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Abstract: Fatty acid hydroxylase-associated neurodegeneration (FAHN/SPG35) is caused by pathogenic
variants in FA2H and has been linked to a continuum of specific motor and non-motor neurological
symptoms, leading to progressive disability. As an ultra-rare disease, its mutational spectrum has not
been fully elucidated. Here, we present the prototypical workup of a novel FA2H variant, including
clinical and in silico validation. An 18-year-old male patient presented with a history of childhood-
onset progressive cognitive impairment, as well as progressive gait disturbance and lower extremity
muscle cramps from the age of 15. Additional symptoms included exotropia, dystonia, and limb
ataxia. Trio exome sequencing revealed a novel homozygous c.75C>G (p.Cys25Trp) missense variant
in the FA2H gene, which was located in the cytochrome b5 heme-binding domain. Evolutionary
conservation, prediction models, and structural protein modeling indicated a pathogenic loss of
function. Brain imaging showed characteristic features, thus fulfilling the complete multisystem
neurodegenerative phenotype of FAHN/SPG35. In summary, we here present a novel FA2H variant
and provide prototypical clinical findings and structural analyses underpinning its pathogenicity.

Keywords: hereditary spastic paraplegia; SPG35; FA2H; FAHN; genetic variant modeling

1. Introduction

Hereditary spastic paraplegias (HSPs) are a group of genetically and clinically diverse
neurological disorders, which are characterized by progressive lower extremity weak-
ness and spasticity due to a length-dependent axonal degeneration of the corticospinal
tracts [1]. The spastic paraplegia 35 subtype (SPG35, MIM 612319) shows a “complex” HSP
phenotype, i.e., additional symptoms including upper limb spasticity, truncal instability,
dysarthria, dysphagia, cerebellar ataxia, and progressive cognitive deficits [2]. SPG35
is caused by biallelic pathogenic variants in the FA2H gene, which encodes fatty acid
2-hydroxylase (FA2H), an enzyme that functions in α-hydroxylation of free fatty acids in
the endoplasmic reticulum of oligodendrocytes [3]. These fatty acids are mainly incorpo-
rated into galactosylceramide and -sulfatide [3]. Approximately 25% of the outer leaflet
lipids in myelin are 2-hydroxylated [4,5], with a possible role of increasing membrane
fluidity [6]. Patients with SPG35 exhibit a narrow brain imaging phenotype previously
described by the ‘WHAT’ acronym: stationary White matter changes, Hypointensity of
the globus pallidus, pontocerebellar Atrophy, and Thin corpus callosum [2]. In a previous
case series, 85% of patients exhibited three or more WHAT features [2]. In all but two pub-
lished cases, gait disorder manifested in early childhood, and the use of a wheelchair was
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required after a median of 7 years [2]. Furthermore, 50% of patients developed exotropia,
and unusually bristle hair was noted in several patients. Scanning electron microscopy of
hairs revealed longitudinal grooves in all four out of four analyzed patients and adhesive
plaques in three out of four patients. The aim of our study was to validate a novel FA2H
variant in an early-onset HSP patient by precise clinical phenotyping as well as in silico
analyses. Our data demonstrate that the c.75C>G FA2H variant is associated with the pro-
totypical phenotypic presentation of SPG35 and that this variant is predicted to lead to an
enzymatic dysfunction.

2. Materials and Methods

The presented subject gave informed consent for analyses before participation in
the study. The study was conducted in accordance with the Declaration of Helsinki and
was approved by the Ethics Committee of the Friedrich-Alexander-Universität Erlangen-
Nürnberg (no. 17-259_3-B).

2.1. Genetics
2.1.1. High Throughput Sequencing and Bioinformatics Pipeline

Next-generation sequencing analysis (NGS) was carried out on an Illumina NovaSeq
6000 system (Illumina, San Diego, CA, USA) as 150 bp paired-end sequencing runs us-
ing v2.0 SBS chemistry. Sequencing reads were aligned to the human reference genome
(GRCh37/hg19) using BWA (v0.7. 13-r1126) with standard parameters. SNV, CNV, and
INDEL calling on the genes were conducted using the varvis software platform (varvis™;
Limbus Medical Technologies GmbH, Rostock, Germany) with subsequent coverage and
quality-dependent filter steps.

2.1.2. Nomenclature, Interpretation, and Classification of Genetic Variants

The nomenclature guidelines of the Human Genome Variation Society (HGVS) were
used to describe DNA sequence variants [7]. Population databases were used to assess
the allele frequencies of the variants: Database of all known Single Nucleotide Polymor-
phisms (dbSNP), Exome Aggregation Consortium (ExAC), and Genome Aggregation
Database (gnomAD).

2.2. Structural Modeling of the Cys25Trp Variant

A structural model created with AlphaFold v2 [8,9] was taken from UniProt (Entry:
Q7L5A8) for the wild type because there is no experimentally solved protein structure of
FA2H so far. The human FA2H consists of two distinct domains: the N-terminal cytochrome
b5-like domain containing the heme group (residues 15–85) and the C-terminal sphingolipid
fatty acid hydroxylase domain (residues 124–366) [10]. In order to identify the most similar
experimentally determined structures for each of the two domains, a protein blast with
NCBI was performed. The structure of type B cytochrome b5 (PDB ID code: 3NER, [11])
was found as the most similar human and experimentally determined structure for the N-
terminal domain, and the position of its heme group was used as reference after structure
superposition. For the C-terminal hydroxylase domain, NCBI protein blast identified
the hydroxylase domain of scs7p from Saccharomyces cerevisiae S288C (PDB ID code:
4ZR0, [12]) to be the most similar experimentally determined structure. For illustration
of how FA2H is oriented in the endoplasmic reticulum membrane, FA2H was positioned
in a model membrane according to the Orientations of Proteins in Membranes (OPM)
database (https://opm.phar.umich.edu/, accessed on 10 October 2023) entry to PDB ID
code: 4ZR0. AlphaFold protein structure prediction for the mutant FA2H (Cys25Trp) was
performed using ChimeraX [13,14] and ColabFold [15]. The 2D ligand interaction diagrams
for the protein-heme interactions were generated using the academic version of Maestro
13.6 (Schrödinger Release 2023-2: Maestro, Schrödinger, LLC, New York, NY, USA, 2023).
All protein structure images were generated with UCSF Chimera 1.16 [13].

https://opm.phar.umich.edu/
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2.3. Scanning Electron Microscopy of Hair Shafts

Scanning electron microscopy (SEM) was performed as described before [16,17]. Un-
like for hydrated samples such as cells, we did not dry the samples at a critical point
but sputtered them directly with gold after glue fixation on aluminum specimen mounts.
Samples were transferred to a JEOL JSM-IT300 scanning electron microscope, and images
were acquired at 5 kV acceleration voltage and 400× magnification.

3. Results
3.1. Case Report

An 18-year-old cis male patient of Turkish descent presented with a history of cognitive
impairment and progressive gait disturbance. The patient’s family history was notable for
the consanguinity of his parents, who are cousins. The mother has four healthy siblings.
She reported two spontaneous abortions and the premature death of two male children at 1
at 4 months, respectively, for unknown reasons. The father reported three healthy siblings,
but a gait disorder in his deceased father (i.e., the index patient’s grandfather) starting at
age 40. The pedigree according to [18] is shown in Figure 1.
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Figure 1. Pedigree of the index patient (arrow) according to [18].

The patient’s cognitive and physical development was described as unremarkable
during early childhood. Nevertheless, learning difficulties manifested during primary
school with unaffected physical abilities, which were described as athletic. At the age of 15,
he developed a slowly progressive gait disorder and calf cramps. By age 18, he required
not only increasing help with reading and writing but also for orientation due to cognitive
decline. His walking distance was limited to approximately 100 m, after which he needed
to rest due to an increasing risk of falling. He had experienced several falls and reported
muscle pain in the thigh and forearm muscles. His mood remained stable, al-though he
occasionally expressed frustration due to increasing disability and social isolation. At age
18, the patient presented as being cognitively slow, but fully oriented. Emotional affect
was blunted, with a low state of mood. In terms of ocular exam, he exhibited horizontal
exotropia and occasional double vision. Facial tone was slightly reduced, and speech was
mildly dysarthric. Motor signs included spastic paraparesis, overall bradykinesia, and
intermittent dystonia of the fingers and arms. Tendon reflexes were brisk in the arms
and clonic in the legs; there were positive Babinski and palmomental reflexes bilaterally.
In addition, coordination tests were ataxic. The walking pattern was spastic-ataxic with
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a widened base and signs of central hip muscle weakness, leading to an increased risk
of falling, especially during running. The patient’s hair had a bristle-like appearance.
Electromyography examinations were unremarkable.

The patient’s treatment plan included physiotherapy including intensive therapy in a
neurological rehabilitation clinic and the introduction of occupational therapy and speech
therapy. Pain reduction was partly achieved by gabapentin 1200 mg/d, while no additional
benefit was reported at 1600 mg/d.

Magnetic resonance imaging (MRI) of the brain revealed the complete tetrad of
“WHAT” (Figure 2), i.e., biparietal, spotty FLAIR-hyperintensities (“W”), hypointensity of
the globus pallidus in T2w FLAIR and susceptibility-weighted imaging (“H”), pontocere-
bellar atrophy with widening of the fourth ventricle and decreased midbrain (361 mm2)
but not pons midsagittal area (129 mm2) (“A”) and thinning of the corpus callosum (“T”).
AI-supported volumetry revealed atrophy of the thalamus (6.1 mL), midbrain (6.3 mL),
and pons (8.9 mL), each with more than four standard deviations. Of note, the magnetic
susceptibility of the globus pallidus was markedly reduced at 62 ppb, as measured by
Quantitative Susceptibility Mapping (QSM, [19]). Imaging findings were stable at a 3.5-year
follow-up. Spine MRI was unremarkable at age 15.
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Figure 2. MRI Findings. “WHAT” tetrad: spotty FLAIR-hyperintensities affecting the parietal
white matter (“W”; cross symbol in (a,d)), hypointensity of the globus pallidus in T2w FLAIR/SWI
(“H”; asterisk in (a–c)), pontocerebellar atrophy with decreased midbrain but not pons midsagittal
area (“A”; open arrows in (e,f) (the pontomesencephalic junction is defined by the yellow dotted
line between the superior pontine notch and the inferior border of the quadrigeminal plate; the
pontomedullary junction is defined by a line parallel to this line at the level of the inferior pontine
notch)) and thinning of the corpus callosum, predominantly affecting the body (“T”; double-asterisk
in (f)).

3.2. Molecular Genetic Analysis

Genetic trio-exome analysis including the patient and both parents revealed a ho-
mozygous c.75C>G missense variant in the FA2H gene, with the same monoallelic alter-
ation present in both consanguineous parents. The cysteine is highly preserved across
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species, with predicted pathogenicity at the amino acid level for the variant according to
PolyPhen-2 [20,21] (Figure 3).
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Figure 3. PolyPhen-2 shows strong preservation of cysteine at position 25 in FA2H and predicts
“probably damaging” for the exchange with tryptophan.

The bioinformatic meta-predictor MetaSVM [22] suggested a damaging effect
(MetaSvmRank: Damaging (0.88508); a rank above 0.82 is regarded as damaging). REVEL [23]
prediction was 0.737, agreeing with the MetaSVM classification as PP3 [24]. Accordingly,
the variant was classified according to the ACMG guidelines with the five-tier classification
system [25] as a class 3 (variant of uncertain significance, VUS; PM1, PM2_SUP, PP3). The
variant was submitted to LOVD (https://databases.lovd.nl/shared/individuals/00435460,
accessed on 10 October 2023) and ClinVar (submission# SCV002578919.1).

3.3. Structural Modeling of the Cys25Trp Variant

Protein structures of wild type and mutant FA2H (cysteine 25 to tryptophan: Cys25Trp)
were predicted by AlphaFold [8,9]. They were docked into a lipid membrane with the
FA hydroxylase domain and leaving the Cyt-b5 domain oriented towards the cytoplasm
(Figure 4). Residue 25 resides within the Cyt-b5 domain in proximity to the heme group,
which is important for the coordination of the iron ion required for enzymatic activity
(Figure 4).

https://databases.lovd.nl/shared/individuals/00435460
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Figure 4. Structural modeling of the Cys25Trp variant. (a) Overview of the FA2H structural model
(AlphaFold) in a model membrane. While the FA hydroxylase domain inserts into the membrane, the
Cyt-b5 domain remains accessible at the cytoplasm. (b) Detailed depiction of cysteine 25 (Cys25) in
the Cyt-b5 domain in proximity to the iron-binding heme domain (heme). (c) Structure of the Cyt-b5
domain with a tryptophan at position 25 (Trp25). (d) A 2D representation of the heme group with
residues in <5 Å distance. The coordination between both variants (FA2H wild type and SPG35)
differs, which might result in inferior enzymatic activity in SPG35 patients.

3.4. Scanning Electron Microscopy of Hair Shafts

Potential groove formations in the patient’s scalp hair as well as in the control hair from
his mother were analyzed using scanning electron microscopy. Both patient and control
hair samples showed a typical cuticle overlay expected for healthy hair. In accordance
with [2], we assessed longitudinal groove formation in hair shafts, comparing patient and
control. We identified grooves in both the patient and control hair samples (Figure 5, white
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arrows), without apparent differences with regard to depth or length, however. Specifically,
no adhesive plaques were present.
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Figure 5. Scanning electron microscopy (SEM) analysis of scalp hair. Comparative SEM analysis of
hairs from the patient (bottom) and his mother (top) revealed a comparable cuticle structure. Both
showed groove structures (white arrows) to a comparable extent. Scale bars 50 µm.

4. Discussion

In the present report, we demonstrate the phenotype of a novel homozygous c.75C>G
missense variant in FA2H. The presented case shows the full spectrum of characteristic
imaging and clinical findings in SPG35 [2]. Differential clinical diagnoses including MPAN
(mitochondrial membrane protein-associated neurodegeneration) and CoPAN (COASY
protein-associated neurodegeneration) were unlikely due to lack of parkinsonism. SPG11,
SPG15, and GAN (Giant axon neuropathy) were unlikely due to the absence of muscular
atrophy [2]. Finally, FA2H was the only gene prioritized in trio exome sequencing.

Due to the clinical and imaging findings characteristic of SPG35, in combination with
protein structure predictions, the c.75C>G variant of the FA2H gene is likely to lead to a
(partial) loss of function. In SPG35, gait disorder was reported to occur at a median age of
4, with an interquartile range of 3–4.5 [2], whereas our patient developed gait disorder at
age 15. In accordance with the present structural model, Cys25Trp FA2H might possess
residual catalytic activity. Alternatively, the delayed onset of gait disorder in our patient as
compared to typical early onset SPG35 cases might be caused by modifier genes or environ-
mental factors influencing disease progression. A comprehensive overview of published
pathogenic variants in the FA2H gene is listed in Table 1. The discovery of this novel variant
highlights the evolving understanding of the genetic underpinnings of oligodendroglial
dysfunction, leukodystropy, and neurodegenerative disorders, suggesting that there may
be other yet-to-be-discovered mutations contributing to diverse presentations of SPG35.
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Table 1. Overview of reports of FA2H variants with SPG35 phenotypes.

Article FA2H Variant

[26] Dick c.703C>T, c.159_176del18

[2] Rattay
c.21delC, c.160_169del GCGGGCCAGG, c.205C>T, c.232G>A,
c.262G>T, c.443C>T, c.503_506del TCTG, c.704G>A, c.859T>C,

c.908G>T, c.956A>G
[27] Soehn c.131C>A, c.133G>T, c.527G>A, c.785A>C
[28] Kruer c.460C>T, c.510_511delCA

[29] Pensato c.620C>T
[30] Rupps c.209C>T, c.968C>T

[31] Edvardson c.103G>T, c.786+1G>A

[10] Mari c.193C>T, c.805c>T, c.1055C>T, c.1501A>G,
[c.340_363del24][c.363+1_8del8]

[32] Hashemi c.131delC
[33] Incecik c.130C>T
[34] Bektaş c.160_169dup
[35] Liao c.388C>T, c.506+6C>G, c.230T>G
[36] Zaki c.265C>T

[37] Tonelli c.509A>G
[38] Aguirre-Rodriguez C565C>T

[39] Pierson c.707C>T
[40] Cao c.968C>A; c.976G>A; c.688G>A

This report c.75C>G

As opposed to a previous report [2] and despite the bristle-like hair appearance in the
presented patient, SEM did not reveal a hair shaft anomaly. We conclude that such SEM
features of hair may not be consistent sensitive markers of SPG35.

5. Conclusions

Our data corroborate the pathogenicity of the novel c.75C>G variant in FA2H and
contribute to the understanding of FA2H-associated HSP, underscoring the need for further
research into effective treatments for this rare condition.
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