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Abstract: Biological processes underlying health and disease are inherently dynamic and are best
understood when characterized in a time-informed manner. In this comprehensive review, we
discuss challenges inherent in time-series microbiome data analyses and compare available ap-
proaches and methods to overcome them. Appropriate handling of longitudinal microbiome data
can shed light on important roles, functions, patterns, and potential interactions between large
numbers of microbial taxa or genes in the context of health, disease, or interventions. We present
a comprehensive review and comparison of existing microbiome time-series analysis methods, for
both preprocessing and downstream analyses, including differential analysis, clustering, network
inference, and trait classification. We posit that the careful selection and appropriate utilization of
computational tools for longitudinal microbiome analyses can help advance our understanding of the
dynamic host–microbiome relationships that underlie health-maintaining homeostases, progressions
to disease-promoting dysbioses, as well as phases of physiologic development like those encountered
in childhood.

Keywords: review; microbiome data; longitudinal analysis; statistical methods; deep learning

1. Motivation

The human microbiome, including metagenomics and metatranscriptomics, has re-
cently taken a prominent role in our understanding of health and disease. Considerable
resources and efforts are now being invested in studies measuring aspects of the micro-
biome, including multi-omics and longitudinal study designs. New insights have been
gained by longitudinal microbiome data studies in human development [1], disease pro-
gression [2–4], medical treatment effects [5], and mortality [6]. Cross-sectional microbiome
studies have been successful in uncovering novel key species with important roles in
common human diseases [7]. Such findings provide motivation for additional microbiome
studies and deeper analyses involving longitudinal study designs, because microbiomes
are naturally dynamic, sensitive to disease progression, and change across the lifespan. Lon-
gitudinal microbiome studies also allow for a better understanding of interactions among
microbial community members, as well as interactions between microbial species/genes
and the human host over time [8]. Microbiome data collected at multiple time points,
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often with time-matched and tissue-matched metabolomics data from the same participant,
enable assessments of microbial trajectories, and the identification of important microbial
biomarkers that could facilitate disease prediction or inform disease management [9].

Longitudinal microbiome data analysis remains challenging because it not only in-
herits difficulties encountered in cross-sectional microbiome data, but also requires proper
handling of correlation structures emanating from repeated sample collection of the same
participants over time. Microbiome data are typically zero-inflated, over-dispersed, high-
dimensional, and with complicated correlation structures [10–12]. Microbiome data can also
be compositional or relative, with sample-level summation to one or a large constant [13].
First, for both cross-sectional and longitudinal microbiome data, common analysis steps
(Figure 1) include pre-processing (e.g., scaling, normalization, and batch effect correction),
model fitting, and downstream analysis (e.g., differential abundance analysis, clustering,
and classification) [14]. Importantly, longitudinal microbiome data may have specific needs
in these analysis methods, according to time-specific hypotheses and assumptions. Second,
specifically for longitudinal data, real-world scenarios of data collection at multiple time
points in a sizeable cohort (for example, >30 subjects) often include irregularities of time
intervals and missingness, as well as abrupt state transitions [15]. One proposed solution
to these longitudinal study-specific challenges is the employment of deep-learning-based
interpolation during preprocessing [16].
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Figure 1. Key elements and steps in data analysis process followed in most investigations involving
microbiome time series data structures.

The importance of overall study design in cohort studies cannot be overemphasized,
as the quality of evidence and downstream inferences hinge on a rigorous design [17]. When
microbiome data are part of cohort studies, additional challenges exist. The analysis of time-
series microbiome data requires careful consideration of issues ranging from preprocessing
to parametric modeling and downstream analyses, necessitating the development and
application of novel, suitable methods. The emergence of new questions in this research
area has stimulated the need to conduct a thorough review to suggest more appropriate
analysis methods for these complex data structures and, importantly, identify potential
directions where more research and methods development are warranted.

In this paper, we sought to comprehensively review nuances in microbiome time
series data that present analytical challenges, including preprocessing, modeling, and
downstream data analyses (Figure 1). We review the currently available related computa-
tional approaches and methods. Specifically, in data preprocessing, we review approaches
including normalization, variable identification, dimensionality reduction, and interpo-
lation. In downstream analyses, we review differential abundance testing, time series
clustering, host trait delineation, and inference of interaction networks.
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2. Methods That Account for General Distribution Characteristics of Microbiome Data

Microbiome datasets are characterized by their compositional, non-negative, zero-
inflated, over-dispersed, and high-dimensional nature, as highlighted in a recent review [12].
This intrinsic complexity elevates the difficulty of data analyses. Though many available
methods exist to deal with these challenges in cross-sectional studies, we still include them
briefly in this review because these issues are exacerbated when analyzing longitudinal
microbiome data. The temporal dimension introduces additional layers of complexity, such
as the need to account for time-dependent changes and inter-individual variability, making
the interpretation and analysis even more intricate and demanding. Where extensions to
longitudinal microbiome data exist, we discuss them after introducing the general methods.

2.1. Non-Negative Counts and Compositional Data

Most notably, output reads of sequencing data or assigned taxa generated by high-
throughput sequencing (HTS) may not be informative themselves. In many current ap-
proaches, it is common to normalize counts by setting the sum of all operational taxonomic
unit (OTU) components to be a constant value [13]. The challenge is compounded when
these counts vary significantly over time, a feature often overlooked in cross-sectional stud-
ies. Weiss et al. [10] discuss normalization strategies, but longitudinal studies necessitate
additional considerations for temporal fluctuations, as the relative abundance’s trend is not
equivalent to the real abundance’s trend. In longitudinal studies, this compositional nature
needs to be interpreted with caution, especially when considering the time-dependent
changes in microbiome composition [11].

More recentl approach allows for information to be retained in the relative proportions
(e.g., ratios) between the members of the microbial community, a feature that leads to
intrinsic inner-correlation of taxa and has severe implications for assumptions that can be
made for the data and the implementation of analytical methods. As a result, traditional
methods can produce biased estimates when applied to microbiome data. For example,
none of the three distance or dissimilarity matrix-estimating methods that dominate the
relevant literature, UniFrac (both the weighted and unweighted variants), Bray–Curtis,
and Jensen–Shannon divergence, account for the compositional nature of these data [18].
To overcome this issue, Aitchison [19] proposed that the underlying relationships between
taxa can be captured by treating the data as ratios and proposed the centered log-ratio
(CLR) transformation, which can be performed before computing the distances to mitigate
the challenges imposed by the compositional nature of the data. A factor that may be easily
ignored is that microbiome data are naturally non-negative. This can also be a problem
for statistical inference [20] because the direct application of Gaussian-based traditional
methods may be inappropriate.

2.2. Zero-Inflation

Another important and well-recognized feature of microbiome data is their zero-
inflation, which refers to the presence of a higher proportion of zeros compared to what
would be expected under a typical distribution, Poisson or negative binomial, ranging
between 70–90 percent [21]. Zero-inflation poses specific challenges in longitudinal set-
tings, where the pattern of zeros can vary over time. There are many different kinds of
zeros in microbiome data, including sampling zeros (unobserved due to limited sample
size or below detection), rounded zeros (not actually zeros), and structural zeros (true
zeros). These zeros hamper efforts to determine whether the data provide “evidence of
absence” (i.e., the true absence of a particular taxon in a sample) or “absence of evidence”
(i.e., the inability to detect a taxon due to sampling or measurement limitations). Estimates
of conventional parametric models are not trustworthy for samples that consist mostly
of zeros [22]. The excess zeros present in the taxonomic abundance reduce the power
for generating inferences regarding low-abundant taxa by using either standard paramet-
ric models [23] or non-parametric methods [24]. Several zero-inflated models have been
proposed to help overcome the data sparsity issue, including zero-inflated Beta regres-
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sion with random effects (ZIBR) [25], negative binomial and zero-inflated mixed models
(NBZIMM) [26], and fast zero-inflated negative binomial mixed model (FZINBMM) [27].

2.3. Overdispersion

Overdispersion is another common problem encountered in microbiome data anal-
ysis, referring to the occurrence of greater variability in the data than expected under
standard statistical models, often necessitating specialized analytical approaches for ac-
curate interpretation. This variability is often more pronounced in a temporal context,
with overdispersion potentially varying at different time points. Overdispersion can be
caused by many factors, including the presence of a large number of zero-inflated or rare
taxa, differences in sampling depth between samples, and variations in the underlying
biology of the microbial communities under study. Consequently, while Poisson models
are commonly used for count data, their assumption of an equal mean and variance re-
duces their applicability to the traditionally over-dispersed microbiome data [28]. Instead,
negative binomial models with an additional dispersion parameter are more popular and
better-suited to account for the over-dispersion [29].

Mixed models, like NBZIMM [26] and FZINBMM [27], offer flexible frameworks
to account for overdispersion by incorporating additional variance components, such as
dispersion parameters or random effects. The dispersion parameter serves as a scaling factor
for the variance and is aimed at capturing the extra variability that is not explained by the
mean of the distribution [29]. By allowing this parameter to vary, a mixed model can adjust
its variance structure, and thus better accommodate the true underlying data variability.
Random effects can provide another means to account for overdispersion. By including
random effects that capture subject-specific variability, the model can better account for
the extra variation observed between participants, often arising from missing covariates
or unmeasured variables. These random effects can represent unobserved heterogeneity
between study participants, or temporal correlations within participants, introducing an
additional layer of complexity that can align the model closer to the underlying data-
generating process. The random effects play a dual role: they account for the inherent
correlations within grouped data [26] and simultaneously provide an additional layer of
variance, mitigating overdispersion [29]. Besides handling overdispersion, mixed models
benefit from being flexible in their specification of variance–covariance structures. This
adaptive nature ensures that the model is not restricted by stringent assumptions and can
evolve as required.

2.4. High Dimensionality

Most microbiome datasets are inherently high-dimensional; the number of taxa can
easily be in the hundreds or thousands [12], while the sample size remains relatively
modest. This high dimensionality presents unique challenges in longitudinal studies,
because time introduces an additional dimension with a more complicated correlation
structure. Genomics applications (i.e., metagenomics) can push the dimensionality to an
extremely large scale wherein data dimensions can grow exponentially with the sample
size—a phenomenon termed ultrahigh-dimensional data [30]. For example, making in-
ferences regarding interactions or connectivity between taxa or their genes often is an
NP-hard (non-deterministic polynomial-time hard) problem [31], rendering even heuristic
or greedy methods impractical, unless preliminary dimensionality reduction and pruning
occur. In addition, microbial features (e.g., genes) may be correlated due to their relatedness
(i.e., genetic relationship) in the phylogenetic tree [32].

3. Challenges in Longitudinal Analysis of Microbiome Data
3.1. Challenges in Temporal Study Design and Sample Collection

In addition to the microbiome-specific data distribution characteristics mentioned
above, microbiome time series analyses present unique challenges that arise from the
temporal data collection in the study design. This section specifically focuses on the
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dynamics and complexities unique to longitudinal microbiome data, setting it apart from
general microbiome studies as discussed in other literature [11,12]. Most microbiome
insights have emerged from cross-sectional studies [33], which provide only a single
time point snapshot [34]. Naturally, the absence of a temporal dimension limits one’s
ability to make inferences regarding health and disease-informative microbial changes
and underscores the urgent need for such time series data to be collected and analyzed.
Additionally, the aggregation of microbiome data from different periods or conditions (e.g.,
“batches,” “cohorts,” or “sampling groups”) often introduces substantial heterogeneity,
introducing biases and confounders that complicate the differentiation between genuine
biological signals and data collection or processing artifacts.

Recent time-series studies reveal a substantial dynamism of the microbiota of hu-
mans and animals, underscoring the importance of such longitudinal microbiome data.
Though large-scale studies such as the human microbiome and MetaHIT projects explored
the phylogenetic and functional composition of the healthy human microbiota and its
inter-individual variation [35,36], time-series data on gut microbiomes, especially datasets
including samples from many different participants, remain rare due to the challenging and
expensive data collection process [34]. Dense time series and covariates that explain gut
microbiome dynamics, such as diet and social interactions, are also difficult to collect. As a
result, most datasets either include many time points from a few participants, or relatively
few time points from larger numbers of participants, limiting their statistical power [37–39],
and the discrepancies can even lead to seemingly contradictory results [40].

Aspects and characteristics of microbiome collection and measurement can influence
the quality of the obtained data, introducing variation between different data batches.
Published protocols detailing clinical aspects of microbiome sample collection, as well as
specimen handling, storage, nucleic acid extraction, sequencing, QA/QC, pre-processing,
and ultimately data analysis and inference, are rare but do exist [41]. Sequencing techniques,
variation in spatial aspects and temporal frequency of sampling, as well as the availability
of replicates, are all features that can strongly influence the results of a time series analy-
sis. While frequent sampling is crucial to capture the richness of microbial communities’
variability [42], the ideal sampling frequency depends on study-specific characteristics,
including the expected variability and study hypotheses [2–4,43]. Current methods used to
obtain estimates of microbial abundance are still noisy and, when multiple technologies
are combined (i.e., next-generation sequencing and qPCR), the resulting measurement
error models become complex [20] and can greatly affect downstream analyses. In general,
dynamic environments increase sample heterogeneity, but unlike other biomedical domains
where almost continuous temporal sampling is feasible, this is not currently possible for
most human microbial niches including the gut [44].

Most currently available microbiome time series datasets cover short time ranges
and/or have gapped time points [15] due to practical limitations in sample collection and
processing, although, ideally, data collection should regularly and repeatedly collect and
analyze samples from the same individuals over long periods of time [45]. Unsurprisingly,
irregular microbiome sampling can pose challenges for investigators, as it may not conform
to standard time series models. Meanwhile, many methods for time series clustering,
classification, and regression work better with regularly-sampled data as inputs, creating a
need to appropriately handle (i.e., transform) the irregularly collected samples [16].

3.2. Challenges in Appropriate Handling of Longitudinal Features in Microbiome Data

Longitudinal studies present both opportunities and challenges in microbiome re-
search. The temporal dimension adds complexity but also offers richer insights into
dynamic processes, patterns, and interactions within microbial communities compared to
what cross-sectional studies can offer. The process of collecting samples over an extended
period magnifies the nuances in community composition. These changes may be attributed
to a multitude of factors, including variations in host environment, aging, behavior, or diet
changes, medications, or the activity of other species. This complex interplay makes it
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difficult to disentangle the individual effects of each feature and decipher their cumulative
impact on the overall microbial community. Additionally, incorporating time-related ex-
perimental parameters like the frequency and timing of sample collection, as well as the
tracking of host life cycle events and environmental changes, is crucial. This approach aids
in interpreting temporal changes and identifying long-term microbial patterns.

In time series studies of microbiome data, some of the aforementioned problems are
more pronounced. The microbial communities’ composition is often presented in relative
proportions, so an increase in one taxon’s abundance can misleadingly appear as a decline
in others, due to their relative nature. Such relativistic interdependence can lead to the
misinterpretation of spurious interactions and dependencies, obscuring the true temporal
dynamics of the microbial community. To address this, detailed metadata collection,
including clinical and lifestyle factors, alongside microbiome samples, becomes essential.
Longitudinal studies also introduce serial correlations, wherein consecutive observations
are correlated with each other, a feature that must be considered and accounted for in time
series data analysis [46].

Addressing these challenges necessitates a robust methodological framework. Mixed-
effects models [25–27] and state space models [47–49] have emerged as promising tools for
handling the complexities of longitudinal microbiome data. Moreover, specialized time-
series clustering techniques and network-based approaches may be employed to discover
latent patterns and relationships within the microbiome data [42]. These tools partition the
data based on their similarity over time, and this way facilitate the identification of trends
and interactions within the microbial community while handling the compositional and
sequential nature of those data.

4. Methods for Preprocessing

As with the other count-based sequencing data, appropriate preprocessing steps,
summarized in Figure 2, to deal with library size effects and characteristics of data distri-
bution as well as study design, are necessary prior to microbiome data analysis in both
cross-sectional studies and longitudinal studies. On one hand, there exist comprehensive
reviews and research papers that elaborate on normalization, preprocessing, and model
selection [10,11,50], though mostly for cross-sectional studies. Therefore, in this section,
we will only briefly discuss preprocessing steps commonly used in microbiome analysis
including normalization, variable selection, and dimensionality reduction. On the other
hand, specifically for longitudinal microbiome data analysis, we will focus on discussing
the interpolation of missingness in terms of data collection time points/intervals. Al-
though there are very few methods to address the interpolation problem in longitudinal
microbiome data, it is a very important future direction to improve upon, that will affect
the results of the downstream analysis.
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Figure 2. Overview of methods for preprocessing of microbiome data.
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4.1. Normalization

Normalization is critical for microbiome data preprocessing, not only for time se-
ries normalization but also for ensuring the comparability and accuracy of diverse data
sources [10]. Motivated by an earlier approach to handling compositional data [19], several
log-ratio-based methods have been proposed by converting the observed abundances to
log-ratios within each sample. Then, by considering the log-ratios of all taxa with respect to
a common reference taxon or a suitable function of all taxa, these methods explicitly elimi-
nate the effect of the sampling fraction [51]. For example, ALDEx2 [52] uses a pre-specified
taxon as a reference and transforms the observed abundances of each taxon to log-ratios
relative to the reference. CLR normalization [53] is one of the most popular methods
for microbiome data analysis. Instead of using a pre-specified taxon as a reference as in
ALDEx2, CLR uses the center of mass of all taxa as the reference. To this end, it subtracts
the logarithm of the mean abundance of all taxa from the logarithm of the abundance of
each individual taxon. The mathematical expression for CLR normalization is shown in
Table 1, where L is the total number of taxa, Yl is the abundance of the l-th taxon. CLR is
implemented in the “LinDA” method [54], wherein a linear regression model is fit and then
used for hypothesis testing using the centered log-ratio transformed data.

Table 1. Summary of normalization methods in microbiome data analysis.

Method Category Equation Brief Description Use Cases & Limitations

ALDEx2 [52] Log-ratio ln(Yl)− ln(Re f )
Converts observed abundances
to log-ratios with a reference
taxon.

Good for compositional data;
dependent on choice of reference
taxon.

CLR (Centered Log-Ratio)
[53] Log-ratio ln(Yl)− 1

n ∑L
l=1 ln(Yl)

Subtracts log of mean
abundance from log of
individual taxon abundance.

Popular in microbiome analysis;
assumes constant sum across
samples.

Z-score (Standard Score) Scaling Yl−µY
σY

Normalizes data to mean 0 and
standard deviation 1.

Useful for Gaussian distribution
assumptions; sensitive to
outliers.

MED (Median
Normalization) [53] Scaling Yl

Median(Y)
Uses median intensity within a
sample for scaling.

Robust against outliers; simple
and effective.

UQ (Upper Quartile) Scaling Yl
Q3(Y)

Scales based on the 75th
percentile (Q3) intensity.

Useful for range variation; does
not adjust for compositional
data.

TMM (Trimmed Mean of
M-values) [55] Scaling Yl

TrimmedMean(Y)

Adjusts gene expression ratios,
trimming extreme values for
mean calculation.

Good for RNA-Seq data; may
not be ideal for all microbiome
data types.

TSS (Total Sum Scaling) Scaling Yl
∑N

i=1 Yi
× T

Standardizes total feature
intensities to a fixed value T
across samples.

Ideal for studies focusing on
total microbial load or gene
expression levels; can be skewed
by high-abundance features.

CSS (Cumulative Sum
Scaling) [56] Scaling Yl

∑N
i=1 Yi

× C

Scales data to a consistent
cumulative sum (C) based on the
dataset characteristics. Adjusts
for varying signal
intensities/sample depths.

Suitable for datasets with
varying sequencing depths;
preserves relative differences in
lower abundance features.
Doesn’t account for
compositional nature.

Normalization through scaling is another widely employed approach. This method
involves dividing the taxonomic abundances within a feature table by a designated scaling
or normalization factor. As such, normalization via scaling effectively mitigates biases
arising from dissimilar sampling fractions, ensuring a more equitable representation and
comparison of microbial abundances [10]. However, the scaling-based methods discussed
here do not inherently account for the compositional nature of microbiome data.

Z-score transformation, also known as standard score transformation, is yet another
statistical method that can be used to normalize microbiome data. This transformation
is achieved by applying the formula shown in Table 1. Yl is the abundance of the l-th
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taxon, µY is the mean of the population, and σY is the standard deviation of the population.
This transformation can make the data more amenable to techniques that rely on Gaus-
sian distribution assumptions. In the context of microbiome data, applying the Z-score
transformation can help mitigate issues related to heteroskedasticity and non-normality.

Many other methods exist and can be used for scaling-based normalization. The me-
dian (MED) normalization method computes the median intensity of features within a
sample and scales data by dividing individual intensities by this median value, offering
robustness against outliers. Similarly, the upper quartile (UQ) method focuses on the 75th
percentile intensity to account for range variations among samples. Trimmed mean of
M-values (TMM) normalization [55] calculates gene expression ratios between samples,
excluding extreme ratios to compute a scaled mean. Lastly, total-sum scaling (TSS) adjusts
the sum of feature intensities to a fixed value, thereby standardizing total intensities across
samples. ’T’ in TSS is a fixed total sum value to which all samples’ total intensities are
standardized. The choice of ’T’ could be based on a typical or median value observed in the
dataset or a predetermined standard that aligns with the research objective. Cumulative-
sum scaling (CSS) [56] optimized TSS by iteratively scaling data to maintain a consistent
cumulative sum (C), typically determined based on dataset characteristics, like some per-
centile of each sample’s nonzero count distribution, effectively addressing differences in
signal intensities across samples.

Rarefaction is a rigorous way to address the existence of samples’ different library
sizes, by assuming that similar sequencing reads are expected across samples. Nevertheless,
this approach may be limited by low power if the study includes samples with much lower
sequencing depths than others [57].

4.2. Variable Selection and Dimensionality Reduction

Variable selection and dimensionality reduction can play an important role in micro-
biome data analysis preprocessing, given the inherent complexity of most microbiome
datasets that contain large numbers of features (e.g., taxa, genes, gene families). These
techniques seek to retain the most essential information from the data, by identifying key
taxa and representing the initially high-dimensional data in a more parsimonious manner.
Here, we discuss a generalized context of variable selection and dimensionality reduction,
as time-series-specific methods are underdeveloped, even if, in practice, some investigators
may treat longitudinal variables as common variables. We will point out challenges in this
domain as it pertains to time series data.

Variable selection methods typically focus on isolating the most significant microbial
taxa or features while excluding those with low relevance or no information content. This of-
ten involves the removal of taxa exhibiting low prevalence or abundance, where prevalence
denotes the proportion of samples detecting an taxa, and abundance refers to the relative
quantity of a taxon within a sample. Among all variable selection techniques, LASSO (least
absolute shrinkage and selection operator) [58], and other other LASSO-like penalized
regression methods (including group LASSO [59] and sparse group LASSO [60], etc.) are
most popular. These methods effectively shrink coefficients of less important features to
zero, thereby selecting only the most correlated taxa or features. In microbiome datasets,
they help in identifying taxa that have significant effects while preventing overfitting in
models with a large number of predictors [61].

Complementing variable selection, dimensionality reduction seeks to represent the
initially high-dimensional data with lower-dimension vectors. While traditional methods
like principal component analysis (PCA) are commonly used, their effectiveness is fre-
quently limited in microbiome data applications. PCA requires normalization due to its
sensitivity to variable scales to avoid distortion in results by variables with larger ranges.
Modifications like principal coordinates analysis (PCoA) [62] and sparse principal compo-
nent analysis (sPCA) [12,63] offer more flexibility. The PCoA method focuses on a distance
matrix between samples rather than the sample covariance matrix. Instead of using the
original observed data, PCoA decomposes the distance matrix, leveraging the statistical
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properties inherent in these distances, which affords PCoA greater flexibility than PCA.
Alternatively, sPCA has been employed to cluster taxonomic profiles with similar temporal
patterns [12,63]. In the first step of sPCA, the original data matrix is summarized using
linear mixed model splines (LMMS), resulting in a reduced matrix. In the second step, PCA
further reduces the dimensions, identifying strongly correlated profiles via their loading
coefficients. The optimal number of principal components is determined using statistical
measures like the average silhouette coefficient. Compared with PCA, sPCA focuses on
subsets of taxonomic profiles that are highly correlated within a component, emphasizing
those that conform to the average cluster profile versus the outliers.

Recently, methods that borrow ideas from natural language processing (NLP), such
as word embedding techniques, have been developed for microbiome data preprocessing.
For example, Tataru and David [64] used the GloVe embedding algorithm [65] from NLP
for data preprocessing prior to using a random forest approach to predict a binary outcome.
In that study, the dataset preprocessed by GloVe outperformed the one preprocessed
by PCA.

Deep learning methods are strongly emerging in the field of microbiome variable
selection. These models can abstract microbiome data with large numbers of taxa into
low-dimensional vectors while retaining the maximum information possible. For example,
DeepMicro, proposed by Oh and Zhang [66], relies on a deep learning-based approach to
reduce the dimensionality of microbiome data. The method employs an autoencoder, i.e., a
neural network that reconstructs its input x for the dimensionality reduction. DeepMicro
comprises an encoder function fϕ(·) and a decoder function f ′θ(·), with encoder parameters
ϕ and decoder parameters θ, respectively. By minimizing the reconstruction loss between
an input x and a reconstructed input x′, as shown in Equation (1), the best parameters for ϕ
can be identified. After the best fϕ(·) is found, it can be applied to individual samples to
significantly reduce the data dimensionality.

L
(

x, x′
)
=

∥∥x − x′
∥∥2

=
∥∥x − f ′θ

(
fϕ(x)

)∥∥2. (1)

Evidently, more computational methods need to be developed for dimensionality
reduction in longitudinal microbiome data. One motivation could be to answer whether
the same features should be retained as selected across multiple times, and how this can be
achieved using the discussed tools. The selection of variable selection and dimensionality
reduction methods is greatly influenced by the specific objectives of the downstream
analysis. For instance, in scenarios involving time-series prediction or host trait regression,
coupled with the selection of predictive species, LASSO-like methods are appropriate.
Moreover, for tasks focused on deriving embeddings or low-dimensional representations of
samples or features, methods like PCA, PCoA, and sPCA are more suitable. Lastly, in cases
where the sample size is ample and interpretability is not a primary concern, exploring
deep learning-based methods can be highly beneficial.

4.3. Interpolation Dealing Irregular Longitudinal Data

In large time series cohort studies, individual participants may not contribute micro-
biome samples exactly at the study-designated time points and/or may not have equal time
intervals across subjects, even in well-designed studies [2,3]. To demonstrate the challenges,
we give one example. In the study of longitudinal microbiome data of Early Childhood
Caries (ECC), the oral microbiome data from salivary samples were collected at roughly
six time points from birth, from 2 months to 48 months, to provide an ordered temporal
trajectory of the oral microbiome development as children grew and developed their natu-
ral dentition [4]. The standard deviation of collection time is between 1 and 3 months and
there are missing time points for some subjects. Although the standard deviation is not
large compared to the duration of the study, changes in the oral microbiome can happen
in the early months. For increased testing power and full leverage of the data, it is best to
deal with such irregular sampling caused by the above-mentioned variation of collection
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time points. This is a common real-world issue, that can create significant challenges for
several downstream data analyses, including the temporal trend-based clustering and
classification, and the inference of interaction networks across microbial features. Here,
interpolation can assist by formulating models that accurately depict the temporal data
dynamics and by offering data smoothing and noise reduction.

Loess (or lowess) and spline are two commonly-used interpolation methods that can
be used for longitudinal microbiome data analyses. ‘Loess’ stands for “locally estimated
scatterplot smoothing”, and is used interchangeably with ‘lowess’, or “locally weighted
scatterplot smoothing”, a non-parametric method based on fitting a series of local linear
regression models. The weight assigned to each data point diminishes as its distance from
the point of interest increases and, this way, points closer to the one of interest are given
upweighted and those further away are downweighted. The loess method is particularly
effective in analyzing data with underlying non-linear trends, providing a smooth curve
that represents the underlying data pattern. In contrast, a spline is a piece-wise continuous
polynomial function designed to approximate a curve. This curve is constructed from a
series of polynomial segments that are seamlessly connected at specific points, known as
“knots”, creating a smooth curve that encompasses all data points.

Several interpolation methods have been employed for microbiome time series data
analyses. For example, Shields-Cutler et al. [67] introduced splinectomeR, an R package that
employs loess for data summarization, facilitating hypothesis testing in longitudinal studies.
This is particularly relevant for omics data that exhibit non-linear trends. To illustrate the
importance of spline-based methods, Luo et al. [68] introduced metaDprof, a tool that
leverages splines to estimate time trends. Specifically, metaDprof applies a smooth spline
function across all samples to capture the underlying time trends. The processed data are
then adeptly utilized for downstream analyses that include feature selection and differential
abundance testing.

In the rapidly evolving field of microbiome research, deep learning methods have
shown promising advantages, particularly with large sample sizes. Qu et al. introduced the
Bidirectional GRU-ODE-Bayes model (BGOB) [16], an innovative approach that leverages
a modified neural ODE [69] for enhanced microbiome data interpolation. The BGOB
model demonstrates superior performance over traditional spline-based methods in high-
dimensional contexts based on their simulations. Further, the simulations also reveal
that datasets interpolated using BGOB yield improved outcomes in clustering tasks. This
advancement is particularly relevant as longitudinal microbiome datasets continue to grow,
underscoring the potential of deep learning in handling large-scale data effectively.

5. Statistical Models Suitable for Longitudinal Microbiome Data

In this section, we present several parametric models commonly employed in longi-
tudinal microbiome analyses. These models make different assumptions about the data
but are all useful for extracting parameters of interest, enabling subsequent statistical
testing and inferences. To help readers appreciate these models’ utility in longitudinal
microbiome research, we elaborate on their different assumptions and underlying logic. A
brief summary of these models is presented in Table 2.

Table 2. Summary of statistical models in longitudinal microbiome data analysis.

Models Brief Description Examples

Mixed effect models
Models handling population-level
trends (fixed effects) and individual
variations (random effects)

Bokulich et al. [70],
Chen et al. [25],
Zhang et al. [26],
Zhang et al. [27]

ARIMA models
Models combining autoregressive
(AR) terms, differencing (I),
and moving average (MA) terms

Benjamin et al. [71]
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Table 2. Cont.

Models Brief Description Examples

State space models

Probabilistic graphical models that
describe the probabilistic dependence
between latent state variables and
observed measurements

Chen et al. [72]

Principal trend analysis
models

Models that are used to identify and
assess the main trends in a dataset
over time or across different
conditions

Wang et al. [73]

Generalized Lotka–Volterra
models

Models expressed like Equations
allowing dynamic interaction among
taxa (2)

Bucci et al. [74],
Stein et al. [75],
Gibson et al. [20],
Shaw et al. [31],
Kuntal et al. [76]

Bayesian models Models using Bayesian methods for
parameter inference

Äijö et al. [48],
Silverman et al. [47],
Joseph et al. [49]

5.1. Mixed Effect Models

In microbiome time series analyses, mixed effect models are popular for capturing
both population-level trends (fixed effects) and individual variations (random effects).
Linear mixed models, for instance, are predicated on the assumption that random effects
are independent, the parameters exhibit linearity, and the errors follow a normal distribu-
tion. Mixed effect models are particularly adept at handling correlated data, a common
occurrence in longitudinal studies.

Linear mixed effect models are commonly used in microbiome longitudinal analy-
sis [77]. For instance, Bokulich et al. [70] employ linear mixed effect models, considering
time, group, and gender as fixed-effect covariates while treating individual participants as
a random effect. By doing so, these investigators were able to account for commonalities
in the study population while still recognizing the unique microbial interactions within
individuals and environments. Nevertheless, these models may not perform well in the
presence of highly nonlinear relationships and may require careful specification of the fixed
and random effects, somewhat limiting their flexibility [78].

Zero-inflated mixed effect models, including the zero-inflated beta regression model
(ZIBR) proposed by Chen et al. [25], the negative binomial and zero-inflated mixed models
(NBZIMM) proposed by Zhang et al. [26] and the fast zero-inflated negative binomial
mixed model (FZINBMM) proposed by Zhang et al. [27], are commonly employed as
they effectively incorporate the characteristic of zero-inflation of microbiome data. These
models operate under the assumption that data are generated from a mixture of two
different distributions, allowing them to manage both the presence/absence and non-zero
abundance of taxa. By employing a two-part model that combines a point mass at zero
with a continuous distribution for positive values, zero-inflated models provide a more
nuanced representation of microbial abundance. However, these models can be challenged
and misfit when the data contain too many or too few zero values. Additionally, zero-
inflated models may not always handle compositional data effectively, as they are primarily
designed to address zero-inflation rather than the relative relationships between members
of a microbial community.

5.2. ARIMA Models

Autoregressive integrated moving average (ARIMA) models are also widely-used in
time series analysis and are known for their ability to capture temporal trends. By combin-
ing autoregressive (AR) terms, differencing (I) to make the series stationary, and moving
average (MA) terms, ARIMA models can effectively model the dependencies between
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observations. This multifaceted approach makes ARIMA models particularly suitable for
microbiome time series analyses, wherein complex temporal relationships are expected.
For example, Benjamin et al. [71] utilized ARIMA to analyze microbiome time trends and
infer between-species interactions. The model’s ability to integrate temporal aspects allows
for a more comprehensive characterization of dynamic changes encountered in human
microbiomes. However, ARIMA models assume stationarity of the time series (or achieved
through differencing), finite variance, and uncorrelated white noise errors, while these
assumptions are often violated in practice. Moreover, ARIMA models may not handle
seasonal patterns well without extensions, e.g., extension as the seasonal autoregressive
integrated moving average (SARIMA), and can be sensitive to outliers [79].

5.3. State Space Models

State space models refer to a class of probabilistic graphical models that describe the
probabilistic dependence between latent state variables and observed measurements [80].
These models are valuable in modeling and extracting hidden state patterns that might
influence the observed data. Chen et al. [72] proposed using a high-dimensional linear state
space model to study the dynamics of microbiome interactions, leveraging their ability
to capture complex relationships. By employing this approach, these investigators were
able to construct a dynamic microbial interaction network (MIN), considering both system
and measurement noise. State space models’ ability to deal with high-dimensional data
and preserve the sparsity property of MINs makes them powerful tools in the analysis of
complex microbiome interactions. However, state space models may not perform well in
the presence of nonlinear dynamics and can have high computational complexity for large
state spaces, posing challenges for some applications.

5.4. Principal Trend Analysis Models

Principal trend analysis (PTA), originally proposed for analyzing time series genomics
data [81], is a statistical method used to identify and assess the main trends in a dataset over
time or across different conditions. The model assumes linearity of trends and homogeneity
of variance across time points. PTA integrates latent factor models for dimensionality
reduction with spline-based methods for temporal structure modeling, allowing investiga-
tors to observe the progression of variables and their interactions over time. PTA aids in
deciphering complex data structures and temporal variations, extracting principal trends of
time-course data, and facilitating predictions. Microbiome trend analysis (MTA) proposed
by Wang et al. [73] is an extension of PTA in microbiome data analysis, by incorporating
taxonomic information from the phylogenetic tree structure. This adaptation allows for the
identification of dominant contributions to principal trends within the microbiome, recog-
nizing both temporal patterns and phylogenetic relationships. The MTA model represents
a significant advancement in the field, bridging the gap between genomics and microbiome
analysis, and provides a robust framework for understanding the complex dynamics of
microbial communities. While this approach allows for nuanced trend analyses, it may
not capture complex nonlinear trends and can be sensitive to the choice of phylogenetic
tree structure.

5.5. Generalized Lotka–Volterra Models

Generalized Lotka–Volterra (gLV) models are the most commonly used models in
microbiome time series analyses.The basic gLV model can be constructed as follows. For L
taxa measured in S participants, we denote the abundance of taxon l in participant s as fls.
Suppose there are total P perturbations, the rate of change of the abundance of taxon l in
participant s is expressed as Equation (2) [74] in the gLV model.

d fls
dt

= αl fls(t) +
L

∑
j=1

βl j fls(t) f js(t) +
P

∑
p=1

γlp fls(t)up(t). (2)
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The α parameters represent unbounded growth rates, the β parameters represent
pairwise microbiome–microbiome interactions, and the γ parameters represent effects
of the perturbations. Numerous techniques exist for the estimation of target parameters
θl = [αl , βl1, · · · , βlL, γl1, · · · , γlP]

T . For example, linear model methods including ridge
regression and Bayesian algorithms can be used to understand the underlying dynamics of
a given system. Bucci et al. [74] propose MDSINE, which uses one MLE method (maximum-
likelihood constrained ridge regression) and two Bayesian methods (Bayesian adaptive
lasso and Bayesian variable selection) to estimate the model parameters θl .

Stein et al. [75] use the gLV model to study microbial interactions, interactions between
commensal and pathogenic bacteria, and the effect of antibiotics on the microbial com-
munity. Gibson et al. [20] modify the traditional generalized Lotka–Volterra (gLV) model
by replacing piecewise interaction with interaction modules, allowing for the automatic
discovery of clusters in the microbial community during the parameter inferring process.
Additional methods exist that provide user-friendly interfaces for employing gLV models.
For example, MetaMIS, proposed by Shaw et al. [31], constructed an easy-to-use graphical
user interface (GUI) and Web-gLV proposed by Kuntal et al. [76] embeds the gLV model
into a web browser.

5.6. Bayesian Models

Bayesian statistics plays an important role in microbiome time series analyses. While
some Bayesian models might also be categorized under other sections, including the zero-
inflated models and the state-space models, we have included them here due to their
reliance on Bayesian methods for parameter inference. Äijö et al. propose TGP-CODA [48],
which employs a Gaussian process model to ascertain the state space covariance matrix
for longitudinal count data, taking into account the temporal correlation of consecutive
time points. It also integrates a hierarchical model to tackle over-dispersion and intro-
duces an independent parameter for technical zeros. MALLARD, which is proposed by
Silverman et al. [47], is a member of the state space model family. It utilizes the inverse
of the isometric log-ratio transform (ILR) to adjust parameters that follow a multivariate
normal to a sum constraint of 1. Luminate, proposed by Joseph et al. [49] also uses a state
space model to determine taxonomic relative abundance from longitudinal microbiome
data, and differentiates between biological and technical zeros. The strength of Bayesian
methods lies in their ability for parameter inference without the necessity to integrate all
missing values. Additionally, Bayesian models can be highly flexible, which can be useful
when dealing with the complex nature of longitudinal microbiome data. However, it is
crucial that investigators accurately define their model priors, otherwise, Bayesian methods
may under-perform.

6. Downstream Analysis of Longitudinal Microbiome Data

In this section, we will present and discuss several comprehensive analysis tasks and
corresponding methodologies as they apply to longitudinal microbiome data analyses.
These include differential abundance testing [21], time series clustering, interaction network
analyses, host trait classification, and other relevant microbiome time-series analyses. The
outline of this section is shown in Figure 3. Differential abundance testing compares relative
abundances of various microbial taxa across different time points or conditions. Time series
clustering categorizes microbial community samples by the similarities in their temporal
dynamics, facilitating the recognition of analogous patterns and trends within the data.
Interaction network analysis formulates networks of microbial taxa derived from their
distribution patterns, aiding in the identification of keystone taxa and potential catalysts
of change within the microbial community. The classification of participants, e.g., hosts,
predicts host traits such as disease groups and treatment responses based on the temporal
dynamics of the microbial communities under study.
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Figure 3. Overview of downstream analysis approaches for longitudinal microbiome data. (The listed
references are: Jeganathan et al. (2018) [82], Shields-Cutler et al. (2018) [67], Luo et al. (2017) [68],
Gibson and Gerber (2018) [20], Benincà et al. (2023) [83], Bucci et al. (2016) [74], Jover et al. (2016) [84],
Chen et al. (2017) [72], Ruiz-Perez et al. (2021) [85], Ai et al. (2019) [86], Mainali et al. (2019) [87],
Metwally et al. (2019) [88], Sharma and Xu (2021) [89]).

One critical point related to both the study design and the downstream analysis is
how to choose the right downstream methods and how to understand the downstream
analysis results based on the study design including study cohorts and the specific clinical
quotations to be answered. These following two examples of longitudinal microbiome
studies represent two types of studies. First, the longitudinal ECC study started from the
similar time point of birth to collect oral microbiome data until age 5, with 134 subjects
and a maximum of six time points [4]. Such studies have clear starting points like birth,
disease onset, or treatment, so that the time trajectory of the microbiome at the populations
level is meaningful so that the complicated trajectory related questions and computational
methods are suitable. On the other hand, another type of study may have no clear starting
points. For example, the longitudinal microbiome data collected from the adult Inflam-
matory bowel disease (IBD) has followed 132 subjects for one year during disease (up to
24 time points each) [2]. Given that subjects in this cohort are adults with pre-existing IBD
undergoing potentially varied treatments, the time trajectory of their microbiome at the
population level becomes complex to discern, suggesting that employing mixed models,
which account for repeated measurements, can be an effective analytical strategy.

6.1. Temporal Differential Abundance Testing

Differential abundance (DA) testing in the context of longitudinal microbiome data
analysis is typically employed to identify differences in the abundance of microorganisms
across time and between subjects. The DA analysis that can be performed using statistical
models in Section 5 can also seek to detect whether taxa exhibit significantly different
behaviors in different subjects and to pinpoint the time intervals during which these
differences develop or manifest. A variety of methodologies and tools have been developed
to address these complex questions, each with unique features and assumptions.

Some of the applicable methods employ parametric models, as discussed previously.
There are also nonparametric methods, such as the block bootstrap method (BBM) pro-
posed by Jeganathan et al. [82]. BBM employs a “moving block bootstrap” technique
that constructs and resamples blocks of temporally-related observations with replacement.
It is important to note that this technique accounts for autocorrelation, unequal library
sizes, and within-subject data dependencies, without relying on a specific data distribu-
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tion. By utilizing an overlapping block approach and modified empirical sub-sampling to
optimize block size, BBM has been shown to minimize mean squared error for most statis-
tics. However, this approach requires significant computational resources and an ample
number of time points, with at least five needed to specify two critical tuning parameters.
Despite its flexibility and strengths, such as having a high true positive rate, the method
still faces challenges with sparsity and variability. It does not account for other variables,
and its effectiveness hinges on having an equal number of observations across subjects.
The method’s primary focus lies in the identification of differences in microbial abundance
between sample groups without quantifying these differences.

Unlike other approaches, SplinectomeR, which is proposed by Shields-Cutler et al. [67],
does not rely on a pre-specified model for differential abundance testing. Instead, it employs
two primary functions, the permuspliner and the sliding spliner functions. The permus-
pliner function determines whether two groups of individuals show significantly different
trajectories over time, while the sliding spliner function tests the data series at defined time
intervals. Both these functions are grounded in permutation testing, deriving p-values
post data preprocessing via splines. The SplinectomeR package leverages weighted local
polynomials (loess splines) for summarizing and testing longitudinal data. Meanwhile,
the model may be sensitive to outliers and cannot handle compositional data.

Another approach developed for temporal differential abundance testing is metaDprof
proposed by Luo et al. [68]. These investigators employ the metaDprof method by first
using smoothing spline models to fit the time trends under the null hypothesis (one curve
fitting) and under the alternative hypothesis (two curves fitting). A goodness-of-fit test
statistic is then computed for the two models separately, and an F-statistic is computed
based on them. Subsequently, permutation-based methods are used to calculate the p-value
of the observed F-statistic and to determine whether the two curves are differentially
abundant. After identifying features with significant differential abundance, in their paper,
the investigators employ permutation-based methods for time interval detection, wherein
they calculate the ratio of relative change between the two areas under the curve for each
unit interval and obtain p-values for the observed ratios.

6.2. Time Series Clustering

In microbiome data analyses, unsupervised clustering is often used to identify natu-
rally occurring clusters, which can then be assessed for associations with characteristics
of interest [90]. Various algorithms have been developed to perform clustering, including
hierarchical methods like agglomerative clustering and k-medoids, topological methods
such as self-organizing maps [91], and density-based methods like the DBSCAN [92] al-
gorithm. These methods have been widely applied across different domains to identify
informative patterns. The choice of optimization metrics is crucial in clustering, with the
sum of squared error (SSE) being commonly used. Techniques to identify the optimal
numbers of clusters include the “elbow” method and indices like the Calinski–Harabasz
index or Silhouette width [50,93]. Hierarchical clustering methods, including the partition-
ing around medoids (PAM) [94] algorithm and hierarchical agglomerative clustering, are
specialized techniques aimed at dividing data into groups that become increasingly similar
at each level of hierarchy. The PAM algorithm is particularly favored due its robustness to
noise and outliers, as it minimizes the sum of dissimilarities between objects and chosen
representative objects (medoids), rather than using mean values, which can be sensitive
to extreme values [95]. On the other hand, hierarchical agglomerative clustering takes a
bottom-up approach, beginning with each data point as a single cluster and progressively
merging them based on a chosen similarity measure, forming a dendrogram that visually
represents the hierarchy of clusters. This process continues until all points are merged into
a single cluster, allowing for various levels of granularity in clustering. For both the PAM
and the agglomerative clustering methods, data normalization techniques are essential for
ensuring comparability and accuracy in clustering.
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For time series analyses, clustering methods are adapted to handle temporal pat-
terns and sequences. Classic time series clustering methods have been summarized by
Liao [96], focusing on recognizing patterns that evolve over time. Generally, most clustering
approaches rely on distance or correlation metrics [97], assuming that time points from
different participants align perfectly. Yet, in practice and in many longitudinal studies,
there is no assurance of perfectly consistent sampling times across the entire study popu-
lation, making interpolation a necessary step in preprocessing. However, some methods
have been developed to relax the stringent requirements for pairwise time point match-
ing. For example, dynamic time warping (DTW) has been introduced as an alternative
to the sum of squared differences, offering a more sophisticated approach by recognizing
temporal patterns that may be out of phase or misaligned in time. DTW allows for more
accurate alignments of observations by stretching or compressing parts of the time series,
considering various paths through a cost matrix and using cumulative distance calculations
to determine optimal paths.

Clustering can be performed at either the participant level or the feature (e.g., taxon
or gene) level. In microbiome studies, the clustering of microbial taxa is more common; that
is, to identify patterns in microorganisms that evolve similarly over time. For microbial
community analyses, clustering proves beneficial in identifying natural groupings or parti-
tions within samples [98]. The inclusion of time in longitudinal microbiome data enables
us to discern patterns in microorganisms that exhibit similar evolutionary trajectories over
time. Coenen et al. [50] reviewed the application of time series clustering methods to mi-
crobiome datasets, highlighting the importance of meticulous consideration of metrics and
normalization methods in dealing with the high-dimensional and over-dispersed nature
of microbiome data. Gibson and Gerber [20] proposed a novel dynamical systems model
termed “interaction modules”, which are clusters of latent variables with a redundant
interaction structure. This reduces the expected number of interaction coefficients signifi-
cantly. The model is fully Bayesian, propagating measurement and latent state uncertainty
throughout the model and incorporates a temporally varying auxiliary variable technique
to facilitate efficient inference by relaxing the non-negativity constraint. Additionally,
wavelet clustering analysis proposed by Benincà et al. [83] is a novel approach designed to
examine spectral characteristics and temporal dynamics of microbial communities. Unlike
traditional correlation-based methods that might offer limited or biased insights, wavelet
clustering uses a periodic function, the mother-wavelet, to assess and determine statistical
significance in periodicities. A distance matrix is then computed from the wavelet power
spectra, incorporating leading patterns and singular vectors from matrix decomposition
analysis. This method allows for the extraction of more nuanced information on depen-
dencies within microbial communities and can reveal community structures that remain
obscured in correlation-based methods.

6.3. Dynamic Interaction Network Analysis

Microbiome interaction networks infer the complex relationships between microbiome
community members and can be used to optimize the search for potential intervention
(e.g., therapeutic) targets. While these networks are informative, constructing them can be
challenging, as it often involves solving NP-hard problems, requiring significant compu-
tational resources and sophisticated algorithms. The complexity arises from the need to
model intricate relationships between microbial community members and the high data
dimensionality, which can lead to overfitting and computational challenges.

Inferences can emanate from parametric models, wherein between-taxa interactions
are characterized via parameter estimation. A prominent example of such an approach
is the application of the gLV model to incorporate temporal dynamics, as employed by
MDSINE [74]. The gLV model naturally considers interactions within its framework, allow-
ing for a more intuitive representation of microbial community relationships. Specifically,
in Equation (2), the parameter βl j symbolizes the microbial interactions between taxon l
and j, serving as the foundation for constructing the interaction network. This method has
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been further developed and implemented by other groups including Jover et al. [84], who
utilized the gLV model to develop a phage–bacteria infection network.

Chen et al. [72] constructed an interaction network based on the above-mentioned
state space model. These investigators used a high-dimensional linear State Space Model
(SSM) coupled with an expectation-regularization-maximization (ERM) algorithm. By em-
ploying the adaptive LASSO-based variable selection method, the SSM allowed for the
construction of a dynamic microbial interaction network (MIN), preserving the sparsity
property of MINs. Unlike similar models, the SSMs equipped with the ERM algorithm
considered systematic error and measurement error separately, enhancing the accuracy of
the dynamic network.

Bayesian network-based methods have emerged as powerful tools for modeling the
gut microbial ecosystem among other niches, and certain represent a growing trend in
the field of longitudinal microbiome data analyses. Utilizing tools such as conditional
Gaussian Bayesian networks (CGBayesNets) [99], investigators have employed simplified
two-stage dynamic Bayesian networks (TS-DBN) that model the relationships between
consecutive time points, deliberately excluding transitions within individual time points.
This approach has been further refined through the integration of advanced techniques
such as spline estimation and DTW, which enable the alignment of microbial relative
abundance data across time. By leveraging these aligned time series, investigators can
then construct more accurate dynamic Bayesian networks (DBNs), as evidenced by their
improved prediction performance in longitudinal microbiome studies. The field continues
to evolve with the development of innovative methods designed to infer complex causal
relationships between microbial taxa, clinical endpoints (e.g., disease statuses), and person-
level characteristics (e.g., demographic factors). A notable example of advancements in
this area is the computational pipeline PALM (pipeline for the analysis of longitudinal
multi-omics data) proposed by Ruiz-Perez et al. [85]. PALM represents a significant novel
contribution, as it aligns multi-omics data and employs DBNs to create a unified model.
This approach effectively navigates the challenges of differing sampling and progression
rates, employs a biologically inspired multi-omics framework, and manages the complexity
of the large number of features and parameters within the DBNs.

Granger causality has emerged as a widely utilized model for constructing interaction
networks within the field of microbiome research. This statistical approach investigates
postulated causal associations between two entities, for example, between taxon ’A’ and
taxon ’B’, by examining how past values of one can predict the future values of the other.
Specifically, if the past values of taxon A contain information about the future values of
taxon B that would not be available otherwise, A is said to ’Granger cause’ B. Several studies
have applied Granger causality to construct microbial causality networks. Ai et al. [86]
utilized this method to analyze data from the San Pedro Ocean Time-Series (SPOT) [100]
and the Plymouth Marine Lab (PML) [101], while Mainali et al. [87] employed it to build
an interaction network for the human microbiome using data from Caporaso et al. [40].

6.4. Classification of Participants in Longitudinal Microbiome Studies

Participant classification commonly revolves around the prediction of host traits
such as health and disease statuses, treatment responses, etc. [102]. Traditional statistical
methods have been foundational for classification analyses in cross-sectional datasets,
as extensively reviewed by Zhou and Gallins [103]. However, classifying longitudinal
microbiome data is substantially more complex because it requires modeling both temporal
patterns and species interactions with other charateristics such as health and disease
statuses. This complexity often exceeds what traditional methods can handle.

One approach to this challenge is to first delineate the interaction pattern explicitly,
as previously discussed, and then utilize this pattern for prediction. Alternatively, deep
learning algorithms have emerged as another potential solution, owing to their excep-
tional representational power. These algorithms, capable of learning hierarchical data
representations and modeling intricate relationships between variables, are particularly
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well-suited for the classification of microbiome time series data. Recent advances include
the development of specialized deep learning models that leverage techniques such as
convolutional neural networks (CNN) [104] and long short-term memory (LSTM) [105]
networks to process sequential data and capture temporal dependencies.

Recurrent neural networks (RNNs) [106], designed specifically for sequential data,
play a vital role in this context. RNNs possess the ability to “remember” information from
previous time points, integrating it into the processing of the subsequent time point. Conse-
quently, prediction results at a given time t are determined by both the input information
at t and the preceding information from 1 to t − 1.

However, conventional RNN models are often plagued by the vanishing gradient
problem, particularly when dealing with a large number of time points. This issue can
render the gradient of certain parameters with respect to the loss function too minuscule to
facilitate effective learning. To overcome this limitation, LSTM networks were introduced.
As a specialized variant of RNNs, LSTM networks selectively retain crucial information
from previous time points, alleviating the vanishing gradient problem and enabling the
effective modeling of long-term dependencies in longitudinal data. This makes LSTM
networks a valuable tool for modeling microbiome time series data.

For practical applications, Metwally et al. [88] employed an LSTM model to explore
the relationship between allergy development and time patterns in the infant gut micro-
biome. These investigators innovatively utilized an autoencoder to extract taxonomic
information at each time point into a single latent feature, followed by an LSTM model to
link and aggregate these features, uncovering relationships between response variables and
aggregated microbiome information. Sharma and Xu [89] introduced phyLoSTM, a novel
method for classifying microbiome time series data. Unlike previous studies that used
an autoencoder, phyLoSTM employed a CNN to extract information at each time point.
However, it retained the use of an LSTM model to aggregate information across different
time points, identifying the relationship between response variables and temporal patterns
in the data.

6.5. Other Microbiome Time-Series Related Analyses

There are also other valuable microbiome-related analytical approaches that exist and
are worth considering. One such example is the identification of stable states, which is a
crucial aspect of understanding the behavior of microbial ecosystems. Determining the
stable states of a microbiome system can reveal valuable information about the dynamics
of the system and its level of resilience, as well as potential avenues for intervention and
manipulation. Stein et al. [75] define a stable state as a condition in which the abundance of
each species is either zero or its growth rate is zero.

Another interesting research question is related to the identification of keystone species
in a microbial system. Keystone species are those that have a disproportionate influence
on the functioning of an ecosystem, and their identification can provide insights into the
potential drivers of change within the system. Fisher et al. [107] also paid attention to the
inference of keystoneness in microbiome data. They defined microorganisms that have a
higher number of interactions than others as the “dominant microbiome”. Bucci et al. [74]
measured keystoneness in a different way. The measure departs from a community com-
position that allows the largest number of taxa to stably coexist, and then removes each
taxon from the community in turn. The taxa are then ranked based on the magnitude of
the Euclidean distances obtained as a consequence of their removal.

7. Conclusions and Discussion

Here, we comprehensively reviewed several key aspects of longitudinal microbiome
data, with a focus on a few very recent developments specifically for longitudinal mi-
crobiome data. In addition to the standard statistical methods [12], we also include the
statistical model gLV for interaction module [76] and a deep learning-based method phy-
LoSTM for prediction [89].
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As microbiome research advances, an increasing number of techniques tailored for the
management of complex data structures emerge. All these methods, including statistical
and deep learning methods, have strengths and limitations. Statistical methods are usually
easy to interpret and are computationally efficient due to the relatively small number of
parameters. However, they rely on several assumptions, which can lead to inaccurate results
when violated. Meanwhile, deep learning methods, which have seen rapid growth and
development in recent years, are becoming a popular choice among investigators working
with microbiome data. Deep learning methods are highly flexible and can model complex
non-linear relationships, especially in large datasets. Furthermore, deep learning models
can be integrated with other types of data, such as person-level characteristics and clinical
health and disease endpoints. However, deep learning methods are usually regarded as a
black box with inexplicable inner workings [108], creating challenges at the stage of results
interpretation. Because there are highly numerous parameters in deep learning models,
they almost always require voluminous, high-quality, and correctly-labeled data to retain
reliability [108] and may be computationally demanding.

Several directions exist for improving model performance for longitudinal microbiome
data analyses. One approach is to develop more comprehensive statistical models that
can account for the complex features of microbiome data structures. However, more
comprehensive models will inevitably incur additional parameters, which require more
high-quality data and additional computational resources to fit the model. As for deep
learning models, one should anticipate development of more tailored approaches for the
complex microbiome data structures instead of adapting models from other fields that
may not perform optimally. Furthermore, the combination of statistical methods and deep
learning methods may be a promising research avenue to explore. Until now, there are have
been few attempts to combine these methods for microbiome data analysis. Because deep
learning models, while high-performing, are often considered as black boxes, identifying
ways to use them in conjunction with statistical methods could offer gains in interpretability,
and is an open area for future methods development.

Methodological developments seeking to improve the performance of models for
longitudinal microbiome data analysis requires access to high-quality datasets, and these
are currently scant. Both statistical methods and deep learning approaches benefit from
larger and more comprehensive datasets. Meanwhile, combining different types of bio-
logical information (e.g., multi-omics data) could also help advance insights gained from
microbiome data analyses; e.g., one can co-analyze the dynamics of microbial abundance
and metabolism [109]. Multi-omics data may help illuminate, better characterize, and even
predict shifts in community function over time [110]. Looking into the future, we anticipate
that larger sample sizes of longitudinal microbiome data will catalyze the development
and implementation of advanced methods involving statistical methods and deep learning
methods to leverage biological information and predict clinical outcomes.

Due to the limited number of available large longitudinal microbiome data analysis
and the needs of new computational methods, we may leave comparison of these compu-
tational methods using real data for future publications. Unlike most review papers that
summarize and compare well-established methods in a field, we hope this paper provides
timely insights while this longitudinal microbiome field is still in the relative early stage.
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