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Abstract: Objectives: The aim of this study was to investigate the genomic structure of the cattle
breeds selected for meat and milk production and to identify selection signatures between them.
Methods: A total of 391 animals genotyped at 41,258 SNPs and belonging to nine breeds were
considered: Angus (N = 62), Charolais (46), Hereford (31), Limousin (44), and Piedmontese (24),
clustered in the Meat group, and Brown Swiss (42), Holstein (63), Jersey (49), and Montbéliarde (30),
clustered in the Milk group. The population stratification was analyzed by principal component
analysis (PCA), whereas selection signatures were identified by univariate (Wright fixation index,
FST) and multivariate (canonical discriminant analysis, CDA) approaches. Markers with FST values
larger than three standard deviations from the chromosomal mean were considered interesting.
Attention was focused on markers selected by both techniques. Results: A total of 10 SNPs located
on seven different chromosomes (7, 10, 14, 16, 17, 18, and 24) were identified. Close to these SNPs
(±250 kb), 165 QTL and 51 genes were found. The QTL were grouped in 45 different terms, of
which three were significant (Bonferroni correction < 0.05): milk fat content, tenderness score, and
length of productive life. Moreover, genes mainly associated with milk production, immunity and
environmental adaptation, and reproduction were mapped close to the common SNPs. Conclusions:
The results of the present study suggest that the combined use of univariate and multivariate
approaches can help to better identify selection signatures due to directional selection.

Keywords: selection signatures; discriminant analysis; wright fixation index; multivariate statistics

1. Introduction

In recent decades, the use of genomic information derived from new technologies led
to huge improvements in both the quantity and quality of milk and meat production [1]. In
particular, the inclusion of BeadChip mapping of single-nucleotide polymorphisms (SNPs)
has accelerated the selection progress compared to previous methodologies based only on
pedigree and phenotype information [2,3]. The inclusion of genomic data (i.e., SNP panels)
allowed the move from genetic selection to the genomic selection era, which shortened
the generation interval [4], increased the accuracy of breeding values [5], and improved
the reliability of the studies on selection signatures [6]. The intense natural and artificial
selection pressure that livestock breeds have undergone left footprints of selection in the
genome that are usually called selection signatures [7,8]. The analysis of these selection
signatures is a way to find genomic regions involved in production and reproduction traits
of interest [7]. Moreover, the identification of these footprints is useful to observe what
was changed during the selection process [9] and makes it possible to find differences
between selected or unselected breeds [10]. Several methods have been developed to
analyze signatures of selection [9]. One of the most common is the fixation index (FST),

Genes 2024, 15, 1516. https://doi.org/10.3390/genes15121516 https://www.mdpi.com/journal/genes

https://doi.org/10.3390/genes15121516
https://doi.org/10.3390/genes15121516
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/genes
https://www.mdpi.com
https://orcid.org/0009-0000-0351-9658
https://orcid.org/0000-0003-4637-8669
https://orcid.org/0000-0001-5950-8456
https://orcid.org/0000-0002-6588-923X
https://doi.org/10.3390/genes15121516
https://www.mdpi.com/journal/genes
https://www.mdpi.com/article/10.3390/genes15121516?type=check_update&version=1


Genes 2024, 15, 1516 2 of 16

firstly proposed by Wright [11] and then refined by several authors, e.g., [9]. This statistical
method is commonly used to compare breeds and helps in studying differences among
populations [12–15]. FST ranges between 0 and 1, and gives an estimate of both the gene
flow and the genetic distance between populations [16]. This index analyzes the genome of
livestock from a univariate point of view, i.e., one SNP at a time. Genomic data, however,
can be considered a multivariate system in which the variables (the genotypes and/or the
SNPs) are highly correlated with one another [17]. Thus, a multivariate technique that
accounts for correlations among variables and considers them simultaneously could be
more profitable in analyzing such data [18,19]. On the contrary, multivariate techniques
are usually more complex, require stronger assumptions, and need more computational
resources than univariate approaches [20]. Several studies have analyzed selection signa-
tures using a multivariate approach, such as stepwise discriminant analysis (SDA) [21],
principal component analysis (PCA) [22], or canonical discriminant analysis (CDA) [23].
Therefore, the use of these techniques could help to identify associations between genes and
economic traits such as milk production [24], meat quality [25], health, and environmental
adaptation [26].

However, most of the available literature on genomic differences between beef and
dairy cattle used univariate approaches, while fewer studies involved multivariate ap-
proaches [23]. However, the simultaneous use of different techniques helps to increase
the reliability of selection signature studies. Investigating only signals found by more
than one approach has been proposed as a valid strategy to decrease the detection of false
positives [27–30].

The primary aims of this work were: (i) to study the genomic background of different
cattle breeds selected for meat and milk production; (ii) to search for selection signatures
associated with these economically important traits; and (iii) to compare univariate and
multivariate approaches to increase the detection power of selection signatures.

2. Materials and Methods

Animal care and use committee approval was not needed, as data were obtained from
preexisting databases.

2.1. Data

The datasets used in this study were retrieved using the WIDDE online database [31].
A total of 9 cattle populations were considered:

• Angus (ANG) = 62 animals [32];
• Brown Swiss (BSW) = 18 [33] and 24 [32] animals;
• Charolais (CHA) = 20 [33] and 26 [32] animals;
• Hereford (HER) = 31 animals [32];
• Holstein (HOL) = 63 animals [32];
• Jersey (JER) = 21 [33] and 28 [32] animals;
• Limousin (LIM) = 44 animals [32];
• Montbéliarde (MON) = 30 animals [33];
• Piedmontese (PIE) = 24 animals [32].

All animals were genotyped with Illumina BovineSNP50v1, and with the WIDDE
tool, a total of 50,463 autosomal SNPs in common among the populations were considered.
The raw dataset was submitted to quality control using PLINK 1.9 [34]. The animal and
SNP call rates had to be larger than 0.95, and minor allele frequency had to be ≥0.05.
Moreover, SNPs that deviated from the Hardy–Weinberg equilibrium (p < 10−6) or were
not mapped according to the considered release were also discarded. After quality control,
all 391 animals and 41,258 markers mapped on the 29 Bos taurus autosome (BTA) were
retained for further analyses. Data were then divided in two groups: Meat (ANG, CHA,
HFD, LMS, and PMT), with a total of 207 animals, and Milk (BSW, HOL, JER, and MON),
with a total of 184 animals. Table 1 summarizes the dataset.
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Table 1. Summary of the dataset.

Group Breed Code Animals

Meat Angus ANG 62
Meat Charolais CHA 46
Meat Hereford HFD 31
Meat Limousin LMS 44
Meat Piedmontese PMT 24

Milk Brown Swiss BSW 42
Milk Holstein HOL 63
Milk Jersey JER 49
Milk Montbéliarde MON 30

2.2. Population Stratification

The genomic relationship matrix (GRM) was built using the GCTA v. 1.92 [35]. In
order to analyze the population stratification and graphically visualize relationships among
animals, principal component analysis (PCA) was carried out on the GRM using R software
v. 4.2.1 [36].

2.3. Selection Signature Detection

The selection signatures between the two groups, Meat and Milk, were studied using
both the univariate and multivariate approaches.

The univariate approach used was the Wright fixation index (FST), computed using
PLINK v. 1.9 [34] and the equation proposed by Weir and Cockerham [12]. In order to
remove background noise and to improve the clarity of the peaks, the estimated FST values
were analyzed with LOWESS, a local weighted regression technique [37] that fits a smooth
curve through points in a scatterplot. The regression was fitted using a window of 20 SNPs.
Markers with a smoothed value exceeding three standard deviations from the chromosomal
mean were considered interesting. A total of 20 pairwise FST comparisons were carried out:
between the Meat and Milk groups and between the breeds in the Meat and Milk groups.

For the multivariate approach, the canonical discriminant analysis (CDA) was used to
discover differences between the Meat and Milk groups. CDA is a multivariate technique
to detect differences between groups and to study the relationships between the variables
involved. CDA computes a new set of variables that are linear combinations of the original
variables. The structure of these new variables, called canonical function (CAN), can be
represented by the following equation:

CAN = C1X1 + C2X2+ . . .. . . + CnXn (1)

where Xi are the original variables (SNPs in this study), and Ci are the canonical coefficients.
In general, if p is the number of groups, CDA extracts p-1 CANs. In this study, we tested
two main groups (Meat vs. Milk), and within each group, pairwise comparisons between
breeds were performed. Thus, only one CAN for each comparison was extracted.

Separation between groups was evaluated using the Mahalanobis distance between
the group centroids and tested with Hotelling’s T-squared test [38]. CDA, however, can be
computed only if the data matrix is at full rank, i.e., the variables are linearly independent,
and the number of columns is greater than the number of rows. With genomic data, this
setup is difficult to achieve, the number on variables (41,258 SNPs in the present research)
being much bigger than the number of rows (391 genotyped animals in the present research).
To reduce the dimension of the data matrix, stepwise discriminant analysis (SDA) was
applied. This is a statistical technique specifically conceived to select a reduced subset
of variables that better separate groups. With this aim, SDA was first applied within
each chromosome and the retained SNPs were joined to obtain a reduced, genome-wide
dataset. The last set of data was submitted to a new run of SDA until the number of
linearly independent markers was lower than the number of animals involved. Finally,
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CDA, developed using the last selected SNPs, was exploited to test differences between
breeds. Both SDA and CDA were performed using SAS software.

2.4. Marker-of-Interest Selection

We focused on the markers found in common among the selected SNPs independently
using the two techniques (FST and CDA) to analyze differences between Meat and Milk
groups. Moreover, to select only SNPs potentially associated with divergent selection
signatures of these two traits, milk and meat, we removed SNPs selected in the series of
pairwise comparisons between breeds within each group.

2.5. Gene and Quantitative Trait Loci Research

We used the R package GALLO (Genomic Annotation in Livestock for Positional
Candidate Loci) [39], to search for quantitative trait loci (QTL) and to perform enrichment
analysis. In order to be more conservative, the Bonferroni correction for p-values was
applied in the enrichment analysis. As per Manca et al. [18], we used a window of
250 kb before and after each selected SNP. The annotated genes close to the SNPs were
obtained from the Genome Data Viewer provided by the National Center for Biotechnology
Information (NCBI). Potential phenotypes associated with each annotated gene were
investigated through a comprehensive literature search. The list of mapped genes was also
analyzed using STRING 12.0 (https://string-db.org, accessed on 1 August 2024).

3. Results

The first ten principal components extracted from the GRM explained more than 77%
of the total variability (Figure 1).
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Figure 1. Scree plot of the variance associated with the first ten principal components extracted from
the genomic relationship matrix.

Figure 2 displays the scatterplot of the first two principal components. Animals
belonging to the Milk group (triangles in Figure 2) seem to be more shifted to the left of the
graph (i.e., at negative values of PC1) compared to the Meat group (points in Figure 2). In
fact, the average PC1 score computed for Milk (−0.54) was significantly lower (p < 0.001)
than the value computed for Meat (0.48). The three more distant breeds were JER (negative
values of PC1 and positive value of PC2), HOL (values close to zero for PC1 and negative
for PC2), and ANG (positive values for both PC1 and PC2). All the other breeds were
closely grouped around zero for the first two PCs (Figure 2).

Supplementary Table S1 shows the results of the pairwise comparisons obtained both
with the univariate (i.e., FST) and the multivariate (i.e., CDA) approach, applied between
breeds within the Meat and Milk groups. In the Meat group, the number of interesting SNPs

https://string-db.org
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from FST comparisons ranged from 412 (ANG vs. HFD) to 648 (LIM vs. PMT), whereas in
the Milk group, the fewest SNPs (334) were found in the comparison HOL vs. JER and the
most (442) for the comparison BSW vs. JER. The number of SNPs highlighted by CDA was,
as expected, lower than the number of involved animals. The lowest values were observed
for ANG vs. PMT (29) and JER vs. MON (39) in the Meat and Milk groups, respectively.
The largest were found for ANG vs. CHA (61) and for HOL vs. JER (60).
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Figure 2. Graphical representation of the first two principal components extracted from the genomic
relationship matrix.

The Meat and Milk groups were differentiated by 502 and 295 markers (Table 2) found
by FST (see also Figure 3) and CDA, respectively. Thirty-eight important SNPs were found
on BTA1 by FST analysis, whereas the most markers (18) identified by CDA was found on
BTA6 (Table 2). The fewest markers per chromosome were 6 for both CDA (chromosomes
2, 26, 28, and 29) and FST (chromosomes 12, 22, and 23).
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Table 2. Results of Wright fixation index (FST) and canonical discriminant analysis (CDA) in separat-
ing Milk and Meat groups.

Chromosome Average FST Value SNP FST Average CDA Value SNP CDA Common SNPs

1 0.079 ± 0.008 38 −1.67 ± 8.21 12 –
2 0.076 ± 0.003 24 0.72 ± 3.72 6 –
3 0.086 ± 0.006 19 −1.76 ± 3.78 10 –
4 0.084 ± 0.009 29 −0.13 ± 9.39 16 –
5 0.109 ± 0.011 31 0.91 ± 8.36 7 –
6 0.078 ± 0.005 30 1.40 ± 7.73 18 –
7 0.086 ± 0.008 24 −1.58 ± 6.92 14 1
8 0.073 ± 0.001 9 1.26 ± 7.63 12 –
9 0.076 ± 0.005 14 −0.38 ± 1.7 9 –
10 0.095 ± 0.018 26 0.76 ± 6.17 10 2
11 0.095 ± 0.014 23 2.09 ± 3.19 8 –
12 0.070 ± 0.002 6 −1.44 ± 5.36 8 –
13 0.114 ± 0.020 16 1.49 ± 8.99 17 –
14 0.120 ± 0.019 28 2.41 ± 5.98 9 1
15 0.077 ± 0.007 11 −0.31 ± 2.72 11 –
16 0.088 ± 0.008 17 3.19 ± 10.58 15 2
17 0.079 ± 0.006 10 2.04 ± 5.74 10 1
18 0.087 ± 0.006 19 4.47 ± 4.09 7 2
19 0.093 ± 0.020 11 1.60 ± 3.86 9 –
20 0.089 ± 0.023 14 −1.27 ± 7.41 12 –
21 0.138 ± 0.053 11 −0.04 ± 5.22 8 1
22 0.071 ± 0.003 6 0.72 ± 5.79 11 –
23 0.095 ± 0.037 6 −1.21 ± 4.04 15 –
24 0.084 ± 0.014 15 1.79 ± 5.50 8 1
25 0.060 ± 0.003 12 3.98 ± 4.97 7 –
26 0.087 ± 0.007 19 −1.52 ± 6.00 6 1
27 0.088 ± 0.011 9 1.48 ± 6.13 8 –
28 0.086 ± 0.016 15 5.68 ± 9.83 6 –
29 0.079 ± 0.009 10 −2.78 ± 6.93 6 –

Total 502 295 12

As shown in Figure 3, the highest peak of FST was computed at the beginning of
BTA21, where the marker BTB-01171128 (at 1,187,232 bp) showed the largest value (0.27).
In consequence, this SNP could be considered the marker that most differentiates the
two groups. Moreover, the largest average FST value (0.138 ± 0.053) was computed for
BTA21, for instance, the lowest value (0.060 ± 0.003) was observed for BTA25 (Table 2).

SDA selected 237 SNPs able to significantly separate (p < 0.0001) the Meat and Milk
groups with a Mahalanobis distance between the group centroids of 391,121. Furthermore,
CDA correctly assigned all animals to the two groups. As shown in Figure 4a, Meat had
negative values of CAN1, whereas Milk had positive values. Since the distance between
the groups was very high, animals within each group appear to be basically overlapping
each other.

Based on this differentiation, SNPs with a negative CC value can be considered more
associated with the Meat group and vice versa. The SNP with the largest negative value
was BTA-70896-no-rs (on BTA4 at 15,692,955 bp). The largest positive value (33.83) was
computed for marker ARS-BFGL-NGS-114895 located on BTA16 (at 38,205,760 bp).

Twelve SNPs were common to the lists of markers selected by FST and CDA: two of
these SNPs were found in the list of markers found for the breed vs. breed pairwise
comparisons within group (Supplementary Table S1), and for this reason were discarded.
In consequence, attention was focused on the remaining top ten discriminant SNPs (Table 3),
that were considered potentially associated with divergent selection between the Meat and
Milk groups.
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Figure 4. Plot of the first canonical function (CAN1) when 237 SNPs (a), 10 SNPs (b), and 18 SNPs
(c) were used to separate the Milk (red triangles) and Meat (blue crosses) groups.

Table 3. List of markers found in common between interesting markers from FST and CDA applied
to compare Meat and Milk groups.

BTA SNP Name Position CDA Score FST Smoothed Value

7 Hapmap53962-rs29017056 107,797,993 6.7711 0.0788
10 ARS-BFGL-NGS-112081 36,489,310 −1.1832 0.0750
10 ARS-BFGL-NGS-34863 40,333,013 −9.9492 0.0983
14 ARS-BFGL-NGS-110022 38,481,264 7.8295 0.1158
16 BTB-00639530 38,137,107 5.6524 0.0853
16 ARS-BFGL-NGS-114895 38,205,760 33.8328 0.0940
17 Hapmap44543-BTA-40914 39,220,916 14.5565 0.0821
18 Hapmap47624-BTA-44484 12,578,668 0.9083 0.0931
18 ARS-BFGL-NGS-100080 57,529,674 8.6108 0.0939
24 BTB-00886858 34,750,786 7.6451 0.0959

A new run of CDA developed using only the top 10 discriminant SNPs significantly
separated (p < 0.001) the Meat and Milk groups with a Mahalanobis distance of 102. CDA,
however, assigned animals to the correct group with a total error of 7.5% (Figure 4b).
Keeping the top 10 discriminant SNPs fixed, SDA selected another 8 discriminant markers,
and with these 18 SNPs, CDA was able to significantly separate the two groups and at the
same time correctly assign all animals (Figure 4b).

The QTL flagged by the 10 common SNPs are listed in Supplementary Table S2.
The number of QTL highlighted by the Meat vs. Milk comparison was 165, clustered in
45 different terms (Supplementary Table S2) by the enrichment analysis. Three different
terms (Figure 5) were significant: milk fat content (3), tenderness score (21), and length of
productive life (38).
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The list of all the genes mapped close (±250 kb) to the 10 common markers is reported
in Supplementary Table S3. A total of 51 genes mapped on six different chromosomes were
found: the most genes were found on BTA18 (22 genes) and BTA10 (18 genes), whereas
only 1 gene was found on BTA7 (Supplementary Table S3). Eight genes were found in
the literature to be associated with health and adaptability traits, whereas only five genes
were reported to be involved in meat production (two genes on BTA10 and three on
BTA18). Three genes, located on BTA18, were found in the literature to be associated
with feed efficiency, and five and ten genes were reported to be related to morphology
and reproduction, respectively. The largest number of genes (12) was found to related to
milk production.

Based on the STRING analysis, our set of genes had significantly more interactions
than expected: we found 15 edges compared to the 3 expected. A total of five GO terms,
one publication, and one domain were significantly enriched (FDR < 0.05).
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4. Discussion

The directional selection applied to improve meat and milk production has changed
the phenotypic and genetic background of the current cattle breeds. In the present study,
genotypes of cosmopolitan dairy and beef breeds were analyzed to investigate the genomic
population stratification and to search for genomic regions associated with divergent se-
lection. As mentioned above, data were analyzed with both a multivariate, CDA, which
accounts for multiple correlations among markers, and a univariate approach, FST, which
analyzes markers separately. The use of two techniques at the same time can help to
decrease false-positive signals and improve detection power [40]. Several studies investi-
gated selection signatures using two or more techniques at the same time in cattle [41,42]
and other species [43,44], and some of them also involved multivariate and univariate
approaches [40,45].

The use of PCA on the genomic relationship matrix was not able to clearly point
to differences between the Meat and Milk groups (Figure 2), even though the values of
PC1 were significantly different between the two groups. Although principal component
analysis is often used in the literature to detect differences among groups [46–48], CDA
outperforms PCA in analyzing dissimilarities among groups because it is specifically
intended for this purpose [49,50].

CDA significantly separated the Meat and Milk groups using 237 SNPs previously
selected by SDA. The extracted canonical function correctly assigned involved animals
to groups. However, we focused our attention only on the 10 markers found by the
two statistical approaches that were not selected in the pairwise comparisons within the
two groups. In consequence, these 10 top discriminant markers should separate the
two groups only because one group was specialized to produce meat and the other group
specialized in the production of milk. The 10 SNPs in fact were enough for CDA to
significantly separate the Meat group from the Milk group (p-value < 0.001), but not all
animals were assigned to the correct group, as displayed in Figure 4b, where the two groups
partially overlap. The significant separation between the groups using only 10 SNPs was
quite surprising. In the literature, usually a larger number of markers is reported as needed
to significantly separate groups using CDA to analyze genomic differences [23,51]. The top
10 discriminant SNPs significantly captured the differences between the two groups, but
were not enough to completely represent all the animals. However, after adding other eight
markers, selected in a new run of SDA, all animals were perfectly identified and assigned
to the correct group (Figure 4c). These results confirm the high discriminant power of
the 10 selected SNPs. Two markers (ARS-BFGL-NGS-112081 and ARS-BFGL-NGS-34863)
found in BTA10, with negative canonical coefficient scores, can be considered associated
with meat, whereas the remaining eight markers can be considered associated with milk.
The greater number of significant markers associated with milk than meat production
should be not surprising, because the dairy cattle industry was more affected by genetic
selection. Indeed, dairy producers used more artificial insemination than beef producers,
reflected in stronger selection pressure [52]. Because of the different breeding structures,
economic reasons, and breed consistency, genomic selection has been adopted more in
dairy than beef cattle [53].

Three QTL terms within three different categories were found to be significant: length
of productive life, tenderness score, and milk fat content. Milk fat is the most variable
component in milk [54], and differences exist between dairy and beef breeds. While the
former has been heavily selected for improving the quantity and quality of milk, milk
production in the latter group has also been indirectly selected. In fact, milk production is
the greatest single factor affecting preweaning calf weight gain, which in turn is associated
with birth weight. According to Rutledge et al. [55], dam milk yield is directly responsible
for 60% of the calf weight. Moreover, a direct association between maternal weaning weight
and milk yield has been reported [56]. Birth and weaning weights are two of the most
important traits in beef cattle [57], and the choice to improve these could also have changed
the milk production and milk energy content in beef cattle breeds.
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The second significant QTL term was the tenderness score, which falls within the
“meat and carcass” category. Tenderness is one of the most important traits of meat quality
influencing consumers’ decisions [58]. Warner–Bratzler shear force is the most common
method to evaluate the tenderness of meat [59]. It is a protocol to measure force to shear
across the muscle following certain parameters [60]. Although the principal factor that
affects the tenderness of meat is postmortem events, other aspects can influence this trait,
such as nutritional and genetic factors [61]. Meat quality is a multifactorial trait in which
several genes are involved in different biological functions that influence meat traits such as
marbling, tenderness, and drip loss [62]. In a meta-analysis, Berry et al. [63] found a median
heritability of this trait around 0.23 [63]. Tenderness is highly correlated with traits such as
marbling score, which is widely used in selection programs in beef cattle [64]. The selection
of marbling score in some specialized breeds to improve tenderness was due to the strong
correlation between the two traits [65]. Moravčíková et al. [66] in a selection signature study
involving six beef breeds (Aberdeen Angus, Hereford, Limousin, Charolais, Piedmontese,
and Romagnola) reporting common signals on regions associated with the tenderness trait,
though some genes associated with tenderness were identified in an analysis of positive
selection in Angus cattle [62].

The last significant QTL category was length of productive life (within the production
category), which is among the most important functional traits for livestock [67] because
it represents an essential indicator of animal health and welfare [68]. Longevity in dairy
cattle is strongly associated with milk production (the higher the milk yield, the lower
the probability of being culled), poor fertility, calf mortality, and difficult calving [69].
According to De Vries and Marcondes [70], the average productive lifespan of dairy cattle
in the US is less than 3 years and the average annual cow cull rate is 38% ± 12%. In
contrast, the average productive lifespan in beef cattle is around 7 to 10 years after first
calving, with an approximative annual cull rate of 10–15%. Also in this case, the difference
between longevity in dairy and beef cattle could be associated with the more intense genetic
selection applied to dairy cattle [71].

The genes found in the present study were mainly related in the literature to repro-
duction, immunity and adaptation, and milk and meat production. In the list of common
markers between FST and CDA, we found the SNP ARS-BFGL-NGS-100080 (located at
52.53 Mb on BTA18), which falls within the genomic region associated with calving diffi-
culty by Purfield et al. [72]. Several studies suggested the presence of a causal mutation
on CHR18 associated with calving traits, such as calving difficulty in dairy cattle [72,73].
Purfield et al. [72] analyzed the genomic background of direct calving difficulty in Hol-
stein cattle, and they found two SNPs located on CHR18 (ARS-BFGL-NGS-109285 and
BovineHD180001676) explaining 2.49% of the genetic variance in direct calving difficulty.
Some other genes found in the present study were already associated with reproduction per-
formance in the literature (Supplementary Table S2). The DLL4 gene, located in a genomic
region on BTA10 strongly associated with pregnancy loss, is involved in the development
of placenta and fetal growth [74]. The NUSAP1 gene plays a role in cell division, and
its suppression can cause mitotic defects and interference with normal cell cycle progres-
sion [75]. RAD51 is a candidate gene for discrimination of immature oocytes in relation
to the age of the donor [76]. The MIR125A gene, located on BTA18, plays a role in the
bovine preimplantation stage [77] and is strongly associated with calving problems [72].
The ZFYVE19 gene is reported to be related to udder height in dairy cows [78], whereas
the SPINT1 gene is involved in epithelial cell differentiation and development in dairy
cows [79]. Three genes (LIM2, SPACA6, and ZNF613) were reported to be associated with
gestation length by Raschia et al. [80]. Finally, the C18H19orf84 gene was found to be
involved in spermatogenesis in Angus bulls [81].

Among the genes related to immunity and adaptation, the GORAB gene was reported
as being involved in bovine tuberculosis protection/susceptibility by Blanco et al. [82]. The
FER gene, mapped on chromosome 7, was found to be immunorelated in Jersey cattle [83].
It was listed among the candidate genes for selection signatures for environmental stress
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in African cattle [84], and it was found be involved in the regulation of innate immune
response [85,86]. Other genes found in the present study related to immunity and adapta-
tion in literature were DNAJC17 (heat tolerance in Zebu cattle) [87], GCHFR [88], MDGA2
(heat stress in cows) [89,90], FOXF1 [91,92], NKG7 (bovine tuberculosis response) [93], and
SIGLEC10 [94].

We found more genes related to milk than meat production (Supplementary Table
S2). The CHAC1 gene is associated with weight gain and feed intake [95]. The CHP1 gene
is listed as a candidate gene for fat deposition in sheep [96]. The FOXC2 gene, located
on BTA18, was reported as a candidate gene for meat production traits [97]. Moreover,
a possible association between this gene and greater development of muscle with low fat
content (i.e., double muscle) in cattle was found by Hocquette et al. [98]. The VSIG10L
gene was associated with residual feed intake [99] and metabolic body weight [100]. The
MIR99B was also reported as being associated with residual feed intake [101] and foot and
leg conformation by Vargas et al. [102]. In the same study, the MIRLET7E gene was also
associated with foot and leg conformation. Among the genes associated in the literature
with milk production, several genes were reported to be related to fatty acid content.
Several genes found in this study were associated with the fatty acid profile in Belgian
Blue (MIB1, MGC133647, ABHD3, SNRPD1, ESCO1, and GREB1L) by Atashi et al. [103].
The EXD1 gene has been reported to be associated with rear udder height [78] and milk
yield in Holstein cattle by Carvalheira et al. [104]. In the latter study, a potential association
between milk yield and some genes also found in the present study (DLL4, CHAC1, and
NUSAP1) was reported.

When the genes were analyzed together using the STRING tool, we found some
associations. Six genes (LIM2, ETFB, ZNF613, ZNF175, SPACA6, and NKG7) were signifi-
cantly enriched in a publication about the European wild boar genome [105]. Three genes
(NKG7, LIM2, and CLDND2) were significantly (FDR < 0.05) clustered into the protein
domain (Pfam) named the “PMP-22/EMP/MP20/Claudin family”. Five different biologi-
cal processes were significantly (FDR < 0.05) enriched: morphogenesis of an epithelium
(GO:0002009 with FOXF1, MIB1, GREB1L, DLL4, FOXC2, SPINT1, and GORAB genes),
tissue morphogenesis (GO:0048729 with FOXF1, MIB1, GREB1L, DLL4, FOXC2, SPINT1,
FOXL1, and GORAB genes), artery morphogenesis (GO:0048844 with FOXF1, PRRX1,
DLL4, and FOXC2 genes), epithelial tube morphogenesis (GO:0060562 with FOXF1, MIB1,
GREB1L, DLL4, FOXC2, and SPINT1 genes), and morphogenesis of a branching epithelium
(GO:0061138 with FOXF1, GREB1L, DLL4, FOXC2, and SPINT1 genes).

5. Conclusions

Genotypes of different cattle breeds selected for milk and meat production were com-
pared using univariate and multivariate approaches. A simple analysis of the population
stratification did not highlight clear differentiation between the two groups. However, the
combined use of FST and CDA allowed us to find a small number of discriminant markers
between milk and meat production. Close to these SNPs, we found QTL associated with
tenderness, milk fat content, and length of productive life, which are traits that differentiate
between dairy and beef animals.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/genes15121516/s1. Table S1: Results of Wright fixation index (FST)
and canonical discriminant analysis (CDA) applied within the two identified groups (Meat and Milk).
Table S2: Enrichment analysis carried out on the quantitative trait loci mapped close to the significant SNPs.
The significant terms (Bonferroni-corrected p-value < 0.05) are highlighted in red. Table S3: List of genes
mapped close (±250 kb) to the common SNPs found by CDA and FST approaches. References [106–119]
are cited in the Supplementary Materials.

https://www.mdpi.com/article/10.3390/genes15121516/s1
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