GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Phenotypic Data for DR
2.2. GBS
2.3. GWAS
2.4. Identification of Candidate Genes
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Smit, H.; Metzger, M.; Ewert, F. Spatial distribution of grassland productivity and land use in Europe. Agric. Syst. 2008, 98, 208–219. [Google Scholar] [CrossRef]
- Annicchiarico, P.; Barrett, B.; Brummer, E.C.; Julier, B.; Marshall, A.H. Achievements and challenges in improving temperate perennial forage legumes. Crit. Rev. Plant Sci. 2015, 34, 327–380. [Google Scholar] [CrossRef]
- Taylor, N.L.; Quesenberry, K.H. Red Clover Science; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; p. 228. ISBN 0-7923-3887-1. [Google Scholar]
- Jones, C.; De Vega, J.; Lloyd, D.; Hegarty, M.; Ayling, S.; Powell, W.; Skot, L. Population structure and genetic diversity in red clover (Trifolium pratense L.). Sci. Rep. 2020, 10, 8364. [Google Scholar] [CrossRef] [PubMed]
- Bickhart, D.M.; Koch, L.M.; Smith, T.P.L.; Riday, H.; Sullivan, M.L. Chromosome-scale assembly of the highly heterozygous genome of red clover (Trifolium pratense L.), an allogamous forage crop species. Gigabyte 2022, 2022, gigabyte42. [Google Scholar] [CrossRef] [PubMed]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023; p. 81. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–532. [Google Scholar] [CrossRef]
- Emadodin, I.; Corral, D.E.F.; Reinsch, T.; Kluβ, C.; Taube, F. Climate change effects on temperate grassland and its implication for forage production: A case study from northern Germany. Agriculture 2021, 11, 232. [Google Scholar] [CrossRef]
- Tardieu, F.; Simonneau, T.; Muller, B. The physiological basis of drought tolerance in crop plants: A scenario-dependent probabilistic approach. Annu. Rev. Plant Biol. 2018, 69, 733–759. [Google Scholar] [CrossRef]
- Movahedi, A.; Dzinyela, R.; Aghaei-Dargiri, S.; Alhassan, A.R.; Yang, L.; Xu, C. Advanced study of drought-responsive protein pathways in plants. Agronomy 2023, 13, 849. [Google Scholar] [CrossRef]
- He, C.; Du, Y.; Fu, J.; Zeng, E.; Park, S.; White, F.; Zheng, J.; Liu, S. Early drought-responsive genes are variable and relevant to drought tolerance. G3 Genes Genomes Genet. 2020, 10, 1657–1670. [Google Scholar] [CrossRef]
- Lui, F.; Xi, M.; Liu, T.; Wu, X.; Ju, L.; Wang, D. The central role of transcription factors in bridging biotic and abiotic stress responses for plants’ resilience. New Crops 2024, 1, 100005. [Google Scholar] [CrossRef]
- Cyriac, D.; Hofmann, R.W.; Stewart, A.; Sathish, P.; Winefield, C.S.; Moot, D.J. Intraspecific differences in long-term drought tolerance in perennial ryegrass. PLoS ONE 2018, 13, e0194977. [Google Scholar] [CrossRef] [PubMed]
- De Swaef, T.; Maes, W.H.; Aper, J.; Baert, J.; Cougnon, M.; Reheul, D.; Steppe, K.; Roldán-Ruiz, I.; Lootens, P. Applying RGB- and thermal-based vegetation indices from UAVs for high-throughput field phenotyping of drought tolerance in forage grasses. Remote Sens. 2021, 13, 147. [Google Scholar] [CrossRef]
- Boucher, K. Breeding for Improved Drought Tolerance in Red Clover (Trifolium pratense L.). Master’s Thesis, University of Guelph, Guelph, ON, Canada, 2016. [Google Scholar]
- Huang, X.; Han, B. Natural variations and genome-wide association studies in crop plants. Ann. Rev. Plant Biol. 2014, 65, 531–551. [Google Scholar] [CrossRef] [PubMed]
- Byrne, S.; Czaban, A.; Studer, B.; Panitz, F.; Bendixen, C.; Asp, T. Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PLoS ONE 2013, 8, e57438. [Google Scholar] [CrossRef] [PubMed]
- Biazzi, E.; Nazzicari, N.; Pecetti, L.; Brummer, E.C.; Palmonari, A.; Tava, A.; Annicchiarico, P. Genome-wide association mapping and genomic selection for alfalfa (Medicago sativa) forage quality traits. PLoS ONE 2017, 12, e0169234. [Google Scholar] [CrossRef]
- Pégard, M.; Barre, P.; Delaunay, S.; Surault, F.; Karagic, D.; Milic, D.; Zoric, M.; Ruttink, T.; Julier, B. Genome-wide genotyping data renew knowledge on genetic diversity of a worldwide alfalfa collection and give insights on genetic control of phenology traits. Front. Plant Sci. 2023, 14, 1196134. [Google Scholar] [CrossRef]
- Frey, L.A.; Vleugels, T.; Ruttink, T.; Schubiger, F.X.; Pégard, M.; Skøt, L.; Grieder, C.; Studer, B.; Roldán-Ruiz, I.; Kölliker, R. Phenotypic variation and quantitative trait loci for resistance to southern anthracnose and clover rot in red clover. Theor. Appl. Genet. 2022, 135, 4337–4349. [Google Scholar] [CrossRef]
- Zanotto, S.; Ruttink, T.; Pégard, M.; Skot, L.; Grieder, C.; Kölliker, R.; Ergon, A. A genome-wide association study of freezing tolerance in red clover (Trifolium pratense L.) germplasm of European origin. Front. Plant Sci. 2023, 14, 1189662. [Google Scholar] [CrossRef]
- Vleugels, T.; Saleem, A.; Dubey, R.; Muylle, H.; Borra-Serrano, I.; Lootens, P.; De Swaef, T.; Roldán-Ruiz, I. Phenotypic characterization of drought responses in red clover (Trifolium pratense L.). Front. Plant Sci. 2024, 14, 1304411. [Google Scholar] [CrossRef]
- De Vega, J.J.; Ayling, S.; Hegarty, M.; Kudrna, D.; Goicoechea, J.L.; Ergon, Å.; Rognli, O.A.; Jones, C.; Swain, M.; Geurts, R.; et al. Red clover (Trifolium pratense L.) draft genome provides a platform for trait improvement. Sci. Rep. 2015, 5, 17394. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef] [PubMed]
- Danecek, P.; Bonfield, J.K.; Liddle, J.; Marshall, J.; Ohan, V.; Pollard, M.O.; Whitwham, A.; Keane, T.; McCarthy, S.A.; Davies, R.M.; et al. Twelve years of SAMtools and BCFtools. GigaSci 2021, 10, giab008. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org (accessed on 19 October 2024).
- RStudio Team. RStudio: Integrated Development for R; PBC: Boston, MA, USA, 2023; Available online: http://www.rstudio.com (accessed on 19 October 2024).
- Huang, M.; Liu, X.; Zhou, Y.; Summers, R.M.; Zhang, Z. BLINK: A package for the next level of genome-wide association studies with both individuals and markers in the millions. Gigascience 2019, 8, giy154. [Google Scholar] [CrossRef] [PubMed]
- Lipka, A.E.; Tian, F.; Wang, Q.; Peiffer, J.; Li, M.; Bradbury, P.J.; Gore, M.A.; Buckler, E.S.; Zhang, Z. GAPIT: Genome association and prediction integrated tool. Bioinformatics 2012, 28, 2397–2399. [Google Scholar] [CrossRef] [PubMed]
- Van Bel, M.; Silvestri, F.; Weitz, E.M.; Kreft, L.; Botzki, A.; Coppens, F.; Vandepoele, K. PLAZA 5.0: Extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Res. 2022, 50, 1468–1474. [Google Scholar] [CrossRef]
- Martin, F.J.; Amode, M.R.; Aneja, A.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Becker, A.; Bennett, R.; Berry, A.; Bhai, J.; et al. Ensembl 2023. Nucleic Acids Res. 2023, 51, 933–941. [Google Scholar] [CrossRef]
- Baral, B.; Izaguirre-Mayoral, M.L. Chapter four—Purine-derived ureides under drought and salinity. Adv. Agron. 2017, 146, 167–204. [Google Scholar] [CrossRef]
- Pennycooke, J.C.; Jones, M.L.; Stushnoff, C. Down-regulating α-galactosidase enhances freezing tolerance in transgenic Petunia. Plant Physiol. 2002, 133, 901–909. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, B.; Yuan, F. The role of transmembrane proteins in plant growth; development; and stress responses. Int. J. Mol. Sci. 2022, 23, 13627. [Google Scholar] [CrossRef]
- Liu, Q.; Dong, G.; Ma, Y.; Zhao, S.; Liu, X.; Li, X.; Li, Y.; Hou, B. Rice glycosyltransferase gene UGT85E1 is involved in drought stress tolerance through enhancing abscisic acid response. Front. Plant Sci. 2021, 12, 790195. [Google Scholar] [CrossRef]
- Niu, L.; Liu, L.; Wang, W. Digging for stress-responsive cell wall proteins for developing stress-resistant maize. Front. Plant Sci. 2020, 11, 576385. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.; Park, S.J.; Ahn, C.S.; Pai, H. MRF family genes are involved in translation control; especially under energy-deficient conditions; and their expression and functions are modulated by the tor signalling pathway. Plant Cell 2017, 29, 2895–2920. [Google Scholar] [CrossRef] [PubMed]
- Ru, J.-N.; Hou, Z.-H.; Zheng, L.; Zhao, Q.; Wang, F.-Z.; Chen, J.; Zhou, Y.-B.; Chen, M.; Ma, Y.-Z.; Xi, Y.-J.; et al. Genome-wide analysis of DEAD-box RNA helicase family in wheat (Triticum aestivum) and functional identification of TaDEAD-box57 in abiotic stress responses. Front. Plant Sci. 2021, 12, 797276. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wang, T.; Rehman, A.U.; Wang, Y.; Qi, J.; Li, Z.; Song, C.; Wang, B.; Yang, S.; Gong, Z. Arabidopsis U-box E3 ubiquitin ligase PUB11 negatively regulates drought tolerance by degrading the receptor-like protein kinases LRR1 and KIN7. J. Integr. Plant Biol. 2021, 63, 494–509. [Google Scholar] [CrossRef] [PubMed]
- Li, B.W.; Gao, S.; Yang, Z.M.; Song, J.B. The F-box E3 ubiquitin ligase AtSDR is involved in salt and drought stress responses in Arabidopsis. Gene 2022, 809, 146011. [Google Scholar] [CrossRef]
- Loucks, C.E.S.; Deen, W.; Gaudin, A.C.M.; Earl, H.J.; Bowley, S.R.; Martin, R.C. Genotypic differences in red clover (Trifolium pratense L.) response under severe water deficit. Plant Soil 2018, 425, 401–414. [Google Scholar] [CrossRef]
- Roy, S. Function of MYB domain transcription factors in abiotic stress and epigenetic control of stress response in plant genome. Plant Signal. Behav. 2016, 11, e1117723. [Google Scholar] [CrossRef]
- Wang, W.; Mauleon, R.; Hu, Z.; Chebotarov, D.; Tai, S.; Wu, Z.; Li, M.; Zheng, T.; Fuentes, R.R.; Zhang, F.; et al. Genomic variation in 3;010 diverse accessions of Asian cultivated rice. Nature 2018, 557, 43–49. [Google Scholar] [CrossRef]
- Shang, L.; Li, X.; He, H.; Yuan, Q.; Song, Y.; Wei, Z.; Lin, H.; Hu, M.; Zhao, F.; Zhang, C.; et al. A super pan-genomic landscape of rice. Cell Res. 2022, 32, 878–896. [Google Scholar] [CrossRef]
- Jayakodi, M.; Padmarasu, S.; Haberer, G.; Bonthala, V.S.; Gundlach, H.; Monat, C.; Lux, T.; Kamal, N.; Lang, D.; Himmelbach, A.; et al. The barley pan-genome reveals the hidden legacy of mutation breeding. Nature 2020, 588, 284–289. [Google Scholar] [CrossRef]
- Gui, S.; Wie, W.; Jiang, C.; Luo, J.; Chen, L.; Wu, S.; Li, W.; Wang, Y.; Li, S.; Yang, N.; et al. A pan-Zea genome map for enhancing maize improvement. Genome Biol. 2022, 23, 178. [Google Scholar] [CrossRef] [PubMed]
- Günther, T.; Nettelblad, C. The presence and impact of reference bias on population genomic studies of prehistoric human populations. PLoS Genet. 2019, 15, e1008302. [Google Scholar] [CrossRef] [PubMed]
- Hara, M.; Tokunaga, K.; Kuboi, T. Isolation of a drought-responsive alkaline α-galactosidase gene from New Zealand spinach. Plant Biotechnol. 2008, 25, 497–501. [Google Scholar] [CrossRef]
- Biniaz, Y.; Tahmasebi, A.; Afsharifar, A.; Tahmasebi, A.; Poczai, P. Meta-analysis of common and differential transcriptomic responses to biotic and abiotic stresses in Arabidopsis thaliana. Plants 2022, 11, 502. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, G.; Kang, H. Rice OsRH58; a chloroplast DEAD-box RNA helicase; improves salt or drought stress tolerance in Arabidopsis by affecting chloroplast translation. BMC Plant Biol. 2019, 19, 17. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zou, Y.; Li, Y.; Sun, C.; Liu, Y.; Cui, Y.; Liu, J.; Yang, Z.; Chen, Y. Exploring the salt- and drought-tolerant genes of alfalfa through expression library screening strategy. Grass Res. 2021, 1, 11. [Google Scholar] [CrossRef]
- Lin, S.; Medina, C.A.; Boge, B.; Hu, J.; Fransen, S.; Norberg, S.; Yu, L.X. Identification of genetic loci associated with forage quality in response to water deficit in autotetraploid alfalfa (Medicago sativa L.). BMC Plant Biol. 2020, 20, 203. [Google Scholar] [CrossRef]
- Yu, L. Identification of single-nucleotide polymorphic loci associated with biomass yield under water deficit in alfalfa (Medicago sativa L.) using genome-wide sequencing and association mapping. Front. Plant Sci. 2017, 8, 1152. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, L.; Zheng, P.; Li, Y.; Rivera, M.; Main, D.; Greene, S.L. Identification of loci associated with drought resistance traits in heterozygous autotetraploid alfalfa (Medicago sativa L.) using genome-wide association studies with genotyping by sequencing. PLoS ONE 2015, 10, e0138931. [Google Scholar] [CrossRef]
- Inès, S.; Talbi, O.; Nasreddine, Y.; Rouached, A.; Gharred, J.; Jdey, A.; Hanana, M.; Abdelly, C. Drought tolerance traits in Medicago species: A review. Arid Land Res. Manag. 2021, 36, 67–83. [Google Scholar] [CrossRef]
Period | DOY | Yr (µ ± SD) for | Cut | |
---|---|---|---|---|
CC | CH | |||
Year 1 | ||||
Drought period | 165 | 0.19 ± 0.02 | 0.31 ± 0.09 | |
178 | 0.44 ± 0.11 | 0.37 ± 0.09 | Cut 2 | |
1st recovery period | 198 | 0.30 ± 0.17 | 0.35 ± 0.07 | |
205 | 0.28 ± 0.12 | 0.59 ± 0.09 | ||
218 | 0.15 ± 0.06 | 0.35 ± 0.12 | ||
225 | 0.22 ± 0.06 | 0.07 ± 0.16 | Cut 3 | |
2nd recovery period | 238 | 0.12 ± 0.12 | −0.59 ± 0.09 | |
245 | 0.19 ± 0.09 | 0.09 ± 0.05 | ||
Year 2 | ||||
Drought period | 175 | 0.26 ± 0.08 | −0.10 ± 0.14 | |
189 | 0.27 ± 0.09 | 0.33 ± 0.09 | ||
195 | 0.14 ± 0.10 | 0.22 ± 0.10 | Cut 2 | |
1st recovery period | 212 | 0.45 ± 0.09 | 0.27 ± 0.10 | |
220 | 0.29 ± 0.08 | 0.31 ± 0.10 | ||
225 | 0.17 ± 0.08 | 0.21 ± 0.10 | ||
245 | 0.01 ± 0.03 | −0.04 ± 0.11 | Cut 3 | |
2nd recovery period | 258 | 0.06 ± 0.11 | −2.75 ± 0.24 |
Trait | Year | Period | SNP ID | Chr | Pos | Var Expl (%) | Effect (β) | Candidate GeneKnown for DR | Distance (bp) | Protein Annotationin PLAZA 5.0 | Reference |
---|---|---|---|---|---|---|---|---|---|---|---|
Associations using the HEN-17-derived SNP set [5] | |||||||||||
CH_165 | 19 | D | NC_060060.1 34138967 | LG2 | 34,138,967 | 9.1 | −0.14 | ||||
CH_178 | 19 | D | NC_060065.1 42224330 | LG7 | 42,224,330 | 5.6 | −0.19 | ||||
CC_238 | 19 | R | NC_060059.1 25418144 | LG1 | 25,418,144 | 8.1 | −0.34 | ||||
CH_238 | 19 | R | NC_060059.1 39822546 | LG1 | 39,822,546 | 7.1 | 0.42 | ||||
CC_218 | 19 | R | NC_060059.1 45472125 | LG1 | 45,472,125 | 11.7 | −0.13 | ||||
CC_245 | 19 | R | NC_060060.1 18680074 | LG2 | 18,680,074 | 7.2 | 0.19 | ||||
CH_225 | 19 | R | NC_060060.1 24894651 | LG2 | 24,894,651 | 5.9 | −0.27 | ureide permease 1-like | SNP in gene | ureide permease-like protein | [32] |
CC_205 | 19 | R | NC_060060.1 37047857 | LG2 | 37,047,857 | 6.0 | 0.25 | ||||
CC_198 | 19 | R | NC_060061.1 9267342 | LG3 | 9,267,342 | 8.4 | 0.33 | uncharacterized LOC123917029 | +1664 | α-galactosidase | [33] |
protein-tyrosine-phosphatase MKP1-like | −3852 | MAP kinase phosphatase | [10] | ||||||||
CH_205 | 19 | R | NC_060061.1 26803013 | LG3 | 26,803,013 | 11.4 | −0.16 | ||||
CH_205 | 19 | R | NC_060061.1 29630157 | LG3 | 29,630,157 | 6.9 | 0.25 | uncharacterized LOC123915918 | −171 | transmembrane protein, putative | [34] |
CH_238 | 19 | R | NC_060062.1 52642219 | LG4 | 52,642,219 | 11.0 | 0.67 | ||||
CH_225 | 19 | R | NC_060063.1 4412473 | LG5 | 4,412,473 | 16.4 | 0.24 | ||||
CC_198 | 19 | R | NC_060063.1 6098087 | LG5 | 6,098,087 | 9.2 | 0.26 | probable arabinosyltransferase ARAD1 | SNP in gene | secondary cell wall glycosyltransferase family 47 protein | [35] |
CH_238 | 19 | R | NC_060064.1 36266159 | LG6 | 36,266,159 | 23.2 | 0.74 | ||||
CC_195 | 20 | D | NC_060062.1 53931991 | LG4 | 53,931,991 | 11.3 | −0.18 | N-acetyl-α-D-glucosaminyl L-malate synthase | +616 | glycosyltransferase family 4 protein | [35] |
CC_212 | 20 | R | NC_060062.1 20504973 | LG4 | 20,504,973 | 5.9 | 0.23 | pectinesterase/pectinesterase inhibitor-like | SNP in gene | pectinesterase/pectinesterase inhibitor | [36] |
CC_225 | 20 | R | NC_060062.1 42084107 | LG4 | 42,084,107 | 5.3 | 0.14 | probable glycosyltransferase At5g20260 | −278 | glycosyltransferase | [35] |
CC_258 | 20 | R | NC_060063.1 49890749 | LG5 | 49,890,749 | 6.6 | 0.23 | MA3 domain-containing translation regulatory factor 1-like | SNP in gene | topoisomerase-like protein | [37] |
Associations using the Milvus-derived SNP set [23] | |||||||||||
CC_178 | 19 | D | LG1_3190272 | LG1 | 3,190,272 | 27.5 | −0.46 | ||||
CH_178 | 19 | D | LG1_4925141 | LG1 | 4,925,141 | 26.5 | −0.12 | DEAD-box ATP-dependent RNA helicase 41 | +352 | DEAD-box ATP-dependent RNA helicase | [38] |
CC_178 | 19 | D | LG1_24162580 | LG1 | 24,162,580 | 31.1 | −0.13 | ||||
CC_178 | 19 | D | LG3_1774487 | LG3 | 1,774,487 | 40.3 | −0.11 | uncharacterized LOC123918397 | SNP in gene | transmembrane protein, putative | [34] |
CH_178 | 19 | D | LG3_3530352 | LG3 | 3,530,352 | 31.1 | −0.14 | ||||
CH_165 | 19 | D | LG4_2357602 | LG4 | 2,357,602 | 5.8 | 0.29 | ||||
CH_165 | 19 | D | scaf_21186_400 | scaf_21186 | 400 | 10.7 | 0.15 | no genes on scaffold | |||
CC_178 | 19 | D | scaf_282_123440 | scaf_282 | 123,440 | 13.1 | 0.25 | ||||
CC_178 | 19 | D | scaf_569_145336 | scaf_569 | 145,336 | 14.9 | −0.04 | ||||
CH_218 | 19 | R | LG1_4970479 | LG1 | 4,970,479 | 21.9 | 0.25 | ||||
CC_218 | 19 | R | LG1_8876185 | LG1 | 8,876,185 | 5.9 | −0.12 | ||||
CC_218 | 19 | R | LG2_16875234 | LG2 | 16,875,234 | 12.6 | 0.07 | E3 ubiquitin–protein ligase HOS1 | SNP in gene | E3 ubiquitin–protein ligase HOS1 | [39,40] |
CH_225 | 19 | R | LG6_9239088 | LG6 | 9,239,088 | 32.9 | −0.25 | uncharacterized LOC123889235 | SNP in gene | transmembrane protein, putative | [34] |
CH_218 | 19 | R | LG6_9239175 | LG6 | 9,239,175 | 34.4 | −0.14 | uncharacterized LOC123889235 | SNP in gene | transmembrane protein, putative | [34] |
CH_238 | 19 | R | LG7_16795407 | LG7 | 16,795,407 | 42.3 | 0.75 | ||||
CC_205 | 19 | R | scaf_17454_702 | scaf_17454 | 702 | 12.3 | 0.13 | no genes on scaffold | |||
CH_225 | 19 | R | scaf_215_44822 | scaf_215 | 44,822 | 22.4 | 0.47 | ||||
CC_205 | 19 | R | scaf_298_215478 | scaf_298 | 215,478 | 11.1 | −0.08 | ||||
CH_238 | 19 | R | scaf_677_20023 | scaf_677 | 20,023 | 12.7 | 0.42 | ||||
CH_238 | 19 | R | scaf_678_58484 | scaf_678 | 58,484 | 25.0 | 0.36 | ||||
CH_218 | 19 | R | scaf_802_53097 | scaf_802 | 53,097 | 10.8 | −0.17 | ||||
CC_218 | 19 | R | scaf_918_18614 | scaf_918 | 18,614 | 11.9 | −0.10 | ||||
CH_189 | 20 | D | LG1_4925076 | LG1 | 4,925,076 | 29.1 | −0.13 | DEAD-box ATP-dependent RNA helicase 41 | +287 | DEAD-box ATP-dependent RNA helicase | [38] |
CH_189 | 20 | D | LG1_12991269 | LG1 | 12,991,269 | 36.6 | −0.14 | flowering time control protein FPA | SNP in gene | RNA recognition motif (RRM) containing protein | [41] |
CC_189 | 20 | D | LG1_26956262 | LG1 | 26,956,262 | 8.6 | −0.09 | ||||
CC_189 | 20 | D | LG3_11998225 | LG3 | 11,998,225 | 18.8 | 0.17 | uncharacterized LOC123913798 | SNP in gene | Myb/SANT-like DNA-binding domain protein | [42] |
CC_195 | 20 | D | LG3_11998225 | LG3 | 11,998,225 | 22.2 | 0.23 | uncharacterized LOC123913798 | SNP in gene | Myb/SANT-like DNA-binding domain protein | [42] |
CC_220 | 20 | R | LG3_2451723 | LG3 | 2,451,723 | 5.3 | −0.15 | ||||
CC_245 | 20 | R | LG6_21196281 | LG6 | 21,196,281 | 8.7 | −0.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vleugels, T.; Ruttink, T.; Ariza-Suarez, D.; Dubey, R.; Saleem, A.; Roldán-Ruiz, I.; Muylle, H. GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.). Genes 2024, 15, 1347. https://doi.org/10.3390/genes15101347
Vleugels T, Ruttink T, Ariza-Suarez D, Dubey R, Saleem A, Roldán-Ruiz I, Muylle H. GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.). Genes. 2024; 15(10):1347. https://doi.org/10.3390/genes15101347
Chicago/Turabian StyleVleugels, Tim, Tom Ruttink, Daniel Ariza-Suarez, Reena Dubey, Aamir Saleem, Isabel Roldán-Ruiz, and Hilde Muylle. 2024. "GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.)" Genes 15, no. 10: 1347. https://doi.org/10.3390/genes15101347
APA StyleVleugels, T., Ruttink, T., Ariza-Suarez, D., Dubey, R., Saleem, A., Roldán-Ruiz, I., & Muylle, H. (2024). GWAS for Drought Resilience Traits in Red Clover (Trifolium pratense L.). Genes, 15(10), 1347. https://doi.org/10.3390/genes15101347