Comparative Transcriptome Analysis of Gossypium hirsutum Mutant (xin w 139) and Wild-Type (Xin W 139) Plants During Seed Embryo Development
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction, cDNA Library Preparation, and Sequencing
2.3. Analysis of DEGs
2.4. Construction of Coexpression Networks
2.5. qRT-PCR
3. Results
3.1. Phenotypic Identification of Xin W 139 and xin w 139
3.2. RNA-seq Analysis
3.3. Differential Expression Analysis within Lines
3.4. Expression Analysis of Differences between Lines
3.5. Cluster Analysis of DEGs
3.6. TF Expression Analysis
3.7. WGCNA and Candidate Gene Annotation
3.8. qRT-PCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, M.; Pei, W.; Wedegaertner, T.; Zhang, J.; Yu, J. Genetics, Breeding and Genetic Engineering to Improve Cottonseed Oil and Protein: A Review. Front. Plant Sci. 2022, 10, 864850. [Google Scholar] [CrossRef] [PubMed]
- Jia, T.; Wang, H.; Cui, S.; Li, Z.; Shen, Y.; Li, H.; Xiao, G. Cotton BLH1 and KNOX6 antagonistically modulate fiber elongation via regulation of linolenic acid biosynthesis. Plant Commun. 2024, 26, 100887. [Google Scholar] [CrossRef]
- Zhang, X.; Jia, S.; He, Y.; Wen, J.; Li, D.; Yang, W.; Yue, Y.; Li, H.; Cheng, K.; Zhang, X. Wall-associated kinase GhWAK13 mediates arbuscular mycorrhizal symbiosis and Verticillium wilt resistance in cotton. New Phytol. 2024, 242, 2180–2194. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, Y.; Huang, Y.; Cui, Y.; Hua, J. Gene network of oil accumulation reveals expression profiles in developing embryos and fatty acid composition in Upland cotton. J. Plant Physiol. 2018, 228, 101–112. [Google Scholar] [CrossRef]
- Cao, Y.; Han, Z.; Zhang, Z.; He, L.; Huang, C.; Chen, J.; Dai, F.; Xuan, L.; Yan, S.; Si, Z.; et al. UDP-glucosyltransferase 71C4 controls the flux of phenylpropanoid metabolism to shape cotton seed development. Plant Commun. 2024, 30, 100938. [Google Scholar] [CrossRef]
- Povilus, R.A.; Gehring, M. Maternal-filial transfer structures in endosperm: A nexus of nutritional dynamics and seed development. Curr. Opin. Plant Biol. 2022, 65, 102121. [Google Scholar] [CrossRef]
- Liu, B.; Wang, X.; Li, K.; Cai, Z. Spatially Resolved Metabolomics and Lipidomics Reveal Salinity and Drought-Tolerant Mechanisms of Cottonseeds. J. Agric. Food Chem. 2021, 69, 8028–8037. [Google Scholar] [CrossRef]
- Ge, X.; Xu, J.; Yang, Z.; Yang, X.; Wang, Y.; Chen, Y.; Wang, P.; Li, F. Efficient genotype-independent cotton genetic transformation and genome editing. J. Integr. Plant Biol. 2023, 65, 907–917. [Google Scholar] [CrossRef]
- Du, X.; Liu, S.; Sun, J.; Zhang, G.; Jia, Y.; Pan, Z.; Xiang, H.; He, S.; Xia, Q.; Xiao, S.; et al. Dissection of complicate genetic architecture and breeding perspective of cottonseed traits by genome-wide association study. BMC Genom. 2018, 19, 451. [Google Scholar] [CrossRef]
- Li, Z.L.; Lee, C.L.; Li, R.A. Anatomical Studies of After-Ripening of Coptis chinensis Seed. J. Integr. Plant Biol. 1985, 27, 122–127. [Google Scholar]
- Sun, Y.; Han, Y.; Sheng, K.; Yang, P.; Cao, Y.; Li, H.; Zhu, Q.H.; Chen, J.; Zhu, S.; Zhao, T. Single-cell transcriptomic analysis reveals the developmental trajectory and transcriptional regulatory networks of pigment glands in Gossypium bickii. Mol. Plant. 2023, 16, 694–708. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Zhang, X.; Huang, C.; Guo, X.; Nie, Y. Somatic embryogenesis and plant regeneration from different wild diploid cotton (Gossypium) species. Plant Cell Rep. 2006, 25, 289–296. [Google Scholar] [CrossRef]
- Qu, Y.; Wu, P.; Ren, J.; Liu, Z.; Tang, J.; Lübberstedt, T.; Li, H.; Chen, S. Mapping of QTL for kernel abortion caused by in vivo haploid induction in maize (Zea mays L.). PLoS ONE 2020, 15, e0228411. [Google Scholar] [CrossRef] [PubMed]
- Gao, Z.; Tian, S.; Hou, J.; Zhang, Z.; Yang, L.; Hu, T.; Li, W.; Liu, Y. RNA-Seq based transcriptome analysis reveals the molecular mechanism of triterpenoid biosynthesis in Glycyrrhiza glabra. Bioorg. Med. Chem. Lett. 2020, 30, 127102. [Google Scholar] [CrossRef]
- Yi, F.; Gu, W.; Chen, J.; Song, N.; Gao, X.; Zhang, X.; Zhou, Y.; Ma, X.; Song, W.; Zhao, H.; et al. High Temporal-Resolution Transcriptome Landscape of Early Maize Seed Development. Plant Cell 2019, 31, 974–992. [Google Scholar] [CrossRef]
- Zhang, J.; Yue, Y.; Hu, M.; Yi, F.; Chen, J.; Lai, J.; Xin, B. Dynamic transcriptome landscape of maize pericarp development. Plant J. 2024, 117, 1574–1591. [Google Scholar] [CrossRef]
- Li, C.; Zhao, J.; Liu, Z.; Yang, Y.; Lai, C.; Ma, J.; Aierxi, A. Comparative Transcriptomic Analysis of Gossypium hirsutum Fiber Development in Mutant Materials (xin w 139) Provides New Insights into Cotton Fiber Development. Plants 2024, 13, 1127. [Google Scholar] [CrossRef]
- Yang, J.; Gao, L.; Liu, X.; Zhang, X.; Wang, X.; Wang, Z. Comparative transcriptome analysis of fiber and nonfiber tissues to identify the genes preferentially expressed in fiber development in Gossypium hirsutum. Sci. Rep. 2021, 11, 22833. [Google Scholar] [CrossRef]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Pertea, M.; Kim, D.; Pertea, G.M.; Leek, J.T.; Salzberg, S.L. Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat. Protoc. 2016, 11, 1650–1667. [Google Scholar] [CrossRef]
- Hu, Y.; Chen, J.; Fang, L.; Zhang, Z.; Ma, W.; Niu, Y.; Ju, L.; Deng, J.; Zhao, T.; Lian, J.; et al. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat. Genet. 2019, 51, 739–748. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Paggi, J.M.; Park, C.; Bennett, C.; Salzberg, S.L. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat. Biotechnol. 2019, 37, 907–915. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Costa-Silva, J.; Domingues, D.; Lopes, F.M. RNA-Seq differential expression analysis: An extended review and a software tool. PLoS ONE 2017, 12, e0190152. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-ΔΔC(T)) Method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zaynab, M.; Kanwal, S.; Furqan, M.; Islam, W.; Noman, A.; Ali, G.M.; Rehman, N.; Zafar, S.; Sughra, K.; Jahanzab, M. Proteomic approach to address low seed germination in Cyclobalnopsis gilva. Biotechnol. Lett. 2017, 39, 1441–1451. [Google Scholar] [CrossRef]
- Nowack, M.K.; Ungru, A.; Bjerkan, K.N.; Grini, P.E.; Schnittger, A. Reproductive cross-talk: Seed development in flowering plants. Biochem. Soc. Trans. 2010, 38, 604–612. [Google Scholar] [CrossRef]
- Zhang, S.; Li, Y.; Li, Y.; Zhao, F.; Zeng, X. Insights on seed abortion (endosperm and embryo development failure) from the transcriptome analysis of the wild type plant species Paeonia lutea. Bioinformation 2020, 16, 638–651. [Google Scholar] [CrossRef]
- Arathi, H.S. Selective embryo abortion in a perennial tree-legume: A case for maternal advantage of reduced seed number per fruit. J. Plant Res. 2011, 124, 675–681. [Google Scholar] [CrossRef] [PubMed]
- Qiu, R.; Liu, Y.; Cai, Z.; Li, J.; Wu, C.; Wang, G.; Lin, C.; Peng, Y.; Deng, Z.; Tang, W.; et al. Glucan Synthase-like 2 is Required for Seed Initiation and Filling as Well as Pollen Fertility in Rice. Rice 2023, 16, 44. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chen, J.; Hu, L.; Zhang, J.; Xiao, F.; Zhang, S.; Shao, F.; Huang, L. Embryological observations on seed abortion in Hibiscus syriacus L. and physiological studies on nutrients, enzyme activity and endogenous hormones. BMC Plant Biol. 2023, 23, 665. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, J.; Zhang, J.; Wen, S.; Xie, S.; Yang, S.; Chen, J.; Zhou, Y.; Long, G. Low-concentration exogenous 3-indoleacetic acid improves fruit-setting rate of Marsdenia tenacissima by inhibiting the expression of embryo abortion-related genes. Gene 2024, 893, 147930. [Google Scholar] [CrossRef]
- Bai, Y.; Zhang, X.; Xuan, X.; Sadeghnezhad, E.; Liu, F.; Dong, T.; Pei, D.; Fang, J.; Wang, C. miR3633a-GA3ox2 Module Conducts Grape Seed-Embryo Abortion in Response to Gibberellin. Int. J. Mol. Sci. 2022, 23, 8767. [Google Scholar] [CrossRef]
- Song, Y.; Wang, X.D.; Rose, R.J. Oil body biogenesis and biotechnology in legume seeds. Plant Cell Rep. 2017, 36, 1519–1532. [Google Scholar] [CrossRef]
- Shao, Q.; Liu, X.; Su, T.; Ma, C.; Wang, P. New Insights into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. Front. Plant Sci. 2019, 10, 1568. [Google Scholar] [CrossRef]
- Thakur, A.; Bhatla, S.C. Proteomic analysis of oil body membrane proteins accompanying the onset of desiccation phase during sunflower seed development. Plant Signal. Behav. 2015, 10, e1030100. [Google Scholar] [CrossRef]
- Li, N.; Meng, H.; Li, S.; Zhang, Z.; Zhao, X.; Wang, S.; Liu, A.; Li, Q.; Song, Q.; Li, X.; et al. Two Plastid Fatty Acid Exporters Contribute to Seed Oil Accumulation in Arabidopsis. Plant Physiol. 2020, 182, 1910–1919. [Google Scholar] [CrossRef]
- Liu, H.; Luo, Q.; Tan, C.; Song, J.; Zhang, T.; Men, S. Biosynthesis- and transport-mediated dynamic auxin distribution during seed development controls seed size in Arabidopsis. Plant J. 2023, 113, 1259–1277. [Google Scholar] [CrossRef]
- Thelander, M.; Landberg, K.; Muller, A.; Cloarec, G.; Cunniffe, N.; Huguet, S.; Soubigou-Taconnat, L.; Brunaud, V.; Coudert, Y. Apical dominance control by TAR-YUC-mediated auxin biosynthesis is a deep homology of land plants. Curr. Biol. 2022, 32, 3838–3846. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Tong, H.; Xiao, Y.; Che, R.; Xu, F.; Hu, B.; Liang, C.; Chu, J.; Li, J.; Chu, C. Activation of Big Grain1 significantly improves grain size by regulating auxin transport in rice. Proc. Natl. Acad. Sci. USA 2015, 112, 11102–11107. [Google Scholar] [CrossRef] [PubMed]
- Blilou, I.; Xu, J.; Wildwater, M.; Willemsen, V.; Paponov, I.; Friml, J.; Heidstra, R.; Aida, M.; Palme, K.; Scheres, B. The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots. Nature 2005, 433, 39–44. [Google Scholar] [CrossRef] [PubMed]
- Treml, B.S.; Winderl, S.; Radykewicz, R.; Herz, M.; Schweizer, G.; Hutzler, P.; Glawischnig, E.; Ruiz, R.A. The gene ENHANCER OF PINOID controls cotyledon development in the Arabidopsis embryo. Development 2005, 132, 4063–4074. [Google Scholar] [CrossRef] [PubMed]
- Schruff, M.C.; Spielman, M.; Tiwari, S.; Adams, S.; Fenby, N.; Scott, R.J. The AUXIN RESPONSE FACTOR 2 gene of Arabidopsis links auxin signalling, cell division, and the size of seeds and other organs. Development 2006, 133, 251–261. [Google Scholar] [CrossRef]
- Zhao, T.; Deng, X.; Xiao, Q.; Han, Y.; Zhu, S.; Chen, J. IAA priming improves the germination and seedling growth in cotton (Gossypium hirsutum L.) via regulating the endogenous phytohormones and enhancing the sucrose metabolism. Ind. Crops Prod. 2020, 155, 112788. [Google Scholar] [CrossRef]
- Mejía, N.; Soto, B.; Guerrero, M.; Casanueva, X.; Houel, C.; Miccono Mde, L.; Ramos, R.; Le Cunff, L.; Boursiquot, J.M.; Hinrichsen, P.; et al. Molecular, genetic and transcriptional evidence for a role of VvAGL11 in stenospermocarpic seedlessness in grapevine. BMC Plant Biol. 2011, 11, 57. [Google Scholar] [CrossRef]
- Zhang, S.; Yao, J.; Wang, L.; Wu, N.; van Nocker, S.; Li, Z.; Gao, M.; Wang, X. Role of grapevine SEPALLATA-related MADS-box gene VvMADS39 in flower and ovule development. Plant J. 2022, 111, 1565–1579. [Google Scholar] [CrossRef]
Gene ID | Gene Name | Functional Annotation |
---|---|---|
GH_A07G0877 | UAM | Amino sugar and nucleotide sugar metabolism |
GH_D01G1934 | FMOs | Carotenoid biosynthesis |
GH_D02G0314 | GST | Glutathione metabolism |
GH_D02G1381 | MADS | Involved in control of flowering time |
GH_D03G0690 | MYB | Involved in trichome and endosperm development |
GH_D06G0373 | T6P | Starch and sucrose metabolism |
GH_D10G0072 | BBE-like | Phenylpropanoid biosynthesis |
GH_D10G0604 | C3H | Involved in seed germination, seedling/seed development |
GH_D11G3021 | NOX | MAPK signaling pathway |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Li, C.; Yang, Y.; Ma, J.; Lai, C.; Maimaiti, P.; Tian, L. Comparative Transcriptome Analysis of Gossypium hirsutum Mutant (xin w 139) and Wild-Type (Xin W 139) Plants During Seed Embryo Development. Genes 2024, 15, 1408. https://doi.org/10.3390/genes15111408
Zhao J, Li C, Yang Y, Ma J, Lai C, Maimaiti P, Tian L. Comparative Transcriptome Analysis of Gossypium hirsutum Mutant (xin w 139) and Wild-Type (Xin W 139) Plants During Seed Embryo Development. Genes. 2024; 15(11):1408. https://doi.org/10.3390/genes15111408
Chicago/Turabian StyleZhao, Jieyin, Chunping Li, Yanlong Yang, Jun Ma, Chengxia Lai, Paerhati Maimaiti, and Liwen Tian. 2024. "Comparative Transcriptome Analysis of Gossypium hirsutum Mutant (xin w 139) and Wild-Type (Xin W 139) Plants During Seed Embryo Development" Genes 15, no. 11: 1408. https://doi.org/10.3390/genes15111408
APA StyleZhao, J., Li, C., Yang, Y., Ma, J., Lai, C., Maimaiti, P., & Tian, L. (2024). Comparative Transcriptome Analysis of Gossypium hirsutum Mutant (xin w 139) and Wild-Type (Xin W 139) Plants During Seed Embryo Development. Genes, 15(11), 1408. https://doi.org/10.3390/genes15111408