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Abstract: Background: Chloroplasts, due to their high conservation and lack of recombination, serve
as important genetic resources for the classification and evolutionary analysis of closely related
species that are difficult to distinguish based on their morphological features. Meconopsis simplicifolia
(M. simplicifolia), an endangered herb within the Meconopsis genus, has demonstrated therapeutic
potential in treating various diseases. However, the highly polymorphic morphology of this species
poses a challenge for accurate identification. Methods: In this study, the complete chloroplast genome
of M. simplicifolia was sequenced and assembled using Illumina sequencing technology. Simple
sequence repeats (SSRs) and repetitive sequences were characterized. In addition, a comparative anal-
ysis was conducted with the chloroplast genomes of six other Meconopsis species. Results: The chloro-
plast genome of M. simplicifolia has a quadripartite circular structure with a total length of 152,772 bp.
It consists of a large single-copy region of 83,824 bp and a small single-copy region of 17,646 bp,
separated by a pair of inverted repeat sequences (IRa and IRb, 25,651 bp). The genome contains
131 genes, 33 SSRs, and 27 long repetitive sequences. Comparative analysis with six other chloroplast
genomes of Meconopsis revealed that M. simplicifolia is closely related to M. betonicifolia and that the
rpl2 (ribosomal protein L2) gene in the IRb region has been deleted. This deletion is of significant
importance for future taxonomic studies of M. simplicifolia. Conclusions: This study provides a
valuable reference for the identification of M. simplicifolia and contributes to a deeper understanding
of the phylogeny and evolution of the Meconopsis genus.

Keywords: chloroplast genome; Meconopsis; Meconopsis simplicifolia; phylogenetic analysis;
comparative genomics

1. Introduction

Chloroplasts are unique organelles in plants that play a crucial role in photosynthesis,
growth and development, signal transduction under various stresses, and the biosynthesis
of important metabolites [1,2]. Decoding the chloroplast genome is fundamental to under-
standing chloroplast function and its biological processes, which are of great significance
for exploring the mechanisms of plant growth and stress response. Previous studies have
shown that chloroplast deoxyribonucleic acid (DNA) typically has a quadripartite circular
structure, a linear structure, or a multi-branch linear structure [3–6]. However, due to
differences in plant species, cell developmental stages, and tissue types, it remains unclear
which form of chloroplast DNA is more prevalent [7,8]. The size of chloroplast genomes
ranges from 15,553 bp (Asarum minus) to 521,168 bp (Floydiella terrestris), and are typically
divided into two regions: a large single-copy (LSC) region and a small single-copy (SSC)
region [9,10], separated by two inverted repeats (IRa and IRb). The chloroplast genome
generally contains between 101 and 118 genes, including approximately 80 protein-coding
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genes, four ribosomal ribonucleic acids (RNAs), and 30 transfer RNAs [11–13]. With ad-
vances in sequencing technology, obtaining a complete chloroplast genome has become
more accessible and cost-effective, providing a valuable opportunity to explore the role of
chloroplasts in plant biology.

Chloroplasts are maternally inherited organelles, and their structure is relatively
conserved [10]. Compared with other plastids, such as nuclear and mitochondrial genomes,
chloroplast genomes are characterized by their small size, simple structure, and moderate
evolutionary rate [14,15]. Thus, chloroplasts not only play an important role in plant
biology but also serve as valuable resources in the study of plant systematics and genetic
relationships [16–18]. For example, chloroplast genome sequencing was performed on
Oreomecon nudicaulis, a species with an unclear classification (originally assigned to the
Papaver genus, it is now classified under Oreomecon). The analysis revealed that it is
closely related to Meconopsis within the Papaveraceae family but does not form a clade
with the Papaver genus, which is consistent with the revised classification [19]. Similarly,
phylogenetic analysis of the chloroplast genome of the medicinal plant Hypecoum erectum L.
showed its association with H. zhukanum, both of which belong to the Hypecoideae subfamily,
a monophyletic group [20]. Moreover, structural variations in the chloroplast genome, such
as gene deletions, large inversions, and the contraction or elongation of inverted repeat (IR)
regions, provide important genetic information for the identification of specific plants [11].
Ren et al. found that, compared with other plants in the Papaveroideae subfamily, five typical
genes located in the SSC region in the chloroplast genomes of Corydalis saxicola and Corydalis
tomentella migrated to the IR region, resulting in IR elongation and gene duplication [21].
Additionally, polymorphisms were observed in the gap regions of seven genes, and coding
polymorphisms were detected in three genes in the chloroplast genomes of Papaveroideae
plants, indicating their potential to serve as molecular markers for phylogenetic and species
identification studies [22]. In summary, chloroplast genome information provides an
important basis for inferring evolutionary relationships in species and specific taxa.

Meconopsis is a genus of herbaceous plants, belonging to the Papaveraceae subfam-
ily [23]. Globally, 49 known species of Meconopsis have been identified, several of which
have demonstrated therapeutic efficacy [24]. These plants are mainly distributed across the
Qinghai-Tibet Plateau, Hengduan Mountains, and Himalayan region at altitudes ranging
between 2000 and 5800 m [25]. Geographic isolation and natural selection have promoted
speciation, resulting in diverse Meconopsis species, making it challenging to classify them
solely based on their phenotypic characteristics [26]. The complete chloroplast genome
provides a powerful tool for the accurate identification and classification of species [27]. In
this study, the chloroplast genome of the endangered plant M. simplicifolia was sequenced
using second-generation sequencing technology and a complete chloroplast genome in-
formation of 152,772 bp containing 131 genes was obtained. A comparative analysis was
conducted to determine the phylogenetic relationship between M. simplicifolia and other
Meconopsis species; it was confirmed that M. simplicifolia and M. betonicifolia have a closer
phylogenetic relationship. The regions LSC and SSC are highly variable in the chloroplast
genomes of Meconopsis species. This study is of profound significance for the identification
of M. simplicifolia, the exploration of its chloroplast function, and improvement in the
phylogenetic understanding within the Meconopsis genus.

2. Materials and Methods
2.1. Plant Material

Considering the distribution of M. simplicifolia, one individual was collected from
the wild at Lingzhi, Tibet, China (38.9784◦ N, 105.9035◦ E) in July 2022. A voucher spec-
imen (voucher number: NMU00912) was deposited at the Herbarium of North Minzu
University (Figure 1). The collection of plant material adhered to the relevant institutional,
national, and international guidelines and legislation, and we obtained permission to collect
the M. simplicifolia.
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Figure 1. A photograph of M. simplicifolia in the flowering stage.

2.2. Sequencing, Assembly, and Annotation of the M. simplicifolia cp Genome

Genomic DNA was extracted from the fresh leaves using the DNeasy Plant Mini
Kit (Qiagen, Redwood City, CA, USA), following the manufacturer’s protocol. A paired-
end library with an insertion size of 350 bp was constructed according to the manufac-
turer’s instructions and sequenced using the Illumina HiSeq 2500 platform. Approximately
5.57 Gb of raw reads were generated and assembled into non-redundant contigs using
NOVOPlasty [28], a de novo sequence assembly software package, with k = 39 and a
genome range of 120,000–200,000. Initial gene annotation was performed using Plann [29]
with the chloroplast genome of M. racemosa (GenBank accession number: MK533649)
as the reference genome [30], and the annotation was refined using Geneious software
(https://www.geneious.com/, accessed on 1 January 2024) [31].

2.3. SSRs and Repeated Sequences

The Perl script MISA v2.1 (http://pgrc.ipk-gatersleben.de/misa/misa.html, accessed
on 3 January 2024) was applied to detect simple sequence repeats (SSRs) in the cp genome
with the settings as follows: 10 for mono-, 5 for di-, 4 for tri-, and 3 for tetra-, penta- and
hexanucleotide. Repeats (forward, palindrome, complement, and reverse sequences) were
identified using online REPuter software (https://bibiserv.cebitec.uni-bielefeld.de/reputer?
id=reputer_view_submission, accessed on 3 January 2024), with the default settings.

2.4. Comparative Analysis of cp Genome Structure

Whole-genome comparative analysis was conducted on the cp genomes of the fol-
lowing seven Meconopsis species: M. simplicifolia (this study, NC_070211), M. horridula
(MK533646) [30], M. integrifolia (MK533647) [30], M. punicea (MK533648) [30], M. racemosa
(MK533649) [30], M. henrici (MN488591) [32], and M. quintuplinervia (MK801686) [33]. Com-
parative genomic analysis of M. simplicifolia and six other Meconopsis species was performed
using BLAST Ring Image Generator (BRIG) software [34]. Meanwhile, the comparison and
variation in the cp genomes’s architecture were visualized using the Shuffle-LAGAN mode
of the mVISTA software (https://genome.lbl.gov/vista/index.shtml, accessed on 3 January
2024) [35]. The IRscope tool (https://irscope.shinyapps.io/irapp/, accessed on 3 January
2024) was used to compare and illustrate the IR border regions in the seven Meconopsis
species [36].

2.5. Phylogenetic Analysis

Phylogenetic relationships were reconstructed based on the 10 cp genomes, using
Papaver orientale (NC_037832) [37] from the NCBI database as the ‘outgroup’. The coding se-
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quences of the protein-coding genes present in all the cp genomes of the Papaveraceae species
were aligned using MAFFT-LINSI v7.313 [38]. The optimal trees were inferred by maximum
likelihood phylogenetic analysis using RAxML v8.2.11 [39] with the GTRGAMMA model
and 500 bootstrap replicates.

3. Results
3.1. Features of the cp Genome of Meconopsis simplicifolia

The assembled cp genome of M. simplicifolia has been deposited in GenBank with
the accession number NC_070211. The cp DNA of M. simplicifolia measured 152,772 bp
in length and exhibited the typical quadripartite structure (Table 1 and Figure 2). It
consisted of a pair of inverted repeat regions (IRa and IRb) spanning 25,651 bp each, along
with separate single-copy regions, including the SSC of 17,646 bp and the LSC of 83,824
bp. The M. simplicifolia cp genome contained 131 predicted functional genes, comprising
84 protein-coding genes, 37 tRNA genes, 8 rRNA genes, and 2 pseudogenes (rps15 and
rps19) (Table 2). There were 21 intron-containing genes, of which 13 were protein-coding
genes and 8 were tRNA genes. Out of the intron-containing genes, 18 contained a single
intron, while 3 (clpP, rps12, and ycf3) contained two introns.

Table 1. A summary of the complete chloroplast genomes of seven Meconopsis species.

Feature M.
simplicifolia

M.
horridula

M.
integrifolia

M.
punicea

M.
racemosa

M.
henrici

M.
quintuplinervia

Accession number NC_070211 MK533646 MK533647 MK533648 MK533649 MN488591 MK801686
Genome size (bp) 152,772 153,785 151,864 153,259 153,816 153,388 154,997

IR length (bp) 25,651 51,988 51,306 51,548 51,988 26,107 25,984
SSC length (bp) 17,646 17,898 17,749 17,729 17,898 17,822 17,876
LSC length (bp) 83,824 83,899 82,809 83,982 83,930 83,698 85,153

No. of total genes 131 127 127 127 127 112 129
No. of protein-coding genes 84 90 90 90 90 78 84

No. of tRNA genes 39 37 37 37 37 30 37
No. of rRNA genes 8 8 8 8 8 3 8

Overall GC content (%) 38.7 38.8 38.8 38.5 38.7 38.5 38.5

Table 2. A list of the genes in the M. simplicifolia chloroplast genome.

Category Gene Group Gene Name

Self-replication

Ribosomal protein (large subunit) (9) rpl14, rpl16 a, rpl20, rpl22, rpl23 b, rpl32, rpl33, rpl36

Ribosomal protein (small subunit) (16) rps2, rps3, rps4, rps7 b, rps8, rps11, rps12 a,b, rps14, rps15,
rps16 a, rps18, rps19

DNA-dependent RNA polymerase (4) rpoA, rpoB, rpoC1 a, rpoC2
rRNA genes (8) rrn16 b, rrn23 b, rrn4.5 b, rrn5 b,

tRNA genes (37)

trnH-GUG, trnK-UUU a, trnQ-UUG, trnS-GCU,
trnG-UCC a, trnR-UCU, trnC-GCA, trnD-GUC,

trnY-GUA, trnE-UUC, trnT-GGU, trnS-UGA, trnG-GCC,
trnS-GGA, trnT-UGU, trnL-UAA a, trnF-GAA,

trnV-UAC a, trnfM-CAU b, trnW-CCA, trnP-UGG,
trnI-CAU b, trnL-CAA b, trnV-GAC b, trnI-GAU a,b,
trnA-UGC a,b, trnR-ACG b, trnN-GUU b, trnL-UAG

Photosynthesis Photosystem I (5) psaA, psaB, psaC, psaI, psaJ

Photosystem II (15) psbA, psbB, psbC, psbD, psbE, psbF, psbH, psbI, psbJ, psbK,
psbL, psbM, psbN, psbT, psbZ

NADH dehydrogenase (11) ndhA a, ndhB a,b, ndhC, ndhE, ndhF, ndhG, ndhH, ndhI,
ndhJ, ndhK

Cytochrome b/f complex (6) petA, petB a, petD a, petG, petL, petN
ATP synthase (6) atpA, atpB, atpE, atpF a, atpH, atpI

Large subunit of rubisco (1) rbcL
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Table 2. Cont.

Category Gene Group Gene Name

Other genes Translational initiation factor (1) infA
ATP-dependent protease subunit p gene (1) clpP a

Maturase (1) matK
Envelope membrane protein (1) cemA

Unknown

Subunit of acetyl-CoA-carboxylase (1) accD
C-type cytochrome synthesis gene (1) ccsA

Conserved hypothetical chloroplast ORF (7) ycf1 b, ycf2 b, ycf3 a, ycf4, ycf15,
Pseudogene (2) rps15, rps19

Notes: a Genes containing introns; b two gene copies in IR.
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The overall GC content of the M. simplicifolia cp genome was 38.74%. Regarding the
protein-coding regions, the GC content of the first, second, and third codons was 45.91%,
38.17%, and 31.15%, respectively. The 84 protein-coding genes encoded 25,454 codons,
with leucine (L) the most frequently used amino acid (10.36%), and cysteine (C) the least
frequently used (1.19%).

3.2. SSRs and Long-Repeat Analysis

SSRs, also known as microsatellites, are tandem repeat sequences consisting of 1–6 nu-
cleotide repeat units. They are widely distributed in cp genomes and often used as genetic
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markers in population genetics and evolutionary studies due to their high intraspecific vari-
ability [40]. In this study, we analyzed SSRs in the cp genomes of seven Meconopsis species.
A total of 33 SSRs were identified in the M. simplicifolia cp genome. Similarly, M. horridula,
M. integrifolia, M. punicea, M. racemose, M. henrici, and M. quintuplinervia contained 38, 33,
34, 40, 23, and 35 SSRs, respectively (Figure 3A, Table S1). Among all chloroplast genomes,
mononucleotide repeats were the most frequent, ranging between 8 and 24, accounting for
34.78% (8/23) to 66.67% (24/33) of all SSRs, followed by dinucleotide, ranging between
4 (12.12%, 4/33) and 8 (23.35%, 8/34), tetranucleotide, ranging between 3 (9.09%, 3/33)
and 5 (14.29%, 5/35), trinucleotide, ranging between 1 (2.86%, 1/35) and 3 (9.09%, 3/33),
pentanucleotide, ranging between 0 and 2 (8.70%, 2/23), and pentanucleotide, ranging
between 0 and 1 (4.35%, 1/23). In M. simplicifolia, all mononucleotide repeats (100%) and
the majority of dinucleotide repeats (75%) consisted of A/T nucleotides (Figure 3B).
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Repeat sequences play a crucial role in phylogenetic research and genome reorganiza-
tion. In the cp genome of M. simplicifolia, 27 dispersed repeats were identified, including
10 forward repeats and 17 palindromic repeats (Figure 4A). This pattern is consistent with
the other six Meconopsis cp genomes, with the number of repeats ranging between 29 in M.
punicea and 50 in M. integrifolia. Palindromic repeats were the most prevalent repeat type
among the seven Meconopsis species (Figure 4B,C). Most of these repeats ranged between
30 bp and 44 bp in length.
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3.3. Comparative Analysis of cp Genomes of Meconopsis Species

A comparative analysis of cp genomes provided valuable insights into intricate evolu-
tionary relationships. In this study, we compared the cp genomes of M. simplicifolia and
other six Meconopsis species. The size of the seven Meconopsis cp genomes ranged between
151,864 (M. integrifolia) and 154,997 bp (M. quintuplinervia). Notably, within the genus
Meconopsis, the genome of M. simplicifolia exhibited a higher degree of conservation and
could be accurately mapped (Figure 5). The sequence consistency of Meconopsis cp genomes
was further evaluated using mVISTA software. The results revealed that the IR regions
exhibited fewer differences compared to the LSC and SSC regions (Figure 6). Non-coding
regions displayed more variability than coding regions, with significant changes observed
in the intergenic spacers among the seven cp genomes. These highly divergent regions
included trnH-psbA, matK, rps16-psbK, atpH-atpI, rpoC2, psbM-petN, trnE-trnT, trnT-psbD,
psaA-ycf3, trnF-ndhJ, ndhK, ndhC-trnV, atpB-rbcL, accD, ycf4-cemA, petA-psbL, psbE-petL,
clpP-psbB, rpl16, ndhF-rpl32-ccsA, and ycf1, among others.
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A detailed comparison of the binding regions between the inverted repeats (IR/LSC
and IR/SSC) was performed among the seven Meconopsis species (Figure 7). In all species,
the rpl22 gene was located within the LSC region. Variations in gene content and order were
observed, such as the presence of the ycf1 gene at the SSC/IRa junction in M. simplicifolia,
M. horridula, M. punicea, M. racemose, M. henrici, and M. quintuplinervia, while M. integrifolia
had a missing ycf1 gene in the SSC/IRa junction. Expansion and contraction of the inverted
repeat region were observed. For example, the rps19 gene was found within the LSC region
in M. racemose, while in the other six Meconopsis species, it was located 67–158 bp away,
spanning the LSC and IRb binding regions. Except for M. simplicifolia, the rpl2 gene did not
extend into the LSC region in the other species. Overall, there were only minor variations
in the IR boundary regions among the cp genomes of these seven Meconopsis species.
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3.4. Phylogenetic Analysis of M. simplicifolia and Related Meconopsis species cp Genomes

To determine the phylogenetic position of M. simplicifolia within the Papaveraceae
family, we utilized the cp genomes of ten Papaveraceae members, including M. simplicifolia.
A species tree was constructed based on the alignment of 75 shared protein-coding genes
from the cp genomes. The analysis revealed that M. simplicifolia clustered together with M.
betonicifolia (Figure 8). All Meconopsis plants formed a well-supported branch, indicating
the high potential of cp genomes for species differentiation within the order Papaveraceae.Genes 2024, 15, x FOR PEER REVIEW 11 of 15 
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Figure 8. A species tree based on the coding sequences of 75 protein-coding genes shared by
the cp genomes of 10 Papaveraceae members including M. simplicifolia (NC_070211; this study),
M. horridula (MK533646) [30], M. integrifolia (MK533647) [30], M. punicea (MK533648) [30], M. racemosa
(MK533649) [30], M. henrici (MN488591) [32], M. quintuplinervia (MK801686) [33], M. pseudohorridula
(NC_061608; unpublished), M. betonicifolia (OK349678; unpublished), and the outgroup species
Papaver orientale (NC_037832) [37]. All nodes received 100% bootstrap support. Orange represents
M Simplicifolia chloroplast genome.
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4. Discussion

The cp genome serves as a valuable resource for interspecific differentiation and
various biotechnological applications [41]. In this study, we sequenced and assembled
the complete cp genome of M. simplicifolia. The cp genome of M. simplicifolia has a typical
quadripartite circular structure with a GC content of 38.74%, similar to the chloroplast
genome characteristics of most Meconopsis species [1]. The size of the M. simplicifolia cp
genome was 152,772 bp, consistent with other Meconopsis species ranging between 151 and
154 kb [30,32,33]. All these complete cp genomes displayed a GC content of 38%, which is
in line with the low GC content observed in the cp genomes of other angiosperms [13].

SSRs have been extensively used in phylogenetic relationships, genetic diversity stud-
ies, and species identification. The SSRs identified in the cp genomes of seven Meconopsis
were mostly composed of mononucleotide repeats consisting mainly of T, which is consis-
tent with previous studies on Meconopsis species [30]. The availability of genomic resources
in Meconopsis plants can enhance the understanding of population patterns and the identifi-
cation of gene regions associated with important medicinal and environmental adaptive
traits [30]. SSRs provide effective marker resources for species identification and genetic
diversity studies of Meconopsis and related species. Repeat sequences have the potential to
promote chloroplast genome rearrangement and increase population genetic diversity, and
are widely used to identify mutation hotspots and establish phylogenetic relationships [42].
In this study, we identified 27 repeat sequences in M. simplicifolia, which is fewer compared
to other Meconopsis species. Most of these repeats were located in genes, indicating that the
cp genome of M. simplicifolia retains a significant amount of genetic material.

The analysis of protein-coding genes revealed that M. simplicifolia shares 75 genes
with the other six Meconopsis species. Similar to other Meconopsis species, M. simplicifolia
lacks the rpl2 gene, which plays a crucial role in chloroplast development during early leaf
development [43]. It is hypothesized that the Msrpl2 gene has either been functionally trans-
ferred to the nucleus or replaced by a eukaryotic gene. Comparative analysis of cp genomes
using BRIG and mVISTA showed a high sequence identity among all Meconopsis species.
However, Meconopsis cp genomes have also undergone gene duplication, gene/intron
loss, insertion/deletion, pseudogenization, and varying expansion/contraction of the
inverted repeat region. These genomic events are consistent with observations in other
angiosperms [12,13]. In M. simplicifolia, the pseudogenization of rps19 in the IR regions is
consistent with a previous study [30]. The sequence and content of the SC regions show
less similarity compared to the IR regions in Meconopsis species. The most highly divergent
non-coding regions were identified in the intergenic regions of trnT-psbD, ndhC-trnV, and
ndhF-rpl32-ccsA, which have also been recognized as molecular markers in many land
plants [44,45].

Taxonomy and phylogeny of Meconopsis have been extensively studied at the genus
level [46,47]. Previous studies on the evolutionary relationships among different Meconopsis
species utilized internal transcribed spacer and cpDNA sequences, as well as amplified
fragment length polymorphisms (AFLPs) [46–48]. However, complete genome sequenc-
ing offers a more comprehensive perspective [49]. In the case of M. simplicifolia, limited
information was available. The phylogenetic position of M. simplicifolia within Meconopsis
was determined using cp genomes and 75 protein-coding genes among nine Meconopsis
species. Phylogenetic analysis revealed that all Meconopsis species formed a monophyletic
clade with 100% bootstrap support. M. simplicifolia was found to be closely related to M.
betonicifolia, supporting previous morphological and molecular data [46].

5. Conclusions

This study characterized the complete cp genome of M. simplicifolia and conducted a
comparative analysis of other six Meconopsis cp genomes, revealing the conserved genome
structure and organization across seven Meconopsis species. The most divergent regions
among these Meconopsis cp genomes were identified in three non-coding intergenic spacer
(IGS) regions (trnT-psbD, ndhC-trnV, and ndhF-rpl32-ccsA) and three genic regions (matK,
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rpoC2, and ycf1). Moreover, the genetic resources such as SSRs and repetitive sequences
discovered in the cp genomes can serve as valuable molecular markers for the identi-
fication of Meconopsis species. Phylogenetic analysis demonstrated that M. simplicifolia
is closely related to M. betonicifolia. The comprehensive cp genome provides essential
resources for genetic and biological studies of Meconopsis and other species within the
Papaveraceae family.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15101301/s1, Table S1. Types and numbers of SSRs in the
chloroplast genomes of M. simplicifolia, M. horridula, M. integrifolia, M. punicea, M. racemose, M. henrici,
and M. quintuplinervia.
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