Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and High Nitrogen Treatment
2.2. RNA Extraction and Transcriptome Sequencing
2.3. Weighted Gene Co-Expression Network Analysis
2.4. Differential Expression Genes Analysis
2.5. Identification and Enrichment Analysis of the Core Modules
2.6. Real-Time Quantitative PCR Analysis
2.7. Transcriptomic SNPs and INDELs Analysis
2.8. Protein Structure and Interaction Prediction
3. Results
3.1. Identification of Gene Co-Expression Modules Through WGCNA
3.2. Correlation Between the Modules and NUE
3.3. Comprehensive Analysis of the Core Modules
3.3.1. Analysis of the Purple Module
3.3.2. Analysis of the Lightcyan Module
3.3.3. Analysis of the Darkorange Module
3.3.4. The Analysis of the Cyan Module
3.3.5. The Analysis of the Skyblue Module
3.4. Information and Functional Annotation of 25 Selected Genes
3.5. Expression Profile Analysis of the Key Genes
3.6. Protein Interaction Prediction for CsaV4_3G000307
3.7. Protein Interaction Prediction for CsaV4_1G002492
3.8. Protein Interaction Prediction of CsaV4_2G003460
3.9. Protein Interaction Prediction of CsaV4_7G001709
3.10. Transcriptomic SNP and INDEL Analysis of the Key Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mallick, P.K. Evaluating Potential Importance of Cucumber (Cucumis sativus L.-Cucurbitaceae): A Brief Review. Int. J. Appl. Sci. Biotechnol. 2022, 10, 12–15. [Google Scholar] [CrossRef]
- Bai, L.; Deng, H.; Zhang, X.; Yu, X.; Li, Y. Gibberellin Is Involved in Inhibition of Cucumber Growth and Nitrogen Uptake at Suboptimal Root-Zone Temperatures. PLoS ONE 2016, 11, e0156188. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, J.; Liu, W.; Wang, Q.; Wang, T.; Li, X.; Lu, X.; Gao, L.; Zhang, W. CsNPF7.2 Has a Potential to Regulate Cucumber Seedling Growth in Early Nitrogen Deficiency Stress. Plant Mol. Biol. Rep. 2020, 38, 461–477. [Google Scholar] [CrossRef]
- McAllister, C.H.; Beatty, P.H.; Good, A.G. Engineering nitrogen use efficient crop plants: The current status. Plant Biotechnol. J. 2012, 10, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wu, L.; Ding, Y.; Yao, X.; Wu, X.; Weng, F.; Li, G.; Liu, Z.; Tang, S.; Ding, C.; et al. Nitrogen fertilizer application affects lodging resistance by altering secondary cell wall synthesis in japonica rice (Oryza sativa). J. Plant Res. 2017, 130, 859–871. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, W.; Ding, Y.; Zhang, J.; Cambula, E.D.; Weng, F.; Liu, Z.; Ding, C.; Tang, S.; Chen, L.; et al. Shading contributes to the reduction of stem mechanical strength by decreasing cell wall synthesis in japonica rice (Oryza sativa L.). Front. Plant Sci. 2017, 8, 881. [Google Scholar] [CrossRef]
- Haque, M.A.; Haque, M.M. M. Growth, yield and nitrogen use efficiency of new rice variety under variable nitrogen rates. Am. J. Plant Sci. 2016, 7, 612–622. [Google Scholar] [CrossRef]
- Hua, B.; Liang, F.; Zhang, W.; Qiao, D.; Wang, P.; Teng, H.; Zhang, Z.; Liu, J.; Miao, M. The Potential Role of bZIP55/65 in Nitrogen Uptake and Utilization in Cucumber Is Revealed via bZIP Gene Family Characterization. Plants 2023, 12, 3228. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Naylor, R.; Crews, T.; David, M.B.; Drinkwater, L.; Holland, E.; Johnes, P.; Katzenberger, J.; Martinelli, L.; Matson, P.; et al. Nutrient imbalances in agricultural development. Science 2009, 324, 1519–1520. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.W.; Dai, S.L.; Dong, X.J. Current Status and Environment Impact of Direct Straw Return in China’s Cropland—A Review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Ma, X.; Tan, Z.; Cheng, Y.; Wang, T.; Cao, M.; Xuan, Z.; Du, H. Water-Nutrient Coupling Strategies That Improve the Carbon, Nitrogen Metabolism, and Yield of Cucumber under Sandy Cultivated Land. Land 2024, 13, 958. [Google Scholar] [CrossRef]
- Cui, Z.; Chen, C.; Chen, Q.; Huang, J. Difference in the Contribution of Driving Factors to Nitrogen Loss with Surface Runoff between the Hill and Plain Agricultural Watersheds. J. Geophys. Res. Biogeosci. 2024, 129, e2023JG007931. [Google Scholar] [CrossRef]
- Zhang, S.; Hou, X.; Wu, C.; Zhang, C. Impacts of Climate and Planting Structure Changes on Watershed Runoff and Nitrogen and Phosphorus Loss. Sci. Total Environ. 2020, 706, 134489. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Tao, F.; Chen, Y. Effects of Climate Change, Crop Planting Structure, and Agricultural Management on Runoff, Sediment, Nitrogen, and Phosphorus Losses in the Hai-River Basin since the 1980s. J. Clean. Prod. 2022, 359, 132066. [Google Scholar] [CrossRef]
- Hu, B.; Wang, W.; Ou, S.; Tang, J.; Li, H.; Che, R.; Zhang, Z.; Chai, X.; Wang, H.; Wang, Y.; et al. Variation in NRT1.1B contributes to nitrate-use divergence between rice subspecies. Nat. Genet. 2015, 47, 834–838. [Google Scholar] [CrossRef]
- Wei, S.; Li, X.; Lu, Z.; Zhang, H.; Ye, X.; Zhou, Y.; Li, J.; Yan, Y.; Pei, H.; Duan, F.; et al. A transcriptional regulator that boosts grain yields and shortens the growth duration of rice. Science 2022, 377, eabi8455. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Yan, Y.; Liu, W.; Zhang, W.; Gao, L.; Tian, Y. Knock-Down of CsNRT2.1, a Cucumber Nitrate Transporter, Reduces Nitrate Uptake, Root length, and Lateral Root Number at Low External Nitrate Concentration. Front. Plant Sci. 2018, 9, 722. [Google Scholar] [CrossRef]
- Xin, M.; Qin, Z.-w.; Yang, J.; Zhou, X.-y.; Wang, L. Functional analysis of the nitrogen metabolism-related gene CsGS1 in cucumber. J. Integr. Agric. 2021, 20, 1515–1524. [Google Scholar] [CrossRef]
- Zhang, B.; Horvath, S. A general framework for weighted gene co-expression network analysis. Stat. Appl. Genet. Mol. Biol. 2005, 4, 17. [Google Scholar] [CrossRef]
- Horvath, S. Weighted Network Analysis: Applications in Genomics and Systems Biology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Ivliev, A.E.; ’t Hoen, P.A.C.; Sergeeva, M.G. Coexpression network analysis identifies transcriptional modules related to proastrocytic differentiation and sprouty signaling in glioma. Cancer Res. 2010, 70, 10060–10070. [Google Scholar] [CrossRef]
- Hu, Y.; Wu, G.; Rusch, M.; Lukes, L.; Buetow, K.H.; Zhang, J.; Hunter, K.W. Integrated cross-species transcriptional network analysis of metastatic susceptibility. Proc. Natl. Acad. Sci. USA 2012, 109, 3184–3189. [Google Scholar] [CrossRef] [PubMed]
- Giotti, B.; Joshi, A.; Freeman, T.C. Meta-analysis reveals conserved cell cycle transcriptional network across multiple human cell types. BMC Genom. 2017, 18, 30. [Google Scholar] [CrossRef] [PubMed]
- Zinati, Z.; Nazari, L. Deciphering the Molecular Basis of Abiotic Stress Response in Cucumber (Cucumis Sativus L.) Using RNA-Seq Meta-Analysis, Systems Biology, and Machine Learning Approaches. Sci. Rep. 2023, 13, 12942. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Yu, Y.; Song, T.; Yu, N.; Cui, N.; Ma, Z.; Chen, L.; Fan, H. Transcriptome Sequence Analysis of the Defense Responses of Resistant and Susceptible Cucumber Strains to Podosphaera Xanthii. Front. Plant Sci. 2022, 13, 872218. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Tian, P.; Sun, J.; Li, B.; Jia, J.; Yuan, J.; Li, X.; Gu, S.; Pang, X. CsMYC2 Is Involved in the Regulation of Phenylpropanoid Biosynthesis Induced by Trypsin in Cucumber (Cucumis Sativus) during Storage. Plant Physiol. Biochem. 2023, 196, 65–74. [Google Scholar] [CrossRef]
- Karimi, M.; Pakdel, M.H.; Lashaki, K.B.; Soorni, A. Identification of hub salt-responsive genes in Cucumis sativus using a long non-coding RNA and mRNA interaction network. Hort. Environ. Biotechnol. 2022, 63, 539–556. [Google Scholar] [CrossRef]
- Wang, J.; Jia, J.; Sun, J.; Pang, X.; Li, B.; Yuan, J.; Chen, E.; Li, X. Trypsin Preservation: CsUGT91C1 Regulates Trilobatin Biosynthesis in Cucumis Sativus during Storage. Plant Growth Regul. 2023, 100, 633–646. [Google Scholar] [CrossRef]
- López-Kleine, L.; Leal, L.; López, C. Biostatistical approaches for the reconstruction of gene co-expression networks based on transcriptomic data. Brief. Funct. Genom. 2013, 12, 457–467. [Google Scholar] [CrossRef]
- Zhang, T.; Gu, M.; Liu, Y.; Lv, Y.; Zhou, L.; Lu, H.; Liang, S.; Bao, H.; Zhao, H. Development of novel InDel markers and genetic diversity in Chenopodium quinoa through whole-genome re-sequencing. BMC Genom. 2017, 18, 685. [Google Scholar] [CrossRef]
- Roy, S.C.; Lachagari, V.B.R. Assessment of SNP and InDel Variations Among Rice Lines of Tulaipanji × Ranjit. Rice Sci. 2017, 24, 336–348. [Google Scholar] [CrossRef]
- Xu, Q.; Shi, Y.; Yu, T.; Xu, X.; Yan, Y.; Qi, X.; Chen, X. Whole-Genome Resequencing of a Cucumber Chromosome Segment Substitution Line and Its Recurrent Parent to Identify Candidate Genes Governing Powdery Mildew Resistance. PLoS ONE 2016, 11, e0164469. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Dong, S.; Shi, Y.; Miao, H.; Liu, X.; Beckles, D.M.; Gu, X.; Zhang, S. Fine mapping and candidate gene analysis of gummy stem blight resistance in cucumber stem. Theor. Appl. Genet. 2022, 135, 3117–3125. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.; Li, S.; Deng, Q.; Wang, H.; Yang, R. Identification of a major-effect QTL associated with pre-harvest sprouting in cucumber (Cucumis sativus L.) using the QTL-seq method. BMC Genom. 2021, 22, 249. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Zhang, T.; Li, L.; Xu, J.; Qin, X.; Zhang, T.; Cui, L.; Lou, Q.; Li, J.; Chen, J. Identification of a stable major-effect QTL (Parth 2.1) controlling parthenocarpy in cucumber and associated candidate gene analysis via whole genome re-sequencing. BMC Plant Biol. 2016, 16, 182. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Wei, A.; Tong, X.; Han, Y.; Liu, N.; Chen, Z.; Yang, H.; Wu, H.; Lv, M.; Wang, N.N.; et al. A Genome-Wide Association Study to Identify Novel Candidate Genes Related to Low-Nitrogen Tolerance in Cucumber (Cucumis sativus L.). Genes 2023, 14, 662. [Google Scholar] [CrossRef]
- Parkhomchuk, D.; Borodina, T.; Amstislavskiy, V.; Banaru, M.; Hallen, L.; Krobitsch, S.; Lehrach, H.; Soldatov, A. Transcriptome analysis by strand-specific sequencing of complementary DNA. Nucleic Acids Res. 2009, 37, e123. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef]
- Robinson, M.D.; McCarthy, D.J.; Smyth, G.K. edgeR: A Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010, 26, 139–140. [Google Scholar] [CrossRef]
- Crooks, G.E.; Hon, G.; Chandonia, J.M.; Brenner, S.E. WebLogo: A sequence logo generator. Genome Res. 2004, 14, 1188–1190. [Google Scholar] [CrossRef]
- Schneider, T.D.; Stephens, R.M. Sequence Logos: A New Way to Display Consensus Sequences. Nucleic Acids Res. 1990, 18, 6097–6100. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Sutter, B.M.; Tu, B.P. Autophagy sustains glutamate and aspartate synthesis in Saccharomyces cerevisiae during nitrogen starvation. Nat. Commun. 2021, 12, 57. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Nan, Y.; He, H.; Ma, B.-L.; McLaughlin, N.B.; Wu, X.; Chen, B.; Gao, Y. Post-flowering nitrogen uptake leads to the genotypic variation in seed nitrogen accumulation of oilseed rape. Plant Soil 2021, 461, 281–294. [Google Scholar] [CrossRef]
- Kim, S.A.; Kwak, J.M.; Jae, S.K.; Wang, M.H.; Nam, H.G. Overexpression of the AtGluR2 Gene Encoding anArabidopsis Homolog of Mammalian Glutamate Receptors Impairs CalciumUtilization and Sensitivity to Ionic Stress in TransgenicPlants. Plant Cell Physiol. 2001, 42, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.; Turano, F.J. The putative glutamate receptor 1.1 (AtGLR1.1) functions as a regulator of carbon and nitrogen metabolism in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 2003, 100, 6872–6877. [Google Scholar] [CrossRef]
- Seo, J.-H.; Dhungana, S.K.; Kang, B.-K.; Baek, I.-Y.; Sung, J.-S.; Ko, J.-Y.; Jung, C.-S.; Kim, K.-S.; Jun, T.-H. Development and Validation of SNP and InDel Markers for Pod-Shattering Tolerance in Soybean. Int. J. Mol. Sci. 2022, 23, 2382. [Google Scholar] [CrossRef]
- Barton, H.J.; Zeng, K. New Methods for Inferring the Distribution of Fitness Effects for INDELs and SNPs. Mol. Biol. Evol. 2018, 35, 1536–1546. [Google Scholar] [CrossRef]
- Shaofen, J.; Jingsong, L.; Qiong, L.; Qiang, L.; Chunyun, G.; Zhenhua, Z. NRT1.1 Regulates Nitrate Allocation and Cadmium Tolerance in Arabidopsis. Front. Plant Sci. 2019, 10, 384. [Google Scholar] [CrossRef]
- Sun, J.; Zheng, N. Molecular Mechanism Underlying the Plant NRT1.1 Dual-Affinity Nitrate Transporter. Front. Physiol. 2015, 6, 386. [Google Scholar] [CrossRef]
- Wen, Z.; Tyerman, S.D.; Dechorgnat, J.; Ovchinnikova, E.; Dhugga, K.S.; Kaiser, B.N. Maize NPF6 proteins are homologs of Arabidopsis CHL1 that are selective for both nitrate and chloride. Plant Cell 2017, 29, 2581–2596. [Google Scholar] [CrossRef]
- Wang, W.; Hu, B.; Li, A.; Chu, C. NRT1.1s in plants: Functions beyond nitrate transport. J. Exp. Bot. 2020, 71, 4373–4379. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.Z.; Fang, S.Q.; Ye, Z.Q.; Liu, D.; Zhao, K.L.; Jin, C.W. Dual-Affinity Nitrate Transport/Signalling and Its Roles in Plant Abiotic Stress Resistance. Front. Plant Sci. 2021, 12, 715694. [Google Scholar] [CrossRef] [PubMed]
- Rolly, N.K.; Yun, B.-W. Regulation of Nitrate (NO3) Transporters and Glutamate Synthase-Encoding Genes under Drought Stress in Arabidopsis: The Regulatory Role of AtbZIP62 Transcription Factor. Plants 2021, 10, 2149. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.Y.; Tian, W.H.; Zhou, M.; Zhu, Q.Y.; Du, W.X.; Zhu, Y.X.; Liu, X.X.; Lin, X.Y.; Zheng, S.J.; Jin, C.W. STOP1 Activates NRT1.1-Mediated Nitrate Uptake to Create a Favorable Rhizospheric pH for Plant Adaptation to Acidity. Plant Cell 2021, 33, 3658–3674. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; Qin, D.; Zheng, Y.; Wang, Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int. J. Mol. Sci. 2023, 24, 14406. [Google Scholar] [CrossRef]
- Takagi, H.; Watanabe, S.; Tanaka, S.; Matsuura, T.; Mori, I.C.; Hirayama, T.; Shimada, H.; Sakamoto, A. Disruption of ureide degradation affects plant growth and development during and after transition from vegetative to reproductive stages. BMC Plant Biol. 2018, 18, 287. [Google Scholar] [CrossRef]
- Lu, M.Z.; Carter, A.M.; Tegeder, M. Altering ureide transport in nodulated soybean results in whole-plant adjustments of metabolism, assimilate partitioning, and sink strength. J. Plant Physiol. 2022, 269, 153613. [Google Scholar] [CrossRef]
- Thu, S.W.; Lu, M.-Z.; Carter, A.M.; Collier, R.; Gandin, A.; Sitton, C.C.; Tegeder, M. Role of ureides in source-to-sink transport of photoassimilates in non-fixing soybean. J. Exp. Bot. 2020, 71, 4495–4511. [Google Scholar] [CrossRef]
- Meng, X.; Zhang, Z.; Wang, H.; Nai, F.; Wei, Y.; Li, Y.; Wang, X.; Ma, X.; Tegeder, M. Multi-scale analysis provides insights into the roles of ureide permeases in wheat nitrogen use efficiency. J. Exp. Bot. 2023, 74, 5564–5590. [Google Scholar] [CrossRef]
- Wen, B.; Xiao, W.; Mu, Q.; Li, D.; Chen, X.; Wu, H.; Li, L.; Peng, F. How does nitrate regulate plant senescence? Plant Physiol. Biochem. 2020, 157, 60–69. [Google Scholar] [CrossRef]
- Luo, L.; Zhang, Y.; Xu, G. How does nitrogen shape plant architecture? J. Exp. Bot. 2020, 71, 4415–4427. [Google Scholar] [CrossRef] [PubMed]
- Mur, L.A.J.; Simpson, C.; Kumari, A.; Gupta, A.K.; Gupta, K.J. Moving nitrogen to the centre of plant defence against pathogens. Ann. Bot. 2017, 119, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zou, C.; Gao, X.; Guan, X.; Zhang, Y.; Shi, X.; Chen, X. Nitrate leaching from open-field and greenhouse vegetable systems in China: A meta-analysis. Environ. Sci. Pollut. Res. 2018, 25, 31007–31016. [Google Scholar] [CrossRef] [PubMed]
- Lay-Pruitt, K.S.; Takahashi, H. Integrating N Signals and Root Growth: The Role of Nitrate Transceptor NRT1.1 in Auxin-Mediated Lateral Root Development. J. Exp. Bot. 2020, 71, 4365–4368. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Wang, T.; Ju, C.; Deng, J.; Zhang, T.; Li, M.; Tian, H.; Wang, C. Abscisic Acid Signaling Negatively Regulates Nitrate Uptake via Phosphorylation of NRT1.1 by SnRK2s in Arabidopsis. J. Integr. Plant Biol. 2021, 63, 597–610. [Google Scholar] [CrossRef]
- Fortunato, S.; Nigro, D.; Lasorella, C.; Marcotuli, I.; Gadaleta, A.; de Pinto, M.C. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023, 13, 1771. [Google Scholar] [CrossRef]
- Li, H.; Hu, B.; Chu, C. Nitrogen Use Efficiency in Crops: Lessons from Arabidopsis and Rice. J. Exp. Bot. 2017, 68, 2477–2488. [Google Scholar] [CrossRef]
- Nagarajan, S.N.; Lenoir, C.; Grangeasse, C. Recent Advances in Bacterial Signaling by Serine/Threonine Protein Kinases. Trends Microbiol. 2022, 30, 553–566. [Google Scholar] [CrossRef]
- Beekmann, K.; de Haan, L.H.J.; Actis-Goretta, L.; van Bladeren, P.J.; Rietjens, I.M.C.M. Effect of Glucuronidation on the Potential of Kaempferol to Inhibit Serine/Threonine Protein Kinases. J. Agric. Food Chem. 2016, 64, 1256–1263. [Google Scholar] [CrossRef]
- Roskoski, R. Cyclin-dependent Protein Serine/Threonine Kinase Inhibitors as Anticancer Drugs. Pharmacol. Res. 2019, 139, 471–488. [Google Scholar] [CrossRef]
- Alhabbar, Z.; Yang, R.; Juhasz, A.; Xin, H.; She, M.; Anwar, M.; Sultana, N.; Diepeveen, D.; Ma, W.; Islam, S.; et al. NAM gene allelic composition and its relation to grain-filling duration and nitrogen utilisation efficiency of Australian wheat. PLoS ONE 2018, 13, e0205448. [Google Scholar] [CrossRef] [PubMed]
- Zougari, A.; Guy, S.; Planchon, C. Genotypic lipoxygenase variation in soybean seeds and response to nitrogen nutrition. Plant Breed. 1995, 114, 313–316. [Google Scholar] [CrossRef]
- Shang, C.; Wang, W.; Zhu, S.; Wang, Z.; Qin, L.; Alam, M.A.; Xie, J.; Yuan, Z. The responses of two genes encoding phytoene synthase (Psy) and phytoene desaturase (Pds) to nitrogen limitation and salinity up-shock with special emphasis on carotenogenesis in Dunaliella parva. Algal Res. 2018, 32, 1–10. [Google Scholar] [CrossRef]
- Zimmermann, S.E.; Benstein, R.M.; Flores-Tornero, M.; Blau, S.; Anoman, A.D.; Rosa-Téllez, S.; Gerlich, S.C.; Salem, M.A.; Alseekh, S.; Kopriva, S.; et al. The phosphorylated pathway of serine biosynthesis links plant growth with nitrogen metabolism. Plant Physiol. 2021, 186, 1487–1506. [Google Scholar] [CrossRef] [PubMed]
- Grubbs, R.C.; Trossbach, J.; Houghton, B.C.; Hitchcock, F.A. Effects of Folic Acid on Respiratory and Nitrogen Metabolism. J. Appl. Physiol. 1949, 2, 327–342. [Google Scholar] [CrossRef]
- Tong, S.; Zhao, L.; Zhu, D.; Chen, W.; Chen, L.; Li, D. From formic acid to single-cell protein: Genome-scale revealing the metabolic network of Paracoccus communis MA5. Bioresour. Bioprocess. 2022, 9, 55. [Google Scholar] [CrossRef]
- Feng, L.; Yang, T.; Zhang, Z.; Li, F.; Chen, Q.; Sun, J.; Shi, C.; Deng, W.; Tao, M.; Tai, Y.; et al. Identification and characterization of cationic amino acid transporters (CATs) in tea plant (Camellia sinensis). Plant Growth Regul. 2018, 84, 57–69. [Google Scholar] [CrossRef]
- The, S.V.; Snyder, R.; Tegeder, M. Targeting Nitrogen Metabolism and Transport Processes to Improve Plant Nitrogen Use Efficiency. Front. Plant Sci. 2021, 11, 628366. [Google Scholar] [CrossRef]
- Franklin, O.; Cambui, C.A.; Gruffman, L.; Palmroth, S.; Oren, R.; Näsholm, T. The carbon bonus of organic nitrogen enhances nitrogen use efficiency of plants. Plant Cell Environ. 2017, 40, 25–35. [Google Scholar] [CrossRef]
Gene ID | Gene Description | Organism Species | Module | Related References |
---|---|---|---|---|
CsaV4_1G000167 | BALDH—Benzaldehyde dehydrogenase, mitochondrial | Antirrhinum majus | lightcyan | |
CsaV4_1G002491 | TAL2—Transaldolase 2 | Streptomyces coelicolor | darkorange | |
CsaV4_1G002492 | GLR22—Glutamate receptor 2.2 | Arabidopsis thaliana | lightcyan | [43,44,45,46] |
CsaV4_1G002522 | NAS4—Probable nicotianamine synthase 4 | Arabidopsis thaliana | lightcyan | |
CsaV4_1G003819 | TENAC—Bifunctional TH2 protein, mitochondrial | Arabidopsis thaliana | purple | |
CsaV4_2G000093 | HXK2—Hexokinase-2 | Arabidopsis thaliana | purple | |
CsaV4_2G000502 | NAS3—Nicotianamine synthase 3 | Arabidopsis thaliana | lightcyan | |
CsaV4_2G000612 | MDL3— (R)-mandelonitrile lyase 3 | Prunus serotina | darkorange | |
CsaV4_2G003460 | GLR35—Glutamate receptor 3.5 | Arabidopsis thaliana | lightcyan | [43,44,45,46] |
CsaV4_2G003519 | AB14B—ABC transporter B family member 14 | Arabidopsis thaliana | lightcyan | |
CsaV4_3G000307 | NPF6.3—Protein NRT1/PTR FAMILY 6.3 | Arabidopsis thaliana | darkorange | [47,48,49,50,51,52,53,54,55,56] |
CsaV4_3G001073 | AB9C—ABC transporter C family member 9 | Arabidopsis thaliana | lightcyan | |
CsaV4_3G003070 | SCP35—Serine carboxypeptidase-like 35 | Arabidopsis thaliana | purple | |
CsaV4_3G004703 | SOX—Probable sarcosine oxidase | Arabidopsis thaliana | purple | |
CsaV4_3G004765 | ISOA3—Isoamylase 3, chloroplastic | Arabidopsis thaliana | purple | |
CsaV4_4G000627 | ISPF—2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase, chloroplastic | Arabidopsis thaliana | purple | |
CsaV4_4G000995 | RIBA1—Bifunctional riboflavin biosynthesis protein, chloroplastic | Arabidopsis thaliana | lightcyan | |
CsaV4_4G002807 | ZIP3—Zinc transporter 3 | Arabidopsis thaliana | lightcyan | |
CsaV4_5G000080 | CHIA—Acidic endochitinase | Cucumis sativus | purple | |
CsaV4_6G000223 | PER52—Peroxidase 52 | Arabidopsis thaliana | darkorange | |
CsaV4_6G000691 | RBL13—RHOMBOID-like protein 13 | Arabidopsis thaliana | purple | |
CsaV4_6G002589 | ACCO1—1-aminocyclopropane-1-carboxylate oxidase 1 | Cucumis melo | lightcyan | |
CsaV4_6G002776 | PIP21—Probable aquaporin PIP2-1 | Oryza sativa subsp. japonica | darkorange | |
CsaV4_7G000732 | XYN4—Endo-1,4-beta-xylanase 4 | Arabidopsis thaliana | purple | |
CsaV4_7G001709 | UPS2—Ureide permease 2 | Arabidopsis thaliana | skyblue | [57,58,59,60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Wei, A.; Liu, C.; Liu, N.; Han, Y.; Chen, Z.; Wang, N.; Du, S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes 2024, 15, 1505. https://doi.org/10.3390/genes15121505
Ma L, Wei A, Liu C, Liu N, Han Y, Chen Z, Wang N, Du S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes. 2024; 15(12):1505. https://doi.org/10.3390/genes15121505
Chicago/Turabian StyleMa, Linhao, Aimin Wei, Ce Liu, Nan Liu, Yike Han, Zhengwu Chen, Ningning Wang, and Shengli Du. 2024. "Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis" Genes 15, no. 12: 1505. https://doi.org/10.3390/genes15121505
APA StyleMa, L., Wei, A., Liu, C., Liu, N., Han, Y., Chen, Z., Wang, N., & Du, S. (2024). Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes, 15(12), 1505. https://doi.org/10.3390/genes15121505