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Abstract: Introduction: Hepatitis C infections are the main causes of fatal clinical conditions such
as cirrhosis and HCC development, and biomarkers are needed to predict the development of
these complications. Therefore, it is important to first determine which genes are deregulated in
HCV-cells compared to healthy individuals. In our study, we aimed to identify the genes that
are commonly upregulated or downregulated in HCV-infected cells using two different databases.
Material and Method: In this study, differentially expressed genes (DEGs) that were commonly
upregulated or downregulated were identified using publicly available databases GSE66842 and
GSE84587. Afterwards, the interactions of DEG products with each other and other proteins were
examined using the STRING database. Enrichment analyses of DEGs were performed using the
Enrichr-KG web tool including the Gene Ontology Biological Process, KEGG, Jensen_DISEASES and
DisGeNET libraries. miRNAs targeting DEGs were detected using miRDB and TargetScanHuman8.0.
Results: In HCV-infected cells, the CXCL10 expression is increased in both databases, while the
SCGN and H2BC5 (HIST1H2BD) expression is decreased. No direct interaction was found among
CXCL10, SCGN, H2BC5 in the top ten proteins. CXCL10 is a member of Hepatitis C and viral protein
interactions with cytokine and cytokine receptor KEGG pathways. H2BC5 is a member of viral
carcinogenesis KEGG pathways. Predicted overlapping miRNAs targeted by common DEGs were as
follows: 59 were where CXCL10 was the estimated target, 22 where SCGN was the estimated target
and 29 where H2BC5 (HIST1H2BD) was the estimated target. Conclusions: Our study identified
genes that were upregulated or downregulated in HCV-infected cells in both databases and miRNAs
associated with these genes, using two different databases. This study creates groundwork for
future studies to investigate whether these genes can predict HCV prognosis and HCV-associated
HCC development.
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1. Background

Hepatitis C infections represent a significant public health issue that can lead to
chronic hepatitis, cirrhosis, and hepatocellular carcinoma (HCC) [1]. It is estimated that
approximately 71 million people worldwide are chronically infected with hepatitis C, with
around 400,000 deaths annually attributable to complications associated with the virus [2,3].
While infection can be prevented with vaccination as the primary prophylaxis for Hepatitis
A and Hepatitis B, unfortunately, a vaccine has not yet been developed for Hepatitis C.
Prior to the era of direct-acting antivirals (DAAs), sustained virological response rates were
below 10% with interferon treatments; however, with the introduction of DAAs, these rates
exceed 95% in non-cirrhotic patients and range from 80% to 90% in cirrhotic patients [4–6].
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Furthermore, DAAs have been shown to reduce the risk of mortality by approximately 50%
and the incidence of HCC by about 35% in individuals infected with hepatitis [7].

The hepatotropism of HCV is partially attributed to its binding to various receptors [8].
Studies have demonstrated that there are significant alterations in gene expression levels in
individuals infected with HCV [9,10]. It is important to identify genes whose expression
levels change in the case of HCV infection in order to be able to search for screening and
treatment targets based on these genes in the future. Expressed microRNAs (miRNAs) play
a crucial role in the regulation and expression of these genes. The liver-specific miRNA-122
is involved in enhancing the replication, translation, and stability of the HCV genome [11].
The dysregulation of miR-122 has been associated with aggressive forms of HCC [12]. Viral
infections such as HCV can cause the dysregulation of miRNAs, leading to complications,
including HCC [13]. Additionally, miR-122 is thought to serve as a potential biomarker in
the development of HCC. It has been shown that levels of miR-122-5p, miR-222-3p, miR-146-
5p, miR-150-5p, miR-30C-5p, miR-378a-3p, and miR-20a-5p are elevated in HCV-infected
individuals, with a subsequent decrease in these levels following DAA treatment [14].
Genes that exhibit changes in expression levels in patients infected with HCV, along with
their targeting miRNAs, are promising candidates for screening tests related to the risk of
developing HCC [15].

In our study, we utilized two bioinformatics databases, one comprising Huh7.5.1
cells and the other consisting of primary human hepatocytes, to identify genes exhibiting
changes in expression levels as a result of HCV infection. We also aimed to determine the
pathways in which these genes are enriched, the proteins with which their products are
associated, and the miRNAs that target these genes.

2. Materials and Methods
2.1. Detection of Differentially Expressed Genes (DEGs)

The Gene Expression Omnibus (GEO) DataSets (https://www.ncbi.nlm.nih.gov/
gds) accessed on 21 August 2024 were used in this study. The analyzed datasets were
GSE66842 [16] using the GPL10558 Illumina HumanHT-12 V4.0, San Diego, CA 92121
USA expression beadchip platform and GSE84587 [17] using the GPL6244 [HuGene-1_0-st]
Affymetrix Human Gene 1.0 ST Array [transcript (gene) version] platform. The GSE66842
dataset contains gene expression profiles of differentiated Huh7.5.1 cells infected with the
HCV Jc1 clone. Only data from 3 infected and 3 mock (control) samples on the 10th day of
postinfection were used. Eleven cell line samples from days 3 and 7 were not used. The
GSE84587 dataset contained 2 naive and 2 HCV-infected primary hepatocytes samples with
postinfection day 11 data. Since viral RNA can be detected in the culture medium 10 days
after HCV infection and since the infection was observed to spread to more than 80% of the
cells and reach the highest titers in 8–10 days, datasets with data on the 10th and 11th day
postinfection were used in our study.

Analyses were performed with the GEO2R (https://www.ncbi.nlm.nih.gov/geo/
geo2r/) web tool to identify differentially expressed genes (DEGs) in both datasets. In the
background, it uses GEOquery [18] and limma [19] to identify DEGs in microarray data. In
the current study, the adjusted p score was calculated using the Benjamini and Hochberg
false discovery rate method for multiple testing corrections. The log2 fold change thresh-
old value was set to 1. The adjusted p score significance level cut-off was left as 0.05 by
default. DEGs with adjusted p < 0.05 and Log2(FC) < −1 were considered downregulated,
and those with adjusted p < 0.05 and Log2(FC) > 1 were considered upregulated. Genes
without gene.symbol were not included in further analysis. The PubChem/Gene Symbol
to Gene ID Conversion Tool (https://pubchem.ncbi.nlm.nih.gov/upload/tools/) [20] was
used to identify the IDs of DEGs (Homo sapiens taxonomy ID: 9606) in both datasets.
Then, a Venn diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/) was uti-
lized to identify the common upregulated and downregulated DEG IDs. The web tool
(https://www.ncbi.nlm.nih.gov/gene) was applied to detect the official gene symbols of
common DEGs.

https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/gds
https://www.ncbi.nlm.nih.gov/geo/geo2r/
https://www.ncbi.nlm.nih.gov/geo/geo2r/
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2.2. Protein–Protein Interaction Analysis

The STRING database (https://string-db.org/) was utilized to analyze the interactions
of DEG products with each other and other proteins, if any [21].

2.3. Enrichment Analysis of DEGs

The web tool Enrichr-KG [22] (https://maayanlab.cloud/enrichr-kg) was used for
DEG analysis in Gene Ontology (GO) [23], Kyoto Encyclopedia of Genes and Genomes
(KEGG) [24], Jensen_DISEASES for disease-gene associations [25], and DisGeNET for the
integration of data on disease-associated genes and variants [26]. All processes were set to
top terms 20, and p < 0.05 was considered significant.

2.4. Identification of Potential miRNAs Predictively Targeting DEGs

miRDB [27] (https://mirdb.org/) and TargetScanHuman8.0 (https://www.targetscan.
org/vert_80/) databases were used to identify potential miRNAs targeting DEGs. Tar-
getScan searches for miRNA seed region matches with conserved 8mer, 7mer, and 6mer
regions. Predictions were also ranked based on the weighted context++ score [28]. Tar-
gets were estimated using a machine learning method by using the RNA-seq profiling
dataset study and CLIP-ligation data together in the miRDB database [27]. Then, the
intersecting miRNAs in both databases were detected with the help of a Venn Diagram
(https://bioinformatics.psb.ugent.be/webtools/Venn/). The Cytoscape v3.10.2 program
was utilized to visualize the interactions [29].

3. Results
3.1. DEGs and Ovarlapping DEGs

In the GSE66842 datasetdataset, 34 genes were upregulated and 57 genes were down-
regulated (Figure 1A,B). In this data set, which samples are assigned to which group are
shown in Figure 1C, and the sample numbers are shown in Figure 1D. In the GSE84587
dataset, 265 genes were upregulated and 602 genes were downregulated (Figure 2A,B).
In this data set, which samples are assigned to which group are shown in Figure 2C,
and the sample numbers are shown in Figure 2D. The only commonly upregulated gene
was CXCL10 with gene ID: 3627 (Figure 3A). The common downregulated genes were
SCGN (gene ID: 10590), H2BC5 (HIST1H2BD) (gene ID: 3017), respectively (Figure 3B).
Genes showing separate and common upregulation in the datasets are listed in Supple-
mental Table S1, and genes showing separate and common downregulation are listed in
Supplemental Table S2 according to their gene IDs.

3.2. Protein–Protein Interaction

No direct interaction was found between CXCL10, SCGN, and H2BC5 (HIST1H2BD)
in the top ten proteins. The top ten proteins that CXCL10 interacts with were as follows:
C-C motif chemokine 13, Platelet factor 4 variant(4-74), C-C motif chemokine 21, C-C
chemokine receptor type 5, Connective tissue-activating peptide III(1-81), Platelet factor 4,
Eotaxin, C-X-C motif chemokine 11, C-X-C motif chemokine 9, C-X-C chemokine receptor
type 3; [Isoform 1]. The interaction degrees are given in Table 1, and the interactions are
visualized in Figure 4A.

https://string-db.org/
https://maayanlab.cloud/enrichr-kg
https://mirdb.org/
https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
https://bioinformatics.psb.ugent.be/webtools/Venn/
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Table 1. Top 10 proteins with which CXCL10 interacts functionally and physically.

Proteins that CXCL10
Interacts with

Combined Confidence of
the Functional Interaction

Combined Confidence of the Physical
(Co-Complex) Interaction

CCL13 0.999 (very high) 0.734 (high)

PF4V1 0.999 (very high) 0.972 (very high)

CCL21 0.999 (very high) 0.817 (high)

CCR5 0.999 (very high) 0.995 (very high)

PPBP 0.999 (very high) 0.834 (high)

PF4 0.999 (very high) 0.972 (very high)

CCL11 0.999 (very high) 0.747 (high)

CXCL11 0.999 (very high) 0.974 (very high)

CXCL9 0.999 (very high) 0.981 (very high)

CXCR3 0.999 (very high) 0.996 (very high)
CXCL10, C-X-C motif chemokine 10; CCL13, C-C motif chemokine 13; PF4V1, Platelet factor 4 variant(4-74);
CCL21, C-C motif chemokine 21; CCR5, C-C chemokine receptor type 5; PPBP, Connective tissue-activating
peptide III(1-81); PF4, Platelet factor 4; CCL11, Eotaxin; CXCL11, C-X-C motif chemokine 11; CXCL9, C-X-C motif
chemokine 9; and CXCR3, C-X-C chemokine receptor type 3; [Isoform 1].
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Figure 4. (A) Proteins that CXCL10 interacts with; (B) Proteins that SCGN interacts with; (C) Proteins
that H2BC5 interacts with. Top 10 proteins with which CXCL10, SCGN, H2BC proteins interact
the most: CXCL10, C-X-C motif chemokine 10; CCL13, C-C motif chemokine 13; PF4V1, Platelet
factor 4 variant(4-74); CCL21, C-C motif chemokine 21; CCR5, C-C chemokine receptor type 5; PPBP,
Connective tissue-activating peptide III(1-81); PF4, Platelet factor 4; CCL11, Eotaxin; CXCL11, C-X-C
motif chemokine 11; CXCL9, C-X-C motif chemokine 9; CXCR3, C-X-C chemokine receptor type
3; [Isoform 1]; SCGN, Secretagogin, EF-hand calcium binding protein; SNAP25, Synaptosomal-
associated protein 25; SNAP23, Synaptosomal-associated protein 23; DOC2A, Double C2-like domain-
containing protein α; CROCC, Rootletin; MLF2, Myeloid leukemia factor 2; DDAH2, N(G),N(G)-
dimethylarginine dimethylaminohydrolase 2; TAC1, C-terminal-flanking peptide; ARFGAP2, ADP-
ribosylation factor GTPase-activating protein 2; KIF5B, Kinesin-1 heavy chain; CHGA, p-Glu serpinin
precursor; H2BC5, Histone H2B type 1-D; H2AC6, Histone H2A type 1-C; H4C6, Histone H4; H3C13,
Histone H3.2; CENPA, Histone H3-like centromeric protein A; H2AC7, Histone H2A type 1-D; H2AJ,
Histone H2A.J; H2AC8, Histone H2A type 1-B/E; H2BC9, Histone H2B type 1-H; H2AC18, Histone
H2A type 2-A; and H2BC4, Histone H2B type 1-C/E/F/G/I. Created using the STRING database
(https://string-db.org/).

The top ten proteins that SCGN interacts with were as follows: Synaptosomal-associated
protein 25, Synaptosomal-associated protein 23, Double C2-like domain-containing protein
α, Rootletin, Myeloid leukemia factor 2, N(G),N(G)-dimethylarginine dimethylaminohy-
drolase 2; C-terminal-flanking peptide; ADP-ribosylation factor GTPase-activating protein
2, Kinesin-1 heavy chain, and the p-Glu serpinin precursor. The interaction degrees are
given in Table 2, and the interactions are visualized in Figure 4B.

https://string-db.org/
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Table 2. Top 10 proteins with which SCGN interacts functionally and physically.

Proteins that SCGN
Interacts with

Combined Confidence of
the Functional Interaction

Combined Confidence of the Physical
(Co-Complex) Interaction

SNAP25 0.897 (high) 0.483 (medium)

SNAP23 0.872 (high) 0.674 (medium)

DOC2A 0.846 (high) 0.658 (medium)

CROCC 0.832 (high) 0.587 (medium)

MLF2 0.726 (high) 0.469 (medium)

DDAH2 0.723 (high) 0.546 (medium)

TAC1 0.709 (high) No evidence

ARFGAP2 0.687 (medium) 0.292 (exploratory)

KIF5B 0.636 (medium) 0.452 (medium)

CHGA 0.634 (medium) 0.245 (exploratory)
SCGN, Secretagogin, EF-hand calcium binding protein; SNAP25, Synaptosomal-associated protein 25; SNAP23,
Synaptosomal-associated protein 23; DOC2A, Double C2-like domain-containing protein α; CROCC, Rootletin;
MLF2, Myeloid leukemia factor 2; DDAH2, N(G),N(G)-dimethylarginine dimethylaminohydrolase 2; TAC1,
C-terminal-flanking peptide; ARFGAP2, ADP-ribosylation factor GTPase-activating protein 2; KIF5B, Kinesin-1
heavy chain; and CHGA, p-Glu serpinin precursor.

The top ten proteins that H2BC5 interacts with were as follows: Histone H2A type
1-C, Histone H4, Histone H3.2, Histone H3-like centromeric protein A, Histone H2A type
1-D, Histone H2A.J, Histone H2A type 1-B/E, Histone H2B type 1-H, Histone H2A type
2-A, and Histone H2B type 1-C/E/F/G/I. The interaction degrees are given in Table 3, and
the interactions are visualized in Figure 4C.

Table 3. Top 10 proteins with which H2BC5 interacts functionally and physically.

Proteins that H2BC5
Interacts with

Combined Confidence of
the Functional Interaction

Combined Confidence of the Physical
(Co-Complex) Interaction

H2AC6 0.998 (very high) 0.848 (high)

H4C6 0.992 (very high) 0.953 (very high)

H3C13 0.985 (very high) 0.940 (very high)

CENPA 0.983 (very high) 0.861 (high)

H2AC7 0.983 (very high) 0.941 (very high)

H2AJ 0.979 (very high) 0.956 (very high)

H2AC8 0.977 (very high) 0.737 (high)

H2BC9 0.977 (very high) 0.887 (high)

H2AC18 0.975 (very high) 0.668 (medium)

H2BC4 0.972 (very high) 0.903 (very high)
H2BC5, Histone H2B type 1-D; H2AC6, Histone H2A type 1-C; H4C6, Histone H4; H3C13, Histone H3.2; CENPA,
Histone H3-like centromeric protein A; H2AC7, Histone H2A type 1-D; H2AJ, Histone H2A.J; H2AC8, Histone
H2A type 1-B/E; H2BC9, Histone H2B type 1-H; H2AC18, Histone H2A type 2-A; and H2BC4, Histone H2B type
1-C/E/F/G/I.

3.3. Pathways, Biological Processes, and Diseases in Which DEGs Are Enriched

In terms of pathways that may be associated with HCV, the results were as follows:
From KEGG: CXCL10 are members of the KEGG pathways as follows: Hepatitis C, the
Cytokine–cytokine receptor interaction, Viral protein interaction with cytokine and a cy-
tokine receptor, the TNF signaling pathway, the Toll-like receptor signaling pathway, the
IL-17 signaling pathway, the RIG-I-like receptor signaling pathway, the Chemokine sig-
naling pathway, and the Cytosolic DNA-sensing pathway. From Gene Ontology: CXCL10
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belongs to the biological process as follows: the positive regulation of monocyte chemotaxis
(GO:0090026), the regulation of monocyte chemotaxis (GO:0090025), the positive regulation
of lymphocyte migration (GO:2000403), the regulation of T cell migration (GO:2000404), the
positive regulation of T cell migration (GO:2000406), T cell chemotaxis (GO:0010818), the
regulation of T cell chemotaxis (GO:0010819), T cell migration (GO:0072678), the positive
regulation of mononuclear cell migration (GO:0071677), the positive regulation of leukocyte
chemotaxis (GO:0002690), lymphocyte chemotaxis (GO:0048247), the cellular response to
virus (GO:0098586), the antiviral innate immune response (GO:0140374), and the positive
regulation of calcium ion transport into cytosol (GO:0010524). From Jensen lab: Arthritis,
Cryoglobulinemia, and Hepatitis are associated with the gene CXCL10. From DisGeNET:
Adenitis and Arthritis, Infectious, are associated with the gene CXCL10. All enrichments of
CXCL10 are given in Table 4 with statistical significance values and visualized with bar
charts in Figure 5.

Genes 2024, 15, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 5. Bar charts of gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG) 
pathway, Jensen_DISEASES, and DisGeNET analyses of CXCL10, SCGN, H2BC genes. Created us-
ing the web tool Enrichr-KG (https://maayanlab.cloud/enrichr-kg). 

Table 4. CXCL10 enrichment analysis results. 

Term Library p-Value q-Value z-Score Combined Score 
Cytosolic DNA-sensing pathway KEGG_2021_Human 0.00315 0.0112 19,937 114,800 

RIG-I-like receptor signaling pathway KEGG_2021_Human 0.0035 0.0112 19,930 112,700 
IL-17 signaling pathway KEGG_2021_Human 0.0047 0.0112 19,906 106,700 

Viral protein interaction with cytokine and cyto-
kine receptor 

KEGG_2021_Human 0.005 0.0112 19,900 105,400 

Toll-like receptor signaling pathway KEGG_2021_Human 0.0052 0.0112 19,896 104,600 
TNF signaling pathway KEGG_2021_Human 0.0056 0.0112 19,888 103,100 

Hepatitis C KEGG_2021_Human 0.00785 0.01212 19,843 96,180 
Influenza A KEGG_2021_Human 0.0086 0.01212 19,828 94,300 

Chemokine signaling pathway KEGG_2021_Human 0.0096 0.01212 19,808 92,030 
Epstein–Barr virus infection KEGG_2021_Human 0.0101 0.01212 19,798 90,980 

Coronavirus disease KEGG_2021_Human 0.0116 0.01265 19,768 88,100 
Cytokine–cytokine receptor interaction KEGG_2021_Human 0.01475 0.01475 19,705 83,090 

Cryoglobulinemia Jensen_DISEASES 0.0007 0.004 19,986 145,200 
Dengue disease Jensen_DISEASES 0.00095 0.004 19,981 139,000 

Severe acute respiratory syndrome Jensen_DISEASES 0.0012 0.004 19,976 134,300 
Periodontal disease Jensen_DISEASES 0.00185 0.004083 19,963 125,600 

Figure 5. Bar charts of gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG)
pathway, Jensen_DISEASES, and DisGeNET analyses of CXCL10, SCGN, H2BC genes. Created using
the web tool Enrichr-KG (https://maayanlab.cloud/enrichr-kg).
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Table 4. CXCL10 enrichment analysis results.

Term Library p-Value q-Value z-Score Combined
Score

Cytosolic DNA-sensing pathway KEGG_2021_Human 0.00315 0.0112 19,937 114,800

RIG-I-like receptor signaling pathway KEGG_2021_Human 0.0035 0.0112 19,930 112,700

IL-17 signaling pathway KEGG_2021_Human 0.0047 0.0112 19,906 106,700

Viral protein interaction with cytokine
and cytokine receptor KEGG_2021_Human 0.005 0.0112 19,900 105,400

Toll-like receptor signaling pathway KEGG_2021_Human 0.0052 0.0112 19,896 104,600

TNF signaling pathway KEGG_2021_Human 0.0056 0.0112 19,888 103,100

Hepatitis C KEGG_2021_Human 0.00785 0.01212 19,843 96,180

Influenza A KEGG_2021_Human 0.0086 0.01212 19,828 94,300

Chemokine signaling pathway KEGG_2021_Human 0.0096 0.01212 19,808 92,030

Epstein–Barr virus infection KEGG_2021_Human 0.0101 0.01212 19,798 90,980

Coronavirus disease KEGG_2021_Human 0.0116 0.01265 19,768 88,100

Cytokine–cytokine receptor interaction KEGG_2021_Human 0.01475 0.01475 19,705 83,090

Cryoglobulinemia Jensen_DISEASES 0.0007 0.004 19,986 145,200

Dengue disease Jensen_DISEASES 0.00095 0.004 19,981 139,000

Severe acute respiratory syndrome Jensen_DISEASES 0.0012 0.004 19,976 134,300

Periodontal disease Jensen_DISEASES 0.00185 0.004083 19,963 125,600

Hepatitis Jensen_DISEASES 0.0023 0.004083 19,954 121,200

Encephalitis Jensen_DISEASES 0.00245 0.004083 19,951 119,900

Human immunodeficiency virus
infectious disease Jensen_DISEASES 0.00345 0.004928 19,931 113,000

Influenza Jensen_DISEASES 0.00495 0.006187 19,901 105,600

Lung disease Jensen_DISEASES 0.00595 0.006611 19,881 101,900

Arthritis Jensen_DISEASES 0.0093 0.0093 19,814 92,680

Regulation of endothelial tube
morphogenesis (GO:1901509) GO_Biological_Process_2021 0.00025 0.00525 19,995 165,800

Regulation of morphogenesis of an
epithelium (GO:1905330) GO_Biological_Process_2021 0.00035 0.00525 19,993 159,100

T cell chemotaxis (GO:0010818) GO_Biological_Process_2021 0.00055 0.00525 19,989 150,000

Positive regulation of lymphocyte
migration (GO:2000403) GO_Biological_Process_2021 0.0007 0.00525 19,986 145,200

Antiviral innate immune
response (GO:0140374) GO_Biological_Process_2021 0.0007 0.00525 19,986 145,200

Regulation of T cell
chemotaxis (GO:0010819) GO_Biological_Process_2021 0.00075 0.00525 19,985 143,800

T cell migration (GO:0072678) GO_Biological_Process_2021 0.0009 0.00525 19,982 140,100

Positive regulation of monocyte
chemotaxis (GO:0090026) GO_Biological_Process_2021 0.00095 0.00525 19,981 139,000

Regulation of T cell
migration (GO:2000404) GO_Biological_Process_2021 0.001 0.00525 19,980 138,000

Positive regulation of T cell
migration (GO:2000406) GO_Biological_Process_2021 0.00125 0.00525 19,975 133,500
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Table 4. Cont.

Term Library p-Value q-Value z-Score Combined
Score

Regulation of monocyte
chemotaxis (GO:0090025) GO_Biological_Process_2021 0.0013 0.00525 19,974 132,700

Positive regulation of calcium ion
transmembrane transport (GO:1904427) GO_Biological_Process_2021 0.00135 0.00525 19,973 132,000

Positive regulation of mononuclear cell
migration (GO:0071677) GO_Biological_Process_2021 0.00155 0.00525 19,969 129,200

Positive regulation of release of
sequestered calcium ion into

cytosol (GO:0051281)
GO_Biological_Process_2021 0.0017 0.00525 19,966 127,300

Positive regulation of calcium ion
transport into cytosol (GO:0010524) GO_Biological_Process_2021 0.0017 0.00525 19,966 127,300

Cellular response to virus (GO:0098586) GO_Biological_Process_2021 0.00175 0.00525 19,965 126,700

Lymphocyte chemotaxis (GO:0048247) GO_Biological_Process_2021 0.0022 0.006212 19,956 122,100

Blood circulation (GO:0008015) GO_Biological_Process_2021 0.00255 0.006261 19,949 119,100

Regulation of release of sequestered
calcium ion into cytosol (GO:0051279) GO_Biological_Process_2021 0.0026 0.006261 19,948 118,700

Positive regulation of leukocyte
chemotaxis (GO:0002690) GO_Biological_Process_2021 0.0027 0.006261 19,946 118,000

Histiocytic Necrotizing Lymphadenitis DisGeNET 0.0003 0.01002 19,994 162,200

Fetid chronic bronchitis DisGeNET 0.00035 0.01002 19,993 159,100

Adenitis DisGeNET 0.00035 0.01002 19,993 159,100

Intestinal Graft Versus Host Disease DisGeNET 0.0004 0.01002 19,992 156,400

Cytomegalovirus encephalitis DisGeNET 0.0004 0.01002 19,992 156,400

Arthritis, Bacterial DisGeNET 0.00045 0.01002 19,991 154,100

Cutaneous Candidiasis DisGeNET 0.00045 0.01002 19,991 154,100

Capillary Leak Syndrome DisGeNET 0.00045 0.01002 19,991 154,100

Proliferative glomerulonephritis DisGeNET 0.0005 0.01002 19,990 151,900

Arthritis, Infectious DisGeNET 0.0006 0.01002 19,988 148,300

Lysinuric Protein Intolerance DisGeNET 0.00065 0.01002 19,987 146,700

Mucocutaneous leishmaniasis DisGeNET 0.0007 0.01002 19,986 145,200

Inflammatory neuropathy DisGeNET 0.0007 0.01002 19,986 145,200

Lymphoid interstitial pneumonia DisGeNET 0.0007 0.01002 19,986 145,200

Enterovirus 71 infection DisGeNET 0.0007 0.01002 19,986 145,200

Stage 0 Breast Carcinoma DisGeNET 0.00075 0.01002 19,985 143,800

Stromal keratitis DisGeNET 0.00075 0.01002 19,985 143,800

Common Cold DisGeNET 0.0008 0.01002 19,984 142,500

Auricular swelling DisGeNET 0.0008 0.01002 19,984 142,500

RETINOSCHISIS 1, X-LINKED,
JUVENILE DisGeNET 0.0008 0.01002 19,984 142,500

From Jensen lab: Carcinoma is associated with the gene SCGN. All the enrichments belonging to SCGN are given
in Table 5 with statistical significance values and visualized with bar charts in Figure 5.
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Table 5. SCGN enrichment analysis results.

Term Library p-Value q-Value z-Score Combined
Score

Iron metabolism disease Jensen_DISEASES 0.00085 0.0017 19,983 141,300

Carcinoma Jensen_DISEASES 0.5659 0.5659 8682 4943

Regulation of long-term synaptic
potentiation (GO:1900271) GO_Biological_Process_2021 0.0015 0.0045 19,970 129,900

Cellular calcium ion
homeostasis (GO:0006874) GO_Biological_Process_2021 0.0068 0.0074 19,864 99,140

Regulation of cytosolic calcium ion
concentration (GO:0051480) GO_Biological_Process_2021 0.0074 0.0074 19,852 97,400

Serum iron measurement DisGeNET 0.0007 0.0091 19,986 145,200

Mean corpuscular hemoglobin
concentration determination DisGeNET 0.00505 0.02427 19,899 105,200

Uric acid measurement (procedure) DisGeNET 0.0056 0.02427 19,888 103,100

Squamous cell carcinoma of lung DisGeNET 0.01415 0.03144 19,717 83,960

Pituitary Adenoma DisGeNET 0.0147 0.03144 19,706 83,160

Pituitary Neoplasms DisGeNET 0.0148 0.03144 19,704 83,020

Erythrocyte Mean Corpuscular
Hemoglobin Test DisGeNET 0.01935 0.03144 19,613 77,370

Finding of Mean Corpuscular Hemoglobin DisGeNET 0.01935 0.03144 19,613 77,370

Small-cell carcinoma of lung DisGeNET 0.03365 0.04861 19,327 65,550

Diabetes Mellitus, Non-Insulin-Dependent DisGeNET 0.0836 0.1087 18,328 45,480

Carcinoma of lung DisGeNET 0.1238 0.1463 17,524 36,610

Colorectal Carcinoma DisGeNET 0.1465 0.1588 17,069 32,780

Colorectal Cancer DisGeNET 0.1649 0.1649 16,702 30,100

H2BC5 is a member of the viral carcinogenesis KEGG pathway. All enrichments belonging to H2BC5 are given in
Table 6 with statistical significance values and visualized with bar charts in Figure 5.

Table 6. H2BC5 enrichment analysis results.

Term Library p-Value q-Value z-Score Combined
Score

Systemic lupus erythematosus KEGG_2021_Human 0.00675 0.01015 19,865 99,290

Alcoholism KEGG_2021_Human 0.0093 0.01015 19,814 92,680

Neutrophil extracellular trap formation KEGG_2021_Human 0.00945 0.01015 19,811 92,350

Viral carcinogenesis KEGG_2021_Human 0.01015 0.01015 19,797 90,870

Nucleosome assembly (GO:0006334) GO_Biological_Process_2021 0.0029 0.0094 19,942 116,500

Chromatin assembly (GO:0031497) GO_Biological_Process_2021 0.00365 0.0094 19,927 111,900

Nucleosome organization (GO:0034728) GO_Biological_Process_2021 0.0047 0.0094 19,906 106,700

Protein-DNA complex
assembly (GO:0065004) GO_Biological_Process_2021 0.00715 0.01072 19,857 98,110

Protein modification by small protein
conjugation (GO:0032446) GO_Biological_Process_2021 0.02045 0.02454 19,591 76,200

Protein ubiquitination (GO:0016567) GO_Biological_Process_2021 0.02625 0.02625 19,475 70,890

The Hepatitis C and Viral protein interaction with cytokine and cytokine receptor KEGG pathways, of which
CXCL10 is a member, are shown in Figure 6A,B, and the viral carcinogenesis KEGG pathway, of which H2BC5 is a
member, is shown in Figure 6C.
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Figure 6. (A) CXCL10 in hepatitis C KEGG pathway, (B) CXCL10 in viral protein interaction with
cytokine and cytokine receptor KEGG pathway; (C) H2BC5 in viral carcinogenesis KEGG pathway.
Images from KEGG database (https://www.genome.jp/kegg/genes.html).

3.4. miRNAs Predictively Targeting DEGs

TargetScanHuman8.0 included CXCL10 ENST00000306602.1, Human HIST1H2BD
ENST00000289316.2 transcripts. For SCGN, the Representative (most prevalent) transcript
(ENSG00000079689.9) was used. According to the results obtained using the Venn diagram
in the TargetScanHuman8.0 and miRDB databases, 59 overlapping miRNAs were detected,
including CXCL10 as a target, 22 SCGN as a target, and 29 H2BC5 (HIST1H2BD) as a target
(Figure 7 and Table 7). Of these, hsa-miR-548ao-5p and hsa-miR-548ax were found to
target both CXCL10 and HIST1H2BD. hsa-miR-3689c, hsa-miR-7106-5p, hsa-miR-1273h-5p,
hsa-miR-30b-3p, hsa-miR-6780a-5p, hsa-miR-5584-5p, hsa-miR-3689b-3p, hsa-miR-3689a-
3p, and hsa-miR-6779-5p were found to target both CXCL10 and SCGN. Target miRNA
interactions are visualized in Figure 8.

https://www.genome.jp/kegg/genes.html
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Table 7. Overlapping miRNAs in TargetScanHuman8.0 and miRDB databases where CXCL10, SCGN,
and H2BC5 (HIST1H2BD) are potential targets.

Targeted
Genes

Total
Count Predicted miRNAs

CXCL10 59

hsa-miR-34c-5p hsa-miR-449b-5p hsa-miR-4789-3p hsa-miR-1276 hsa-miR-135b-5p hsa-let-7a-2-3p
hsa-miR-4524a-5p hsa-miR-3689c hsa-miR-7106-5p hsa-miR-6739-5p hsa-miR-6771-3p hsa-miR-3667-3p
hsa-miR-4742-3p hsa-miR-4524b-5p hsa-miR-6773-5p hsa-miR-449a hsa-miR-6733-5p hsa-miR-6505-5p

hsa-miR-5584-5p hsa-miR-155-3p hsa-let-7g-3p hsa-miR-411-3p hsa-miR-27b-5p hsa-miR-5587-5p
hsa-miR-6079 hsa-miR-548ax hsa-miR-34a-5p hsa-miR-466 hsa-miR-9500 hsa-miR-1273h-5p hsa-miR-6731-5p
hsa-miR-30b-3p hsa-miR-135a-5p hsa-miR-297 hsa-miR-4291 hsa-miR-6830-3p hsa-miR-4451 hsa-miR-4251

hsa-miR-1250-3p hsa-miR-3689a-3p hsa-miR-379-3p hsa-miR-3153 hsa-miR-646 hsa-miR-6507-5p
hsa-miR-3942-3p hsa-miR-570-3p hsa-miR-153-5p hsa-miR-135b-3p hsa-miR-7152-5p hsa-miR-548ao-5p

hsa-miR-6780a-5p hsa-miR-6724-5p hsa-miR-296-5p hsa-miR-8085 hsa-miR-4252 hsa-miR-219a-2-3p
hsa-miR-3689b-3p hsa-miR-4666a-5p hsa-miR-6779-5p

SCGN 22

hsa-miR-8485 hsa-miR-3689c hsa-miR-3613-3p hsa-miR-7106-5p hsa-miR-4659a-5p hsa-miR-494-3p
hsa-miR-634 hsa-miR-4659b-5p hsa-miR-548an hsa-miR-4670-3p hsa-miR-5584-5p hsa-miR-4700-5p

hsa-miR-1273h-5p hsa-miR-30b-3p hsa-miR-3692-3p hsa-miR-1228-3p hsa-miR-887-5p hsa-miR-3689a-3p
hsa-miR-6835-3p hsa-miR-6780a-5p hsa-miR-3689b-3p hsa-miR-6779-5p

HIST1H2BD 29

hsa-miR-1248 hsa-miR-4652-3p hsa-miR-1255b-5p hsa-miR-361-5p hsa-miR-5004-3p hsa-miR-491-3p
hsa-miR-571 hsa-miR-548ax hsa-miR-4514 hsa-miR-6734-3p hsa-miR-373-5p hsa-miR-499b-5p

hsa-miR-888-5p hsa-miR-4778-5p hsa-miR-616-5p hsa-miR-548n hsa-miR-4713-3p hsa-miR-3944-5p
hsa-miR-371b-5p hsa-miR-7107-3p hsa-miR-6753-3p hsa-miR-194-5p hsa-miR-148a-5p hsa-miR-1255a

hsa-miR-6758-3p hsa-miR-4279 hsa-miR-376a-5p hsa-miR-4692 hsa-miR-548ao-5p
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4. Discussion

Our study is the first to demonstrate the upregulation of CXCL10 and downregulation
of SCGN and H2BC5 following HCV infection using two distinct databases.

Gene regulation is mediated by miRNAs, with over 1,000 miRNAs currently identi-
fied [30]. Gene analyses are conducted more accurately using real-time reverse transcription-
PCR (RT-PCR). Changes in gene expression in patients infected with HCV affect transcrip-
tional networks regulated by interferons (IFNs), including both IFNα/β-inducible genes
(such as STAT1, STAT2, ISGF3G/IRF9, IFI27, G1P3, G1P2, OAS2, and MX1) and IFNγ-
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inducible genes (including CXCL9, CXCL10, and CXCL11) [9,31]. miRNAs are involved
in regulating cellular differentiation, proliferation, and apoptosis. Previous studies have
shown that miR-122 levels are inversely correlated with HCV replication and infectious
viral production [11]. It was also demonstrated that IFNβ regulates the expression of nu-
merous cellular miRNAs in vitro, and eight of these IFNβ-induced miRNAs have predicted
targeting sites within the HCV genomic RNA [32]. Additionally, IFNβ leads to a significant
decrease in miR-122 expression. These findings strongly support the notion that the IFN
system utilizes cellular miRNAs to combat HCV infection.

CXCL10 (interferon-inducible protein-10, IP-10) binds to its receptor CXCR3, allowing
it to attract CXCR3+ cells such as T lymphocytes, monocytes, and NK cells [33]. Numerous
studies have associated CXCL10 expression with poor response to anti-HCV treatment
and poor prognosis, as well as with HCV-related HCC [34–36]. The association of CXCL10
with CXCR3 increases tumor proliferation and migration and plays a role in the metastasis
mechanism, so, in the future, CXCL10 can be used both in HCV-associated HCC screening,
and there is a possibility that CXCL10-targeting therapies can be used in the treatment of
HCV-associated HCC [37].

Secretagogin (SCGN) is an EF-hand calcium (Ca²+) binding protein that is highly
expressed in pancreatic β cells [38]. Previous studies have indicated that SCGN plays a
critical role in various aspects of pancreatic β cell function, including the regulation of
insulin secretion, the proliferation of α and β cells, and the maintenance of β cell specifi-
cation within islet cells [39,40]. To date, only one study has investigated the relationship
between SCGN expression and HCV, which reported increased expression in individuals
infected with HCV genotype 3a [41]. Our study is the first to show that SCGN expression is
downregulated in both datasets containing HCV Jc1 clone-infected cells and HCV-infected
primary hepatocytes.

Regarding H2BC5 (HIST1H2BD), there is limited information available. Bioinformatic
analyses have shown that H2BC5 is more highly expressed in lung adenocarcinoma and
squamous cell carcinoma tissues compared to healthy tissue, with high expression correlat-
ing with better survival in lung cancer patients [42]. Another study identified a relationship
between H2BC5 expression and osimertinib resistance in patients undergoing NGS anal-
ysis [43]. However, there is no existing data on H2BC5 expression in HCV-infected cell
lines. Our analysis revealed a decrease in H2BC5 expression in both databases concerning
HCV-infected cell lines.

This study is significant for evaluating two different databases and identifying com-
monly upregulated or downregulated genes in both; however, we acknowledge certain
limitations. The primary limitation is that our analysis was conducted using publicly
available bioinformatic databases, which precludes an examination of the relationship
between HCV and the potential development of HCC. Nonetheless, the upregulated and
downregulated genes identified in our findings provide preliminary insights for future
studies aimed at predicting HCC development in individuals infected with HCV. Future
studies are needed to examine the relationship between changes in the levels of genes we
detected during follow-up in HCV-infected individuals and the development of HCC.

5. Conclusions

miRNAs and gene expression changes are promising candidates for biomarkers in
various diseases. In our study, we demonstrated alterations in the expression levels of
CXCL10, SCGN, and H2BC5 in cells infected with HCV using two distinct databases.
Identifying these genes and determining the associated miRNAs is crucial for future studies
aimed at predicting the prognosis of HCV or identifying biomarkers that can predict the
development of HCV-related HCC.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15121502/s1, Table S1: Differentially upregulated genes in
the datasets; Table S2: Differentially downregulated genes in the datasets.
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