Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview
Abstract
:1. Introduction
P. pinea L. (Stone Pine) as a Species and Its Ecological Significance
2. Scope of the Review and Methodology
3. Genetic Diversity of the Stone Pine Species
3.1. Stone Pine Genome
3.2. Functional Genes
4. Genetic Responses to External Factors
4.1. Microsatellites
4.2. Resistance to Diseases and Plagues
4.3. Environmental Stressors
5. Chemical Profiling and Phylogenetics
5.1. Terpenes
5.2. Fatty Acids
5.3. Long-Chain Alcohols
6. Hereditability, Evolution, and Adaptive Traits
6.1. Response to Drought
6.2. Response to Predation
6.3. Phenotypic Plasticity
6.4. Stone Pine and Other Related Species
7. Valorization of Genetic Diversity Markers
7.1. Genetic Markers
7.2. Retrotransposons
7.3. Restriction Enzymes
7.4. Nuclear DNA
7.5. Mitochondrial DNA
7.6. Chloroplast DNA
7.7. Proteins and Enzymes
8. Conclusions
Challenges and Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Fernandes, P.M.; Vega, J.A.; Jiménez, E.; Rigolot, E. Fire Resistance of European Pines. For. Ecol. Manag. 2008, 256, 246–255. [Google Scholar] [CrossRef]
- Fady, B.; Esposito, E.; Abulaila, K.; Aleksic, J.M.; Alia, R.; Alizoti, P.; Apostol, E.N.; Aravanopoulos, P.; Ballian, D.; Kharrat, M.B.D.; et al. Forest Genetics Research in the Mediterranean Basin: Bibliometric Analysis, Knowledge Gaps, and Perspectives. Curr. For. Rep. 2022, 8, 277–298. [Google Scholar] [CrossRef]
- Martínez, F.; Montero, G. The Pinus pinea L. Woodlands along the Coast of South-Western Spain: Data for a New Geobotanical Interpretation. Plant Ecol. 2004, 175, 1–18. [Google Scholar] [CrossRef]
- Zaibet, L. Potentials of Non-Wood Forest Products for Value Chain Development, Value Addition and Development of Nwfp-Based Rural Microenterprises: Tunisia; Regional Office for the Near East and North Africa: Tunis, Tunisia, 2016. [Google Scholar]
- Fady, B.; Fineschi, S.; Vendramin, G.G. Technical Guidelines for Genetic Conservation and Use for Italian Stone Pine (Pinus pinea); Bioversity International: Rome, Italy, 2004. [Google Scholar]
- Afonso, A.; Gonçalves, A.C.; Pereira, D.G. Pinus pinea (L.) Nut and Kernel Productivity in Relation to Cone, Tree and Stand Characteristics. Agrofor. Syst. 2020, 94, 2065–2079. [Google Scholar] [CrossRef]
- Awan, H.U.M.; Pettenella, D. Pine Nuts: A Review of Recent Sanitary Conditions and Market Development. Forests 2017, 8, 367. [Google Scholar] [CrossRef]
- Mutke, S.; Calama, R.; González-Martínez, S.C.; Montero, G.; Gordo, F.J.; Bono, D.; Gil, L. Mediterranean Stone Pine: Botany and Horticulture. Hortic. Rev. 2012, 39, 153–201. [Google Scholar] [CrossRef]
- TechNavio Global Pine Nuts Market 2020–2024. Available online: https://www.researchandmarkets.com/reports/5180892/global-pine-nuts-market-2020-2024 (accessed on 15 December 2023).
- International Nut & Dried Fruit Council Congress Presentations: Nut and Dried Fruit Production Prospects and Expert Sessions. Available online: https://inc.nutfruit.org/congress-presentations-nut-and-dried-fruit-production-prospects-and-expert-sessions/ (accessed on 15 December 2023).
- Expert Market Pine Nuts Market Size, Type Analysis, Application Analysis, End-Use, Industry Analysis, Regional Outlook, Competitive Strategies And Forecasts, 2023–2032. Available online: https://www.marketexpertz.com/report/pine-nuts-market (accessed on 15 December 2023).
- Jaouadi, W.; Alsubeie, M.; Mechergui, K.; Naghmouchi, S. Silviculture of Pinus pinea L. in North Africa and The Mediterranean Areas: Current Potentiality and Economic Value. J. Sustain. For. 2021, 40, 656–674. [Google Scholar] [CrossRef]
- Mechergui, K.; Naghmouchi, S.; Altamimi, A.S.; Jaouadi, W. Evaluation of Biomass, Carbon Storage Capability, Agroforestry of Pinus pinea L. and Management Practices to Increase Stocks: A Review. CERNE 2021, 27, e-102938. [Google Scholar] [CrossRef]
- Pereira, S.; Prieto, A.; Calama, R.; Diaz-Balteiro, L. Optimal Management in Pinus pinea L. Stands Combining Silvicultural Schedules for Timber and Cone Production. Silva Fenn. 2015, 49, 1226. [Google Scholar] [CrossRef]
- Adelina, N.M.; Wang, H.; Zhang, L.; Yang, K.; Zhang, L.; Zhao, Y. Evaluation of Roasting Conditions as an Attempt to Improve Bioactive Compounds and Antioxidant Activities of Pine Nut Shell and Skin. Waste Biomass Valoriz. 2022, 13, 845–861. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Di Michele, A. Multipurpose Plant Species and Circular Economy: Corylus Avellana L. as a Study Case. Front. Biosci. Landmark 2022, 27, 11. [Google Scholar] [CrossRef] [PubMed]
- Lazaridou, D.C.; Michailidis, A.; Trigkas, M. Exploring Environmental and Economic Costs and Benefits of a Forest-Based Circular Economy: A Literature Review. Forests 2021, 12, 436. [Google Scholar] [CrossRef]
- Sattout, E.; Faour, G. Insights on the Value Chain and Management Practices of Stone Pine Forests in Lebanon. In Mediterranean Pine Nuts from Forests and Plantations; Carrasquinho, I., Correia, A.C., Mutke, S., Eds.; CIHEAM: Zaragoza, Spain, 2017; pp. 119–124. [Google Scholar]
- Jaramillo-Correa, J.P.; Bagnoli, F.; Grivet, D.; Fady, B.; Aravanopoulos, F.A.; Vendramin, G.G.; González-Martínez, S.C. Evolutionary Rate and Genetic Load in an Emblematic Mediterranean Tree Following an Ancient and Prolonged Population Collapse. Mol. Ecol. 2020, 29, 4797–4811. [Google Scholar] [CrossRef] [PubMed]
- Akyol, A.; Örücü, Ö.K. Investigation and Evaluation of Stone Pine (Pinus pinea L.) Current and Future Potential Distribution under Climate Change in Turkey. Cerne 2019, 25, 415–423. [Google Scholar] [CrossRef]
- Maggini, F.; Baldassini, S. Ribosomal RNA Genes in the Genus Pinus. I. Caryologia 1995, 48, 17–25. [Google Scholar] [CrossRef]
- Krupkin, A.B.; Liston, A.; Strauss, S.H. Phylogenetic Analysis of the Hard Pines (Pinus Subgenus Pinus, Pinaceae) from Chloroplast DNA Restriction Site Analysis. Am. J. Bot. 1996, 83, 489–498. [Google Scholar] [CrossRef]
- Marrocco, R.; Gelati, M.T.; Magglnl, F.; Maggini, F. Nucleotide Sequence of the Internal Transcribed Spacers and 5.8s Region of Ribosomal DNA in Pinus pinea L. DNA Seq. 1996, 6, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Gernandt, D.S.; Liston, A. Internal Transcribed Spacer Region Evolution in Larix and Pseudotsuga (Pinaceae). Am. J. Bot. 1999, 86, 711–723. [Google Scholar] [CrossRef]
- Evaristo, I.; Santos, S.; Tenreiro, R.; Costa, R. Comparison of Genetic Structure Assessed by Amplified Fragment Length Polymorphism and Retrotransposon-Based Sequence-Specific Amplification Polymorphism for Portuguese Populations of Pinus pinea L. Silvae Genet. 2008, 57, 93–100. [Google Scholar] [CrossRef]
- Georgolopoulos, G.; Parducci, L.; Drouzas, A.D. A Short Phylogenetically Informative CpDNA Fragment for the Identification of Pinus Species. Biochem. Syst. Ecol. 2016, 66, 166–172. [Google Scholar] [CrossRef]
- Ballin, N.Z.; Mikkelsen, K. Polymerase Chain Reaction and Chemometrics Detected Several Pinus Species Including Pinus Armandii Involved in Pine Nut Syndrome. Food Control 2016, 64, 234–239. [Google Scholar] [CrossRef]
- Frederico, A.M.; Zavattieri, M.A.; Campos, M.D.; Cardoso, H.G.; McDonald, A.E.; Arnholdt-Schmitt, B. The Gymnosperm Pinus pinea Contains Both AOX Gene Subfamilies, AOX1 and AOX2. Physiol. Plant. 2009, 137, 566–577. [Google Scholar] [CrossRef] [PubMed]
- Cortizo, M.; Álvarez, J.M.; Rodríguez, A.; Fernández, B.; Ordás, R.J. Cloning and Characterization of a Type-A Response Regulator Differentially Expressed during Adventitious Shoot Formation in Pinus pinea L. J. Plant Physiol. 2010, 167, 1023–1026. [Google Scholar] [CrossRef] [PubMed]
- Franco, A.R.; Santos, C.; Roriz, M.; Rodrigues, R.; Lima, M.R.M.; Vasconcelos, M.W. Study of Symptoms and Gene Expression in Four Pinus Species after Pinewood Nematode Infection. Plant Genet. Resour. 2011, 9, 272–275. [Google Scholar] [CrossRef]
- Trindade, H.; Sena, I.; Figueiredo, A.C. Characterization of α-Pinene Synthase Gene in Pinus Pinaster and P. pinea in Vitro Cultures and Differential Gene Expression Following Bursaphelenchus Xylophilus Inoculation. Acta Physiol. Plant. 2016, 38, 143. [Google Scholar] [CrossRef]
- Pepori, A.L.; Michelozzi, M.; Santini, A.; Cencetti, G.; Bonello, P.; Gonthier, P.; Sebastiani, F.; Luchi, N. Comparative Transcriptional and Metabolic Responses of Pinus pinea to a Native and a Non-Native Heterobasidion Species. Tree Physiol. 2018, 39, 31–44. [Google Scholar] [CrossRef] [PubMed]
- Alonso, P.; Cortizo, M.; Cantón, F.R.; Fernández, B.; Rodríguez, A.; Centeno, M.L.; Cánovas, F.M.; Ordás, R.J. Identification of Genes Differentially Expressed during Adventitious Shoot Induction in Pinus pinea Cotyledons by Subtractive Hybridization and Quantitative PCR. Tree Physiol. 2007, 27, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Trontin, J.F.; Klimaszewska, K.; Morel, A.; Hargreaves, C.; Lelu-Walter, M.A. Molecular Aspects of Conifer Zygotic and Somatic Embryo Development: A Review of Genome-Wide Approaches and Recent Insights. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2016; Volume 1359, pp. 167–207. [Google Scholar]
- Alvarez, J.B.; Toledo, M.J.; Abellanas, B.; Martín, L.M. Use of Megagametophyte Storage Proteins as Markers of the Genetic in Stone Pine (Pinus pinea L.) in Andalucia, Spain. Genet. Resour. Crop Evol. 2004, 51, 621–627. [Google Scholar] [CrossRef]
- Loewe, V.; Navarro-Cerrillo, R.M.; Sánchez Lucas, R.; Ruiz Gómez, F.J.; Jorrín-Novo, J. Variability Studies of Allochthonous Stone Pine (Pinus pinea L.) Plantations in Chile through Nut Protein Profiling. J. Proteom. 2018, 175, 95–104. [Google Scholar] [CrossRef]
- Amaral, J.; Lamelas, L.; Valledor, L.; Castillejo, M.Á.; Alves, A.; Pinto, G. Comparative Proteomics of Pinus–Fusarium Circinatum Interactions Reveal Metabolic Clues to Biotic Stress Resistance. Physiol. Plant. 2021, 173, 2142–2154. [Google Scholar] [CrossRef]
- Fallour, D.; Lefevre, F. Study on Isozyme Variation in Pinus pinea L.: Evidence for Low Polymorphism. Silvae Genet. 1997, 46, 201–207. [Google Scholar]
- Gad, M.A.; Mohamed, S.Y. Phylogenetic Evaluation Of Some Pinus Species From Different Genetic Using Protein, Isozymes, RAPD And ISSR Analyses. J. Am. Sci. 2012, 8, 311–321. [Google Scholar]
- Stermitz, F.R.; Tawara, J.N.; Boeckl, M.; Pomeroy, M.; Foderaro, T.A.; Todd, F.G. Piperidine alkaloid content of picea (spruce) and pinus (pine). Phytochemistry 1994, 35, 951–953. [Google Scholar] [CrossRef]
- Wolff, R.L.; Comps, B.; Marpeau, A.M.; Deluc, L.G. Taxonomy of Pinus species based on the seed oil fatty acid compositions. Trees 1997, 12, 113–118. [Google Scholar] [CrossRef]
- Tommasi, F.; Paciolla, C.; Arrigoni, O. The Ascorbate System in Recalcitrant and Orthodox Seeds. Physiol. Plant. 1999, 105, 193–198. [Google Scholar] [CrossRef]
- González-Andrés, F.; Pita, J.M.; Ortiz, J.M. Identification of Iberian and Canarian Species of the Genus Pinus with Four Isoenzyme Systems. Biochem. Syst. Ecol. 1999, 27, 235–242. [Google Scholar] [CrossRef]
- Ranaldi, F.; Vanni, P.; Giachetti, E. Multisite Inhibition of Pinus pinea Isocitrate Lyase by Phosphate. Plant Physiol. 2000, 124, 1131–1138. [Google Scholar] [CrossRef] [PubMed]
- Faraoni, P.; Sereni, E.; Gnerucci, A.; Cialdai, F.; Monici, M.; Ranaldi, F. Glyoxylate Cycle Activity in Pinus pinea Seeds during Germination in Altered Gravity Conditions. Plant Physiol. Biochem. 2019, 139, 389–394. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, C.; Zou, L.; Zheng, Z.; Ouyang, J. Efficient Biosynthesis of Pinosylvin from Lignin-Derived Cinnamic Acid by Metabolic Engineering of Escherichia Coli. Biotechnol. Biofuels Bioprod. 2022, 15, 136. [Google Scholar] [CrossRef]
- González-Martínez, S.C.; Robledo-Arnuncio, J.J.; Collada, C.; Díaz, A.; Williams, C.G.; Alía, R.; Cervera, M.T. Cross-Amplification and Sequence Variation of Microsatellite Loci in Eurasian Hard Pines. Theor. Appl. Genet. 2004, 109, 103–111. [Google Scholar] [CrossRef]
- Vendramin, G.G.; Fady, B.; González-Martínez, S.C.; Hu, F.S.; Scotti, I.; Sebastiani, F.; Soto, Á.; Petit, R.J. Genetically Depauperate but Widespread: The Case of an Emblematic Mediterranean Pine. Evolution 2008, 62, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Soto, A.; Robledo-Arnuncio, J.J.; González-Martínez, S.C.; Smouse, P.E.; Alí, R. Climatic Niche and Neutral Genetic Diversity of the Six Iberian Pine Species: A Retrospective and Prospective View. Mol. Ecol. 2010, 19, 1396–1409. [Google Scholar] [CrossRef] [PubMed]
- Pinzauti, F.; Sebastiani, F.; Budde, K.B.; Fady, B.; González-Martínez, S.C.; Vendramin, G.G. Nuclear Microsatellites for Pinus pinea (Pinaceae), a Genetically Depauperate Tree, Andtheir Transferability to P. Halepensis. Am. J. Bot. 2012, 99, e362–e365. [Google Scholar] [CrossRef] [PubMed]
- Zamora-Ballesteros, C.; Pinto, G.; Amaral, J.; Valledor, L.; Alves, A.; Diez, J.J.; Martín-García, J. Dual RNA-Sequencing Analysis of Resistant (Pinus pinea) and Susceptible (Pinus Radiata) Hosts during Fusarium Circinatum Challenge. Int. J. Mol. Sci. 2021, 22, 5231. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.S.; Pinheiro, M.; Silva, A.I.; Egas, C.; Vasconcelos, M.W. Searching for Resistance Genes to Bursaphelenchus Xylophilus Using High Throughput Screening. BMC Genom. 2012, 13, 599. [Google Scholar] [CrossRef] [PubMed]
- Petropoulou, Y.; Kyparissis, A.; Nikolopoulos, D.; Manetas Petropoulou Kyparissis, Y.Y. Enhanced UV-B radiation alleviates the adverse effects of summer drought in two Mediterranean pines under field conditions. Physiol. Plant. 1995, 94, 37–44. [Google Scholar] [CrossRef]
- Perdiguero, P.; Barbero, M.d.C.; Cervera, M.T.; Collada, C.; Soto, Á. Molecular Response to Water Stress in Two Contrasting Mediterranean Pines (Pinuspinaster and Pinus pinea). Plant Physiol. Biochem. 2013, 67, 199–208. [Google Scholar] [CrossRef]
- Perdiguero, P.; Soto, Á.; Collada, C. Comparative Analysis of Pinus pinea and Pinus Pinaster Dehydrins under Drought Stress. Tree Genet. Genomes 2015, 11, 70. [Google Scholar] [CrossRef]
- Roussis, V.; Petrakis, P.V.; Ortiz, A.; Mazomenos, B.E. Volatile Constituents of Needles of Five Pinus Species Grown in Greece. Phytochemistry 1995, 39, 357–361. [Google Scholar] [CrossRef]
- da Silva, M.D.R.G.; Mateus, E.P.; Munhá, J.; Drazyk, A.; Farrall, M.H.; Paiva, M.R.; Neves, H.J.C.D. Differentiation of Ten Pine Species from Central Portugal by Monoterpene Enantiomer-Selective Composition Analysis Using Multidimensional Gas Chromatography. Chromatographia 2001, 53, S412–S416. [Google Scholar] [CrossRef]
- Gad, H.; Al-Sayed, E.; Ayoub, I. Phytochemical Discrimination of Pinus Species Based on GC–MS and ATR-IR Analyses and Their Impact on Helicobacter Pylori. Phytochem. Anal. 2021, 32, 820–835. [Google Scholar] [CrossRef]
- Nasri, N.; Khaldi, A.; Hammami, M.; Triki, S. Fatty Acid Composition of Two Tunisian Pine Seed Oils. Biotechnol. Prog. 2005, 21, 998–1001. [Google Scholar] [CrossRef] [PubMed]
- Nasri, N.; Khaldi, A.; Fady, B.; Triki, S. Fatty Acids from Seeds of Pinus pinea L.: Composition and Population Profiling. Phytochemistry 2005, 66, 1729–1735. [Google Scholar] [CrossRef] [PubMed]
- João Gaspar, M.; Nunes, J.; Rodrigues, M.; Ferreira, L. Chemotaxonomic Differentiation of Pinus Species Based on N-Alkane and Long-Chain Alcohol Profiles of Needle Cuticular Waxes. Chem. Biodivers. 2023, 20, e202300043. [Google Scholar] [CrossRef] [PubMed]
- Pardos, M.; Calama, R. Responses of Pinus pinea Seedlings to Moderate Drought and Shade: Is the Provenance a Differential Factor? Photosynthetica 2018, 56, 786–798. [Google Scholar] [CrossRef]
- Andivia, E.; Zuccarini, P.; Grau, B.; de Herralde, F.; Villar-Salvador, P.; Savé, R. Rooting Big and Deep Rapidly: The Ecological Roots of Pine Species Distribution in Southern Europe. Trees Struct. Funct. 2019, 33, 293–303. [Google Scholar] [CrossRef]
- Férriz, M.; Martin-Benito, D.; Fernández-de-Simón, M.B.; Conde, M.; García-Cervigón, A.I.; Aranda, I.; Gea-Izquierdo, G. Functional Phenotypic Plasticity Mediated by Water Stress and [CO2] Explains Differences in Drought Tolerance of Two Phylogenetically Close Conifers. Tree Physiol. 2023, 43, 909–924. [Google Scholar] [CrossRef] [PubMed]
- Bogdziewicz, M.; Szymkowiak, J.; Tanentzap, A.J.; Calama, R.; Marino, S.; Steele, M.A.; Seget, B.; Piechnik, Ł.; Żywiec, M. Seed Predation Selects for Reproductive Variability and Synchrony in Perennial Plants. New Phytol. 2021, 229, 2357–2364. [Google Scholar] [CrossRef] [PubMed]
- Mutke, S.; Arias, B.; Sauce, S.; Sánchez, L. Evaluación de La Producción Individual de Piña En Un Banco Clonal de Pino Piñonero (Pinus pinea L.) En Madrid. Investig. Agrar. Sist. Recur. For. 2003, 12, 149–157. [Google Scholar]
- Carrasquinho, I.; Gonçalves, E. Genetic Variability among Pinus pinea L. Provenances for Survival and Growth Traits in Portugal. Tree Genet. Genomes 2013, 9, 855–866. [Google Scholar] [CrossRef]
- Mutke, S.; Gordo, J.; Khouja, M.L.; Fady, B. Mediterranean Stone Pine for Agroforestry Low Genetic and High Environmental Diversity at Adaptive Traits in Pinus pinea from Provenance Tests in France and Spain. Options Méditerranéennes A 2013, 105, 73–79. [Google Scholar]
- Loewe-Muñoz, V.; Balzarini, M.; Del Río, R.; Delard, C. Effects of Stone Pine (Pinus pinea L.) Plantation Spacing on Initial Growth and Conelet Entry into Production. New For. 2019, 50, 489–503. [Google Scholar] [CrossRef]
- Brunori, A.; D’amato, F. The DNA Content of Nuclei in the Embryo of Dry Seeds of Pinus pinea and Lactuca Sativa. Caryologia 1967, 20, 153–161. [Google Scholar] [CrossRef]
- David, H.; De Boucaud, M.-T.; Gaultier, J.-M.; David, A. Sustained Division of Protoplast-Derived Cells from Primary Leaves of Pinus Pinaster, Factors Affecting Growth and Change in Nuclear DNA Content. Tree Physiol. 1986, 1, 21–30. [Google Scholar] [CrossRef] [PubMed]
- Bouchez, D.; Höfte, H. Functional Genomics in Plants. Plant Physiol. 1998, 118, 725–732. [Google Scholar] [CrossRef] [PubMed]
- Kovach, A.; Wegrzyn, J.L.; Parra, G.; Holt, C.; Bruening, G.E.; Loopstra, C.A.; Hartigan, J.; Yandell, M.; Langley, C.H.; Korf, I.; et al. The Pinus Taeda Genome Is Characterized by Diverse and Highly Diverged Repetitive Sequences. BMC Genom. 2010, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Pozo, N.; Canales, J.; Guerrero-Fernández, D.; Villalobos, D.P.; Díaz-Moreno, S.M.; Bautista, R.; Flores-Monterroso, A.; Guevara, M.Á.; Perdiguero, P.; Collada, C.; et al. EuroPineDB: A High-Coverage Web Database for Maritime Pine Transcriptome. BMC Genom. 2011, 12, 366. [Google Scholar] [CrossRef] [PubMed]
- Parchman, T.L.; Gompert, Z.; Mudge, J.; Schilkey, F.D.; Benkman, C.W.; Buerkle, C.A. Genome-Wide Association Genetics of an Adaptive Trait in Lodgepole Pine. Mol. Ecol. 2012, 21, 2991–3005. [Google Scholar] [CrossRef]
- Baison, J.; Vidalis, A.; Zhou, L.; Chen, Z.Q.; Li, Z.; Sillanpää, M.J.; Bernhardsson, C.; Scofield, D.; Forsberg, N.; Grahn, T.; et al. Genome-Wide Association Study Identified Novel Candidate Loci Affecting Wood Formation in Norway Spruce. Plant J. 2019, 100, 83–100. [Google Scholar] [CrossRef]
- Mutke, S.; Gil, L. The Stone Pine (Pinus pinea L.) Breeding Programme in Castile-Leon (Central Spain). NUCIS Newsl. 2000, 9, 50–55. [Google Scholar]
- Loewe Muñoz, V.; Balzarini, M.; Delard Rodríguez, C.; Álvarez Contreras, A.; Navarro-Cerrillo, R.M. Growth of Stone Pine (Pinus pinea L.) European Provenances in Central Chile. IForest 2017, 10, 64–69. [Google Scholar] [CrossRef]
- Bartholomé, J.; Bink, M.C.; Van Heerwaarden, J.; Chancerel, E.; Boury, C.; Lesur, I.; Isik, F.; Bouffier, L.; Plomion, C. Linkage and Association Mapping for Two Major Traits Used in the Maritime Pine Breeding Program: Height Growth and Stem Straightness. PLoS ONE 2016, 11, e0165323. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Schoettle, A.W.; Sniezko, R.A.; Yao, F.; Zamany, A.; Williams, H.; Rancourt, B. Limber Pine (Pinus Flexilis James) Genetic Map Constructed by Exome-Seq Provides Insight into the Evolution of Disease Resistance and a Genomic Resource for Genomics-Based Breeding. Plant J. 2019, 98, 745–758. [Google Scholar] [CrossRef] [PubMed]
- McLean, D.; Apiolaza, L.; Paget, M.; Klápště, J. Simulating Deployment of Genetic Gain in a Radiata Pine Breeding Program with Genomic Selection. Tree Genet. Genomes 2023, 19, 33. [Google Scholar] [CrossRef]
- Dzialuk, A.; Chybicki, I.; Gout, R.; Mączka, T.; Fleischer, P.; Konrad, H.; Curtu, A.L.; Sofletea, N.; Valadon, A. No Reduction in Genetic Diversity of Swiss Stone Pine (Pinus cembra L.) in Tatra Mountains despite High Fragmentation and Small Population Size. Conserv. Genet. 2014, 15, 1433–1445. [Google Scholar] [CrossRef]
- Przybylski, P.; Tereba, A.; Meger, J.; Szyp-Borowska, I.; Tyburski, Ł. Conservation of Genetic Diversity of Scots Pine (Pinus sylvestris L.) in a Central European National Park Based on CpDNA Studies. Diversity 2022, 14, 93. [Google Scholar] [CrossRef]
- Yu, Y.; Aitken, S.N.; Rieseberg, L.H.; Wang, T. Using Landscape Genomics to Delineate Seed and Breeding Zones for Lodgepole Pine. New Phytol. 2022, 235, 1653–1664. [Google Scholar] [CrossRef] [PubMed]
- Kress, W.J.; Erickson, D.L. DNA Barcodes: Methods and Protocols. Methods Mol. Biol. 2012, 858, 3–8. [Google Scholar] [CrossRef]
- Neumann, P.; Novák, P.; Hoštáková, N.; MacAs, J. Systematic Survey of Plant LTR-Retrotransposons Elucidates Phylogenetic Relationships of Their Polyprotein Domains and Provides a Reference for Element Classification. Mob. DNA 2019, 10, 1. [Google Scholar] [CrossRef]
- Zimmer, E.A.; Wen, J. Using Nuclear Gene Data for Plant Phylogenetics: Progress and Prospects II. Next-Gen Approaches. J. Syst. Evol. 2015, 53, 371–379. [Google Scholar] [CrossRef]
- Kalia, R.K.; Rai, M.K.; Kalia, S.; Singh, R.; Dhawan, A.K. Microsatellite Markers: An Overview of the Recent Progress in Plants. Euphytica 2011, 177, 309–334. [Google Scholar] [CrossRef]
- Knoop, V. The Mitochondrial DNA of Land Plants: Peculiarities in Phylogenetic Perspective. Curr. Genet. 2004, 46, 123–139. [Google Scholar] [CrossRef] [PubMed]
- Martin, W.; Deusch, O.; Stawski, N.; Grünheit, N.; Goremykin, V. Chloroplast Genome Phylogenetics: Why We Need Independent Approaches to Plant Molecular Evolution. Trends Plant Sci. 2005, 10, 203–209. [Google Scholar] [CrossRef] [PubMed]
- Bohlmann, J.; Meyer-Gauen, G.; Croteau, R. Plant Terpenoid Synthases: Molecular Biology and Phylogenetic Analysis. Proc. Natl. Acad. Sci. USA 1998, 95, 4126–4133. [Google Scholar] [CrossRef]
Gene | Transcript | Function | References |
---|---|---|---|
AOX | Alternative oxidase | Response to increases in atmospheric CO2 | [28] |
PipiRR1 | Type-A response regulator | Involved in cytokinin signal transduction pathway | [29] |
ATTRX1 | Arabidopsis thaliana thioredoxin H-type 1 | Thiol–disulfide exchange intermediate | [30] |
MAT2 | Methionine adenosyltransferase 2 | DNA and histone methylation | [30] |
SAM2 | S-adenosylmethionine synthase 2 | Ethylene, nicotianamine, and polyamine biosynthetic pathways; provides the methyl group for protein and DNA methylation | [30] |
PpnAPS | Pinus pinea α-pinene synthase | Synthesis of α-pinene (component of essential oils) | [31] |
PAL | Phenylalanine ammonia-lyase | Phenylpropanoid metabolic network | [32] |
CAD | Cinnamyl alcohol dehydrogenase | Lignin biosynthesis | [32] |
XET | Xyloglucan endo-transglycosylase | Mechanical reinforcement of cell wall | [32] |
CHI | Chitinase | Degradation of chitin in fungal cells | [32] |
PAS1 | FKBP-type peptidyl-prolyl cis-trans isomerase family protein | Determination of sensitivity to cytokinin for cell division | [33] |
CLV1 | Leucine-rich receptor-like protein | Promote tissue differentiation by suppressing the WUSCHEL gene (stem cell identity expression factor) | [33] |
SNF2 domain | Putative helicase | Chromatin remodeling, trans-acting transcriptional regulators, and general transcription machinery | [33] |
ATAF1 | Arabidopsis Transcription Activator Factor-1 | Meristem formation | [33] |
ACBF | Polyadenylate-binding protein RBP47-like | Transcriptional regulation during shoot induction; petal development and xylogenesis |
Type of DNA | Results | References |
---|---|---|
Nucleus | No trans-specific microsatellite was polymorphic, de novo development of microsatellites seems mandatory. | [47] |
Chloroplast and nucleus | Low levels of polymorphism | [48] |
Chloroplast | Lack in polymorphism can be an advantage for adaptation | [49] |
Chloroplast and nucleus | Low levels of polymorphism | [50] |
Nucleus | Low levels of polymorphism | [19] |
Environmental Stressor | Pathway | Response | References |
---|---|---|---|
UV-B radiation | Expression of superoxide dismutase | Reduction in oxidative stress | [53] |
Atmospheric CO2 | Expression of AOX genes | Not yet determined | [28] |
Water stress | Increased expression of glycosyltransferases, galactosidases, sugar transporters, dehydrins, and transcription factors | Higher metabolism, cell rescue, and intercellular transport | [54] |
Expression of K2-dehydrins | Accumulation of proteins in aerial parts of the plant to signal water retention | [55] |
Chemotype | Compounds | References |
---|---|---|
Chemotype D | Limonene, germacrene D, α-pinene, β-pinene | [56] |
Not named | α-pinene, β-pinene, (-)-limonene | [57] |
PPL1/PPL2/PPL3 | β-pinene, terpinolene, α-pinene, 3-carene, sylvestrene, germacrene D, isocaryophyllene | [58] |
Compounds (Fatty Acids) | N. Carbons | References |
---|---|---|
Myristic acid | 14 | [46] |
Palmitic acid | 16 | [28,46,47] |
Palmitoleic acid | 16 | [46] |
14-methylhexadecanoic acid | 17 | [41] |
cis-9-heptadecenoic acid | 17 | [46] |
Heptadecanoic acid | 17 | [46] |
cis-9,12-linoleic acid | 18 | [46,47] |
cis-9,12,15-linolenic acid | 18 | [46] |
cis-9-oleic acid | 18 | [46,47] |
Linoleic acid | 18 | [41] |
Oleic acid | 18 | [41] |
Pinolenic acid | 18 | [41] |
Stearic acid | 18 | [28,46,47] |
Arachidic acid | 20 | [28,46] |
cis-5,11,14-dihomo-γ-linolenic acid | 20 | [47] |
cis-11,14-eicosadienoic acid | 20 | [46] |
cis-11-gondoic acid | 20 | [46] |
Sciadonic acid | 20 | [41] |
Behenic acid | 22 | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simões, A.S.B.; Borges, M.M.; Grazina, L.; Nunes, J. Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview. Genes 2024, 15, 84. https://doi.org/10.3390/genes15010084
Simões ASB, Borges MM, Grazina L, Nunes J. Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview. Genes. 2024; 15(1):84. https://doi.org/10.3390/genes15010084
Chicago/Turabian StyleSimões, Ana Sofia B., Margarida Machado Borges, Liliana Grazina, and João Nunes. 2024. "Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview" Genes 15, no. 1: 84. https://doi.org/10.3390/genes15010084
APA StyleSimões, A. S. B., Borges, M. M., Grazina, L., & Nunes, J. (2024). Stone Pine (Pinus pinea L.) High-Added-Value Genetics: An Overview. Genes, 15(1), 84. https://doi.org/10.3390/genes15010084