa, as estimated
by Zhao and Satten [6].

Our simulation studies were based on models (1) and (2) and data on 856 taxa of
the upper-respiratory tract (URT) microbiome by Charlson et al. [15]. We considered
three scenarios for the distribution of interaction biases. In the first scenario (referred
to as S-nondiff), we sampled εjj′/2 from N(0.5, 0.12) for all taxa pairs j and j′. In the
second scenario (referred to as S-diff-causal), we modified S-nondiff to sample εjj′/2 from
Beta(0.5, 0.5) when taxon j was “causal” (i.e., associated with the trait of interest) and for all
j′. Both distributions have a mean of 0.5; however, N(0.5, 0.12) has one mode at 0.5, whereas
Beta(0.5, 0.5) has two modes 0 and 1 and, hence, a variance of larger than 0.12. In the third
scenario (referred to as S-diff-half), we used N(0.5, 0.12) for half of the randomly selected
taxa js and Beta(0.5, 0.5) for the remaining half of the taxa. Unlike S-nondiff, S-diff-causal
has a modest (but trait-related) variation in εjj′ , while S-diff-half has a large variation in εjj′

that is not trait-related. The distribution of the bias factor due to taxon–taxon interactions,
ηij = ∑j′ 6=j θjj′πij′ , in each taxon j across all samples is displayed in Figures S1 and S2
and has the following features. In all scenarios and for all taxa js, the mean of ηij was
approximately zero due to the averaging of contributions with different directionalities.
The variance of ηij increased as γj increased at a given φ. S-nondiff and S-diff-causal had
the same ηij values at the null taxa and different ηij values at the causal taxa. Finally, in
S-diff-half, ηij had a larger variance in one half of the taxa than in the other half of the taxa.

Additional details of the simulation settings generally follow the simulations in [5].
Specifically, we considered both binary and continuous traits of interest without any
confounding covariates; we also considered a binary confounder when the trait was binary.
We used the two sets of “causal” taxa (i.e., taxa that are associated with the trait) that were
used in [5] and referred to as M1 and M2. In M1, 20 taxa were randomly sampled to be
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causal from the set of taxa having mean relative abundances in the URT data [15] greater
than 0.005 (but excluding the most prevalent taxon). In M2, the top five most abundant
taxa (having mean relative abundances of 0.105, 0.062, 0.054, 0.050, and 0.049) were selected
to be causal. For simulations with a binary confounder, we assumed that the confounder
was associated with 20 taxa under M1 (10 sampled at random from the causal taxa and
10 from the null taxa) and 5 taxa under M2 (2 from the causal taxa and 3 from the null
taxa). We set the sample size to 100. Let Ti denote the trait and Ci denote the confounder
for the ith sample so that Xi = (Ti, Ci)

T. To generate a binary trait, we selected an equal
number of samples with Ti = 1 and Ti = 0. When a binary confounder was present, we
drew Ci from Bernoulli(0.2) in samples with Ti = 0 and from Bernoulli(0.8) in samples
with Ti = 1. To generate a continuous trait, we sampled Ti from U[−1, 1]. To simulate
the read count data for the 856 taxa, we first sampled the baseline relative abundances
π
(0)
i =

(
π
(0)
i1 , π

(0)
i2 , . . . , π

(0)
i J
)

of all taxa for each sample from Dirichlet(π, θ), in which π and
θ took the estimated mean and overdispersion (0.02) from fitting the Dirichlet–Multinomial
model to the URT data. We formed the true relative abundances πij for all taxa by spiking
the causal taxon j′ with an exp(β j′ ,1Ti) fold change, spiking the confounder-associated
taxon j′′ with an exp(β j′′ ,2Ci) fold change, and normalizing the relative abundances, so that

πij =
exp

(
β j,1Ti + β j,2Ci

)
π
(0)
ij

∑J
j∗=1 exp

(
β j∗ ,1Ti + β j∗ ,2Ci

)
π
(0)
ij∗

.

We formed the observed relative abundances pij by additionally multiplying the bias factor
exp(γj + ∑j′ θjj′πij′), so that

pij =
exp

(
γj + ∑j′ θjj′πij′ + β j,1Ti + β j,2Ci

)
π
(0)
ij

∑J
j∗=1 exp

(
γj∗ + ∑j′ θj∗ j′πij′ + β j∗ ,1Ti + β j∗ ,2Ci

)
π
(0)
ij∗

.

Note that β j,1 = 0 for null taxa and β j,2 = 0 for confounder-independent taxa. For simplicity,
we set β j,1 = β, a common effect size of the trait, on all causal taxa. We generated the main
effect bias γj from N(0, 0.82), which gave a range between 0.2 and 5 for most (95%) fold
changes (exp γj) caused by the main effect bias. The scheme for generating the interaction
bias θjj′ has been described earlier. Finally, we generated the taxon count data using the
Multinomial model with the mean (pi1, pi2, . . . , pi J) and a library size sampled from an
N(10,000, (10,000/3)2) distribution that was left-truncated at 2000.

Following [5], we applied the following compositional analysis methods: LOCOM,
ANCOM, ANCOM-BC, ALDEx2, DACOMP (v1.26), WRENCH, Wilcox-alr-half, and Wilcox-
alr-one. The latter two are Wilcoxon rank-sum tests of additive-log-ratio transformed count
data after adding pseudocount 0.5 or 1 to all count data and using the most abundant null
taxon (known in simulated data) as the reference; the p-values were adjusted for multiple
testing by the Benjamini–Hochberg [16] procedure. In addition, we included two newly
developed methods, fastANCOM and LinDA. LOCOM requires that the taxa present in
fewer than 20% of samples are filtered out. Recall that, since LOCOM fits logistic regression
models to taxa count data, zero read counts are naturally handled as possible outcome
values. We applied all methods to each replicate of simulated data after using this filter. For
ANCOM, ANCOM-BC, fastANCOM, and LinDA, we also applied them to data using their
own filter with 10% presence as the cutoff and denoted them as ANCOMo, ANCOM-BCo,
fastANCOMo, and LinDAo. The empirical FDR and sensitivity (proportion of truly causal
taxa that were detected) were evaluated at the nominal level of 20% based on 1000 replicates
of data. A relatively high nominal FDR level was chosen due to the small numbers of causal
taxa in both M1 and M2.
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3. Results

The empirical FDR and sensitivity of all aforementioned compositional analysis meth-
ods for detecting the “causal” taxa (i.e., taxa that are associated with the trait), for simu-
lations with a binary trait and no confounder under scenarios M1 and M2, are displayed
in Figures 2 and 3, respectively (results for simulations with confounders and continuous
traits showed similar patterns and are therefore deferred to Figures S3–S6 in Supplementary
Materials). Note that φ = 0 corresponds to no interaction bias at any taxa (i.e., main effect
biases only), and β = 0 corresponds to no differential abundance at any taxa (i.e., the global
null). In all cases, the FDR of LOCOM remained at or close to the nominal level as long as
the magnitude of the interaction bias φ < 1, which is substantially larger than the empirical
value of 0.612 observed in the Brooks data [6]; under the global null in particular, LOCOM
always controlled the FDR regardless of the value of φ. It was only when both φ and β
became unrealistically large that we observed moderate inflation in the FDR of LOCOM.
The FDR inflation of LOCOM was similar in S-nondiff and S-diff-causal because the inter-
action biases were similarly distributed at the majority of taxa, which were null taxa; the
inflation was (slightly) larger in S-diff-half because the interaction biases had the largest
variability among the three scenarios at a given φ. The interaction biases caused some loss
of sensitivity for LOCOM, but the drop was relatively small, and LOCOM maintained the
highest sensitivity among all methods in all of our simulation scenarios. The results of
the other methods showed a similar trend to LOCOM with the FDR increasing and the
sensitivity decreasing as φ increased, as well as an increase in FDR inflation as β increased.

The other methods had very different performances even when there were only main
effect biases (φ = 0). ANCOM-BC and fastANCOM performed the best among the other
methods, controlling the FDR for the full range of β values we have considered when φ
was small and having similar FDR inflation as LOCOM when both β and φ became large;
however, this performance came at the cost of a substantially lower sensitivity than that of
LOCOM. ANCOM had a moderately inflated FDR when β was small but performed better
when β was increased; nevertheless, its sensitivity was among the lowest. ALDEx2 had
an inflated FDR and poor sensitivity when β was large in M1 but not in M2. WRENCH,
Wilcox-alr-half, and Wilcox-alr-one had highly inflated FDRs except in the global null case,
and LinDA had a highly inflated FDR in all cases including the global null. These results
were based on data after applying the filter of rare taxa as recommended by LOCOM; in
general, ANCOM, ANCOM-BC, fastANCOM, and LinDA had worse FDR control when a
less stringent filter was applied. Note that, unlike the LOCOM paper containing results
from the older version (v1.1) of DACOMP, we used the latest version (v1.26) here, which
yielded a highly inflated FDR and low sensitivity in M2 because some causal taxa were
incorrectly selected to be among the reference set.
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Figure 2. FDR and sensitivity at the nominal FDR 20% (black dotted line) of LOCOM and other
compositional methods for data simulated under M1 and with a binary trait. With superscript o, the
filter for rare taxa that are present in less than 10% of samples as adopted by the original programs
was used; without o, the more stringent filter with 20% cutoff as recommended by LOCOM was used.
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Figure 3. Similar to Figure 2 except that the data were simulated under M2.

4. Discussion

In this study, we found that LOCOM was robust to not only main effect biases but also
a reasonable range of interaction biases. The other methods tended to have an inflated FDR
even when there were only main effect biases; many of them did not control the FDR even
when there was no experimental bias at all (results shown in [5]). LOCOM maintained the
highest sensitivity among all methods even when the other methods did not control the
FDR. Therefore, we conclude that LOCOM outperforms most (if not all) existing methods
for compositional analysis of microbiome data.
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The robust performance of all methods to the interaction bias is likely due to each
term θjj′πij′ in (1) that governs the effect of taxon j′ on the bias factor of taxon j being small
because the relative abundance πij′ is generally small. Further, even if all contributions
from different taxa to the total interaction bias ∑j′ θjj′πij′ have the same sign, any non-
zero mean interaction bias across taxa (or individuals) would be automatically included
in the normalization factor αi (or the main effect bias γj). Thus, the interaction bias is
“automatically centered” by these constraints, which may also decrease the apparent effect
of the interaction bias.

We used the Brooks mock community data to motivate our simulation studies, which
may have two limitations. First, the Brooks samples contain at most seven taxa, all with
equal true relative abundance; other mock community datasets, especially datasets that
contain a large number of taxa and that mimic real microbiome data, should be used to study
the interaction bias. Second, bacteria in a real microbial community may have different
interactions from bacteria in a mock community. Therefore, the study of experimental
biases and their impact on downstream analysis continues to be an important topic for the
foreseeable future.

5. Key Points

• Microbiome data are subject to experimental bias, which not only takes the form of
taxon-specific main effects but also taxon–taxon interactions.

• LOCOM is robust to all main effect biases and a reasonable range of interaction biases.
• With the exception of LOCOM, the currently available methods tend to have inflated

FDRs even when there are only main effect biases.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes14091777/s1, Figure S1: Distribution of the bias factor due
to taxon-taxon interactions; Figure S2: Distribution of the bias factor due to taxon-taxon interactions,
based on one replicate of data that were generated under M2 with exp(β) = 3 and φ = 4 and had
a binary trait; Figure S3: Similar to Figure 2 except that the data were simulated under M1 and
had a binary trait and a binary confounder; Figure S4: Similar to Figure 2 except that the data were
simulated under M2 and had a binary trait and a binary confounder; Figure S5: Similar to Figure 2
except that the data were simulated under M1 and had a continuous trait; Figure S6: Similar to
Figure 2 except that the data were simulated under M2 and had a continuous trait.
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