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Abstract: Background: The genetic determinants of peripartum depression (PPD) are not fully
understood. Using a multi-polygenic score approach, we characterized the relationship between
genome-wide information and the history of PPD in patients with mood disorders, with the hy-
pothesis that multiple polygenic risk scores (PRSs) could potentially influence the development of
PPD. Methods: We calculated 341 PRSs for 178 parous mood disorder inpatients affected by major
depressive disorder (MDD) or bipolar disorder (BD) with (n = 62) and without (n = 116) a history
of PPD. We used partial least squares regression in a novel machine learning pipeline to rank PRSs
based on their contribution to the prediction of PPD, in the whole sample and separately in the two
diagnostic groups. Results: The PLS linear regression in the whole sample defined a model explaining
27.12% of the variance in the presence of PPD history, 56.73% of variance among MDD, and 42.96%
of variance in BD. Our findings highlight that multiple genetic factors related to circadian rhythms,
inflammation, and psychiatric diagnoses are top contributors to the prediction of PPD. Specifically,
in MDD, the top contributing PRS was monocyte count, while in BD, it was chronotype, with PRSs
for inflammation and psychiatric diagnoses significantly contributing to both groups. Conclusions:
These results confirm previous literature about the immune system dysregulation in postpartum
mood disorders, and shed light on which genetic factors are involved in the pathophysiology of PPD.

Keywords: peripartum depression; polygenic risk scores; partial least squares regression; major
depressive disorder; bipolar disorder

1. Introduction

The periods during pregnancy and shortly after childbirth are particularly vulnerable
time points for women to experience disturbances in mood. Specifically, peripartum
depression (PPD) is defined as a depressive episode that occurs during pregnancy or
the period after delivery and is characterized by feelings of sadness, guilt, and lack of
motivation [1]. The global prevalence of PPD is roughly 17% [2], yet in reality, the number
of women suffering from PPD is most likely much higher, as 50% of cases are believed
to be underreported or untreated [3]. Currently, PPD is classified as a subtype of major
depressive disorder (MDD) in the latest DSM edition [4]; however, PPD can also exist in the
context of a bipolar disorder (BD) diagnosis, with around a 3% prevalence in postpartum
women [5]. Some believe PPD to be a distinct clinical entity with unique characteristics
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and risk factors. Most research focused on PPD has been in comparison to healthy controls,
with only a handful of studies exploring the differences between PPD, MDD, and BD with
mixed findings [6,7].

The etiology of PPD is complex as it is believed to be multifactorial involving psycho-
logical, social, and biological elements. Ongoing research has been conducted in multiple
avenues of potential risk factors. Researchers have linked prior episodes of psychiatric ill-
ness and comorbid psychiatric disorders as a strong predictor of developing a PPD episode.
Indeed, Bloch and colleagues [8] found that a prior history of MDD was the strongest
predictor for developing a PPD episode and that PPD had a 30% incidence rate in women
with such prior history. In another longitudinal study following women with and without
prior history of depression or premenstrual dysphoric disorder, they found women with
a history of both diagnoses were twice as likely to develop PPD [9]. Similarly, women
with a history of BD also have an increased risk of mood disturbances during the perinatal
time period [10]. Furthermore, researchers have demonstrated that the majority of women
referred to clinical treatment for PPD were indeed bipolar [11].

Moreover, the unique biology of pregnancy itself may result in increased risk of PPD in
vulnerable individuals. Specifically, hormones like estrogen, progesterone, and testosterone,
which reach abnormally high levels during pregnancy and quickly drop shortly after birth,
could serve as a trigger for alterations in mood. Some argue that there is a subgroup
of women that are particularly sensitive to fluctuations in hormone levels and thus may
be more likely to develop depressive symptomatology during these periods of extreme
hormone level alterations [12]. Following this line of reasoning, one study simulated the
hormonal changes seen during the perinatal period and found that only women with a
prior history of PPD developed depressive symptoms [13].

In addition, inflammatory markers and immune related conditions are altered during
pregnancy. Elevated levels of inflammatory cytokines and decreased T cell activation
during pregnancy and postpartum periods are linked to an increased risk of peripartum
depression [14–16], and indeed some authors hypothesized that the immune system of
PPD women may be specifically less adaptable to stressors [14].

Furthermore, disrupted sleep patterns and misalignment of circadian rhythms, which
are common during pregnancy and after childbirth, can contribute to the development
of peripartum depression. Studies have linked sleep quality, sleep disturbances, and
alterations in circadian rhythms to PPD [17–19]. Specifically, a study linked sleep timing
to the development of PPD symptoms where women with a later sleep phase had higher
rates of depressive symptomatology [20].

In recent years, there has been an ever-growing focus on the genetics of psychiatric
disorders. Like many psychiatric conditions, having a familial history of mental illness
is a strong risk factor for PPD, suggesting a possible genetic link [21]. Investigators have
focused on twin and sibling studies as well as on specific genes and loci [22]. Twin stud-
ies found the heritability of PPD to be around 50%, generally higher than what found in
MDD [23]. The same study found that 14% of the genetic variance of PPD was unique to this
condition, suggesting that PPD may be in part distinct from MDD. Besides heritability stud-
ies, researchers have also tried focusing on specific genes. Several candidate gene studies
have identified associations between single nucleotide polymorphisms (SNPs) and the risk
of PPD [24]. However, given the complexity of PPD, it is unlikely that its heritability can be
fully explained by individual SNPs. Supporting this, a recent meta-analysis concluded that
no single candidate genes or gene sets reliably predict depression phenotypes [25].

An alternative approach that holds great promise relies on the use of polygenic risk
scores (PRSs), which aggregate the effects of numerous genetic variants identified through
genome-wide association studies (GWASs). PRSs employ weighted measures of multiple
SNPs associated with a given phenotype to explain a larger proportion of genetic variance.
Recent evidence suggests that polygenic risk prediction captures phenotypic variance
more effectively than SNP-based heritability alone [26]. Moreover, PRSs might very well
prove to be potential tools in clinical practice, offering utility in screening for mental
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health disorders, improving diagnostic accuracy, guiding clinical decisions, and predicting
treatment response and adverse health outcomes [27]. Despite the growing utility of
PRSs in psychiatric research, a critical methodological challenge remains unaddressed:
identifying which PRSs are the strongest predictors for a specific phenotype. In addition,
many psychiatric disorders and medical conditions share genetic underpinnings, thus
leading to high multicollinearity among PRSs, which further complicates the selection of
the most informative genetic predictors.

While recent research has tried to investigate the relationship between single PRSs and
PPD [28,29], here we adopt a more powerful approach by leveraging the joint predictive
power of multiple PRSs. Specifically, we utilize a multi-polygenic score framework that
integrates genetic correlations across numerous traits within a single regression model
predicting PPD history within a sample of parous female patients diagnosed with mood
disorders. To achieve this, we employed a partial least squares (PLS) regression method
within a novel machine learning pipeline, an approach which is particularly effective
for addressing multicollinearity among predictors and for managing datasets where the
number of independent variables exceeds the number of samples [30].

2. Materials and Methods
2.1. Participants

Our sample of female patients with and without PPD history was retrieved from a
larger cohort of 435 individuals with MDD and BD, who were consecutively enrolled in an
ongoing prospective study conducted at IRCCS San Raffaele Hospital, Milan (Italy). These
patients were referred consecutively to the Mood Disorder Unit by their general practition-
ers or outpatient psychiatrists for psychopathological conditions requiring hospitalization.
Mood disorder diagnoses were made following a procedure including evaluation and
diagnosis based on a psychiatric interview (DSM-IV criteria) by the team responsible for
the admission to the ward. The diagnosis was confirmed by a senior psychiatrist that
specializes in mood disorders using a best-estimate method. This process involved inter-
views with patients, their family members, and prior healthcare providers, along with a
review of available medical records [31]. At the time of admission, ongoing treatments
were administered based on clinical necessity.

We specifically analyzed 178 parous women aged between 28 and 70 diagnosed with
MDD or BD, 62 of whom had a history of PPD, while 116 had no such history. In this
study, a peripartum episode was defined as a major depressive episode occurring during
pregnancy or within one year post-partum, according to guidelines from the World Health
Organization, the Centers for Disease Control and Prevention, and the American College
of Obstetricians and Gynecologists [32–34]. Peripartum status was documented using
patients’ medical records based on a clinical interview performed by a psychiatrist to gather
patient psychiatric history.

To be included in the current study, participants had to have had at least one preg-
nancy [35] and availability of blood sampling data. Exclusion criteria included age under
18 or over 70, the presence of additional Axis I psychiatric disorders, intellectual disability,
major medical or neurological conditions, and a history of substance or alcohol abuse
within the past six months. These criteria were verified through patient medical charts.
Written informed consent was obtained from all participants after a full explanation of the
study. The study protocol adhered to the Declaration of Helsinki and was approved by
the local Ethics Committee from the IRCSS San Raffaele Hospital. Since our sample was
retrospective, our sample size was determined by screening the patients that had been
recruited in an ongoing larger study of mood disorders (n = 435) using our inclusion and
exclusion criteria. We believe our sample is representative of the population of individuals
with a history of PPD in patients with mood disorder diagnoses, as previous literature has
observed a 40–50% prevalence of PPD among major patients affected by major depressive
and bipolar disorder [36].
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2.2. Polygenic Risk Score Calculation

Genotyping, quality control (QC), and imputation of genetic data were conducted
within the above-mentioned larger cohort of 435 patients diagnosed with mood disorders,
including 179 individuals with MDD and 256 with bipolar disorder. The current sample of
178 patients is a subset of this cohort. Blood samples were genotyped using the Infinium
PsychArray 24 BeadChip (Illumina, Inc., San Diego, CA, USA). This cost-efficient and
high-density micro-array was developed in collaboration with the Psychiatric Genomics
Consortium and includes about 548,000 tag SNPs, with additional 50,000 markers pre-
viously associated with psychiatric disorders (https://www.illumina.com/products/by-
type/microarray-kits/infinium-psycharray.html) (accessed on 12 July 2024).

QC procedures were carried out using PLINK1.9 [37]. Participants were excluded if
they exhibited genotyped sex mismatches as compared to the phenotype, a genotype rate
below 95%, or outlying autosomal heterozygosity (Fhet > ±0.2). Genetic markers were
filtered out if they had a minor allele frequency (MAF) below 1%, a call rate lower than 95%,
or deviated from the Hardy–Weinberg equilibrium at p < 10−6. Relatedness of participants
was assessed by excluding individuals with a degree of recent shared ancestry (identity by
descent) greater than 0.1875, a threshold between third- and second-degree relatives [38].
European ancestry of the sample was confirmed through principal component analysis
(PCA), and individuals whose genotype distribution deviated by more than five standard
deviations from the mean of the first two components were removed.

Following QC, genotype imputation and PRS calculation were performed using the
Michigan Imputation Server [39]. The imputation process employed the 1000 Genomes
Project V5 as the reference panel. The Eagle V2.3 algorithm was used for genotype phasing,
and Minimac3 was used to impute the phased haplotypes. After imputation, 4870 PRSs
were calculated by exploiting pgsc_calc (https://github.com/PGScatalog/pgsc_calc) (ac-
cessed on 12 July 2024), an automated workflow that estimates PRS for all scoring files
publicly available in the Polygenic Score Catalog [39].

Among the 4870 PRSs calculated, we selected a total of 341 PRSs related to our traits
of interest: 67 PRSs for psychiatric symptoms and disorders, 89 PRSs for hormones and
pregnancy-related conditions, 131 PRSs for immune-inflammatory markers, and 54 PRSs
for circadian rhythms and sleep-related problems. For reference, a full list of all the PRSs
included in our study and their corresponding source articles including the information
regarding the original GWASs and their Polygenic Score Catalog codes is provided in
Supplementary Table S1.

2.3. Statistical Analysis

To evaluate the effect of PRSs on the history of PPD, we applied partial least squares
(PLS) regression, a data mining technique that models relationships between observed
variables and latent variables, in the context of an innovative machine learning pipeline.
PLS defines a linear regression model by projecting both the predictor and response vari-
ables into a new latent space, enabling feature reduction while maximizing the covariance
between them [30,40,41]. We selected PLS regression given its ability to handle high-
dimensional predictors, such as the 431 PRSs included in this analysis, which served as
predictors. Furthermore, PLS regression is able to condense the information from all the
included predictors into latent variables, without removing any of the predictors as other
penalized regressions do. The diagnosis of PPD versus non-PPD was entered as the depen-
dent variable, while mood disorder diagnosis (MDD vs. BD) was included as a covariate
only in the model including the entire sample.

PLS regression was employed to rank the PRSs based on their contributions to PPD
prediction. The Nonlinear Iterative Partial Least Squares (NIPALS) algorithm was used
to optimize the model by selecting the appropriate number of PLS components to extract
(A) via a k-fold cross-validation with 7 folds. This process allowed us to calculate key
metrics such as R2X (an A-dimensional vector representing the variance in the predictor
matrix explained by each PLS component), and R2Y (representing the variance in the

https://www.illumina.com/products/by-type/microarray-kits/infinium-psycharray.html
https://www.illumina.com/products/by-type/microarray-kits/infinium-psycharray.html
https://github.com/PGScatalog/pgsc_calc
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response variables explained by each PLS component). Additionally, the model generated
predictive weights (w) and variable importance in projection (VIP) scores for each PRS, with
VIP values greater than 1 indicating significant contributions to the model, as suggested
by previous literature [42–44]. These metrics quantified the contribution of each PRS to
explaining variance in the clinical outcome (Y) and determined the direction of the effect.

By ranking PRSs based on their VIP scores, we were able to identify the most important
genetic contributors to PPD. This method effectively captures the influence of multiple
independent biological variables and has been validated in previous randomized controlled
trials (RCTs) involving mood disorder patients with a combination of biological and clinical
predictors [45]. To ensure robustness and prevent overfitting, the model was validated
using a cross-validation approach. In addition, this pipeline was applied separately in both
MDD and BD diagnostic groups, in order to assess how genetic risk factors for PPD may
differ between these mood disorders. Finally, sensitivity and specificity values for the first
latent variable extracted from each PLS regression model were estimated to calculate the
area under the receiver operator curve (AUC) of the model.

3. Results

Demographics of the sample can be found in Table 1. Age was the only factor sig-
nificantly different between the two groups. PPD women may be significantly younger
as they had a depressive episode during their reproductive window, while women who
do not have a PPD history may be older as they may not have developed depressive
symptomatology until later in life.

Table 1. Demographic table and statistics of the whole sample.

Variables PPD (n = 62) No PPD (n = 116) t/x2 Cohen’s
D/Cramer’s V p-Value

Age (years) 48.18 ± 9.40 53.85 ± 8.89 −3.976 0.620 <0.001

Education (years) 12.05 ± 4.19 10.91 ± 3.79 1.846 0.285 0.067

BMI 26.38 ± 5.51 25.80 ± 4.80 0.683 0.112 0.496

Smoking Status 37/79 20/42 1.938 0.104 0.585

Alcohol Status 4/58 3/113 4.410 0.157 0.353

Number of pregnancies 2.07 ± 1.05 1.95 ± 0.99 0.732 0.118 0.465

Sex of children (male/female) 50/52 100/70 2.477 0.118 0.116

Menopause (yes/no) 21/41 67/49 9.223 −0.228 0.002

Current hormone replacement
therapy (yes/no) 3/59 9/107 0.548 −0.055 0.459

Number of PPD episodes 1.21 ± 0.52 NA NA NA NA

Duration of illness (years) 19.31 ± 11.65 18.45 ± 11.65 0.468 0.074 0.640

Number of mood episodes 9.86 ± 12.02 9.12 ± 12.14 0.377 0.061 0.707

Number of depressive episodes 7.97 ± 9.81 6.50 ± 7.21 1.137 0.171 0.257

Number of manic episodes 3.14 ± 4.45 4.50 ± 7.18 −1.051 0.228 0.296

3.1. Whole Sample

The PLS linear regression in the whole sample (n = 178, 62 PPD and 116 no PPD),
using the 341 PRSs and mood disorder diagnosis as factors, defined a model with one
extracted component explaining 27.12% of the variance in the presence of PPD history
(coefficient = 0.1997, R2X = 0.0347; R2Y = 0.2712). In addition, 106 PRSs exceeded VIP = 1
and were selected as significant in contributing to explaining variance. The top five
contributing PRSs were PGS002390 Chronotype (morning) (w = −0.1671, VIP = 3.0945),
PGS002439 Chronotype (morning) (w = −0.1553, VIP = 2.8766), PGS002609 Monocyte
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count (w = 0.1510, VIP = 2.7971), PGS002560 Monocyte count (w = 0.1496, VIP = 2.7710);
PGS001163 Monocyte count (w = 0.1432. VIP = 2.6520). The top 20 contributing PRSs can
be found in Figure 1A and the full results showing the ranking and weight of the 106 PRSs
with a VIP greater than 1, and thus are significant contributors to the PPD prediction model,
can be found in Supplementary Table S2. The first latent variable of the whole sample PLS
model obtained an AUC of 0.823 (Figure 2A).
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regression on (A) the whole sample (n = 178), (B) the MDD sample (n = 72), and (C) the BD sample
(n = 106). Abbreviations: AUC, area under the receiver operator curve; ROC, receiver operator curve.

3.2. MDD Sample

The PLS linear regression in the MDD sample (n = 72, 25 PPD and 47 no PPD), using the
341 PRSs as factors, defined a model with one extracted component explaining 56.73% of the
variance in the presence of PPD history (coefficient = 0.2310, R2X = 0.0425; R2Y = 0.5673).
In addition, 107 PRSs exceeded VIP = 1 and were selected as significant in contribut-
ing to explaining variance. The top five contributing PRSs were PGS001163 Monocyte
count (w = 0.1419, VIP = 2.6209), PGS002560 Monocyte count (w = 0.1352, VIP = 2.4973),
PGS000675 CRP (−0.1351, VIP = 2.4939), PGS002868 CRP (w = −0.1336, VIP = 2.4670);
PGS002609 Monocyte count (w = 0.13357, VIP = 2.4665). The top 20 contributing PRSs can
be found in Figure 1B and the full results showing the ranking and weight of the 107 PRSs
with a VIP greater than 1, and thus are significant contributors to the PPD prediction model,
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can be found in Supplementary Table S3. The first latent variable of the MDD sample PLS
model obtained an AUC of 0.948 (Figure 2B).

3.3. BD Sample

The PLS linear regression in the BD sample (n = 106, 37 PPD and 69 no PPD), using the
341 PRSs as factors, defined a model with one extracted component explaining 43.96% of
the variance in the presence of PPD history (coefficient = 0.2686, R2X = 0.0335; R2Y = 0.4396).
In addition, 98 PRSs exceeded VIP = 1 and were selected as significant in contributing to
explain variance. The top five contributing PRSs were PGS002439 Chronotype (morning)
(w = −0.1931, VIP = 3.5649), PGS002390 Chronotype (morning) (w = −0.1885, VIP = 3.4801),
PGS002787 Type 1 bipolar disorder (w = −0.1769, VIP = 3.2667), PGS000756 Narcolepsy
(w = −0.1765, VIP = 3.2598) and PGS002786 bipolar disorder (w = −0.1626, VIP = 3.003).
The top 20 contributing PRSs can be found in Figure 1C and the full results showing the
ranking and weight of the 98 PRSs with a VIP greater than 1, and thus are significant
contributors to the PPD prediction model, can be found in Supplementary Table S4. The
first latent variable of the BD sample PLS model obtained an AUC of 0.904 (Figure 2C).

3.4. Comparison Between MDD and BD Models

Different distributions of the PRSs were included in the MDD (Table 2) and BD models
(Table 3). For the MDD sample, 29.8% of the psychiatric PRSs were included in the model,
with most positively predicting PPD. In addition, 27% of hormone and pregnancy PRSs
were included in the model, with slightly more having a negative association with PPD. For
immune PRSs, 35.9% were included in the model with most having a negative association
with PPD. Lastly, 29.6% PRSs for sleep and circadian rhythms were included in the model
with slightly more being negatively associated with PPD. Immune-related PRSs had the
highest contribution to the model for MDD PPD, which was driven mostly by PRSs for
monocytes in the positive direction and C-reactive protein (CRP) in the negative direction.

Table 2. Number of PRSs divided by category that significantly contributed (VIP > 1) to the prediction
of PPD vs. no PPD in the MDD sample.

MDD Sample Psychiatric PRSs
(n = 67)

Hormone and
Pregnancy PRSs
(n = 89)

Immune and
Inflammation PRSs
(n = 131)

Sleep and Circadian
PRSs
(n = 54)

PPD 12 10 19 7

No PPD 8 14 28 9

Total 20 24 47 16

Table 3. Number of PRSs divided by category that significantly contributed (VIP > 1) to the prediction
of PPD vs. no PPD in the BD sample.

BD Sample Psychiatric PRSs
(n = 67)

Hormone and
Pregnancy PRSs
(n = 89)

Immune and
Inflammation PRSs
(n = 131)

Sleep and Circadian
PRSs
(n = 54)

PPD 3 17 21 9

No PPD 10 15 6 15

Total 13 33 28 24

For the BD sample, 19.4% of the psychiatric PRSs were included in the model with
most having a negative association with PPD. For hormone and pregnancy PRSs, 37.1% of
PRSs were included in the model, with slightly more having a positive association with
PPD. In addition, 21.4% of immune PRSs were included in the model, with most having a
positive association with PPD. Lastly, for sleep and circadian PRSs, 44.4% were included in
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the model with more having a negative association with PPD. Sleep and circadian PRSs
had the highest contribution to the BD PPD model, with morning chronotype driving
the association in the negative direction and insomnia, sleep duration, and trouble falling
asleep driving the positive direction.

Overall, psychiatric PRSs had a more positive effect in MDD and a more negative
effect in BD, while the opposite was found in immune and inflammation PRSs with a more
negative effect in MDD and a positive one in BD. The differing effects of immune and
inflammation related PRSs seemed to be driven by the opposite weights for CRP PRSs
in the two diagnostic groups. Lastly, in the BD model, there was a higher percentage of
hormone and pregnancy-related PRSs suggesting the genetic components related to these
traits have a higher impact in BD PPD than MDD PPD.

4. Discussion

Our study aimed to investigate the genetic underpinnings of PPD by leveraging a
novel methodological approach that integrates multiple PRSs into a predictive model.
Previous research examined the role of genetic risk factors in PPD by employing regression
models based on individual PRSs [28,29], limiting their capacity to account for the complex
genetic architecture influencing this disorder. In contrast, our approach utilizes a multi-
polygenic score framework, which has been applied for the first time to the prediction of
PPD. This methodology is particularly relevant for complex psychiatric disorders like PPD,
which are unlikely to be driven by single genetic variants but rather by the cumulative effect
of numerous variants across various biological pathways [25]. Additionally, we exploited
PLS regression within a machine learning framework that optimizes the prediction model
by managing the high-dimensionality and multicollinearity inherent in genetic data. One of
the advantages of such a methodology is that it allowed us to assess the joint contribution
of multiple PRSs to the risk of PPD, thereby addressing the challenge of genetic correlation
that arises from pleiotropy or shared biological mechanisms. Indeed, many psychiatric and
medical conditions share overlapping genetic risk factors, leading to significant correlations
among PRSs [46]. Traditional regression models often struggle to disentangle these effects,
potentially missing key genetic information. By employing PLS regression, which reduces
dimensionality while maximizing covariance between predictors and the outcome, our
method effectively handled multicollinearity, allowing us to identify the most relevant
genetic predictors for PPD. This is a critical advantage, as it enhances the interpretability of
our results and provides clearer insights into the genetic architecture of PPD.

Our study investigated the genetic underpinnings of PPD, showing that only partially
overlapping PRSs are associated with PPD in MDD and BD patients. Indeed, variance
explained by the PRSs dropped from 57% and 44% when analyzing the MDD and BD
samples separately to 27% when analyzing all participants together. This suggests that the
contribution of the same PRSs to the development of PPD in the two conditions may be dif-
ferent, thus increasing the error when these factors are modelled together. This perspective
is in agreement with recent findings showing that the genetic landscapes for the two disor-
ders have different effects in influencing the gene–environment interaction preceding an
illness episode [47], epigenetically active sites in immune cells [48], and several circulating
biomarkers, including immune-inflammatory markers [49]. This observation suggests that
the genetic contribution to PPD could involve different factors in the two disorders.

Accordingly, in the MDD subsample, inflammation-related PRSs were the most predic-
tive for PPD, with a smaller but still significant impact in the BD sample. Despite a growing
body of evidence, the relationship between immune-inflammatory alterations and mood
disorders is far from being completely understood. MDD is thought to be characterized
by a chronic inflammatory status, which may foster episode recurrences [50]. Many of
the PRSs found to be associated with PPD in MDD patients in our study were related to
monocytes. Monocytes are white blood cells that are a part of the innate immune system
and are thought to play a role in chronic inflammation [50]. Furthermore, monocytes are
able to cross the blood–brain barrier and therefore may alter the inflammatory state of the
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central nervous system. Previous studies have found elevated levels of monocytes as well
as genetic evidence of glucocorticoid resistance in monocyte cells in cases of MDD [51].
MDD monocytes have showed an overexpression of gene clusters related to inflammation,
apoptosis, and premature aging [52]. In postpartum psychosis, a study showed increased
monocyte levels and increased glucocorticoid resistance in monocytes in affected individu-
als compared to healthy mothers [53]. In regard to PPD, there is limited research exploring
the direct role of monocytes in the disorder’s pathology. However, in one longitudinal
study, researchers found higher levels of prenatal monocyte activation in women with
postpartum depressive symptoms compared to healthy mothers [54]. Monocytes can re-
lease proinflammatory cytokines, which have themselves been linked to the presence of
PPD symptomatology. Osborne and colleagues [15] found elevated levels of chemokine
(C-C motif) ligand 3 (CCL3), which is a potent proinflammatory chemokine that is released
from and also attracts monocytes in depressed pregnant women compared to healthy
women. Moreover, the role of monocyte dysfunction has been previously associated with
environmental effects, such as exposure to childhood trauma or infection [52,55]. Our
findings confirm a key role for monocytes in PPD, by associating for the first time genetic
factors affecting monocyte counts with the diagnosis.

C-reactive protein (CRP) PRSs were also among the top contributing factors in all our
models, mostly exhibiting an inverse association with PPD risk. CRP is a key inflammatory
marker and its association with mood episodes has been repeatedly demonstrated [56,57]
as well as with PPD symptomatology in previous studies [58]. However, findings are
mixed as one study found that CRP levels were not associated with PPD diagnosis and
treatment response [59], suggesting that CRP levels may not be as important for the etiology
of PPD as it is for MDD. In addition, PRSs for CRP may contain gene variants that are
protective against MDD, thus suggesting that genotype and circulating levels of CRP could
be independently associated with depression [60]. Moreover, PRS for CRP and CRP plasma
levels were shown to have opposite effects on antidepressant response, with CRP PRS being
positively associated with antidepressant response and circulating levels of CRP showing a
negative association with response [61], thus confirming that many factors affecting this
biomarker, independently from its PRS, might have a detrimental effect on mood disorders.
Yet, to our knowledge, no study has directly compared CRP levels between PPD and
MDD cases.

PRSs for other proinflammatory markers were also found to be associated with PPD
in our study, including tumor necrosis factor receptors and galectin 3. Interestingly, a differ-
ent immunological profile appeared to characterize the two diagnoses, as CC-chemokine
20 and interleukin 27 (IL27) as well as autoimmune diseases PRSs were negatively associ-
ated with PPD in the BD model but did not significantly contribute to the MDD model.
This confirms that cytokines and chemokines have different associations with the diagnosis
in the two disorders [62,63], extending this perspective to PPD.

A different genetic profile appeared to characterize the BD sample, where the highest
ranking PRSs were those related to chronotype and sleep disorders. This appears to be
in line with abundant evidence linking the incidence and prognosis of BD to chronotype
and sleep patterns. Chronotype refers to the individual variability in circadian rhythms
that are driven by the internal biological clock [64]. A later evening chronotype has been
thought to be linked with depressive symptomatology possibly through its association
with sleep debt accumulation, which in turn can cause misalignment of the biological
clock [65]. Studies have demonstrated that later chronotype and alterations in circadian
rhythms predict more frequent and more severe depressive episodes and less frequent
manic episodes in BD patients [66,67]. Furthermore, a study noted that MDD patients
and healthy controls with an evening chronotype tend to have enhanced characteristics of
bipolarity compared to individuals with an earlier chronotype [65,68]. Moreover, one study
comparing circadian disturbances between individuals with BD and MDD found that BD
was associated with more desynchronization of the biological clock compared to MDD,
suggesting that circadian rhythm alterations could specifically characterize BD subjects [69].



Genes 2024, 15, 1517 10 of 15

In our study, PRS for morning chronotype showed a negative association with PPD history,
meaning that individuals with the genetic predisposition for an evening chronotype could
be at a higher risk for a PPD episode. Prior studies have linked evening chronotypes
to more severe perinatal depressive symptomatology as well as other pregnancy-related
issues known to affect the development of PPD such as gestational diabetes and cesarean
section [70]. It is possible that in PPD, the genetic predisposition for a later chronotype
could affect sleep schedules during the peripartum periods, contributing to the develop-
ment of psychopathology. In this regard, melatonin signaling alterations could be key
contributors to altering chronotype shifting in peripartum women [71]. Indeed, increased
nighttime light and decreased daylight exposure may alter melatonin levels and patterns of
secretion [72–74]. A negative association between sleep disorders and PPD seems counter-
intuitive as previous research has shown that sleep problems during the peripartum period
may increase the risk of PPD [75]. However, others have suggested that only sleep quality
and not sleep disorders are linked to PPD [76]. Furthermore, the PRS for trouble falling
asleep was positively associated with PPD, further confirming that genetic predispositions
to symptomatology of delayed sleep are associated with PPD.

PRSs related to pregnancy conditions and hormones were also found to be associated
with previous history of PPD in our sample. For instance, placenta growth factor (PGF)
was positively associated with PPD history. Although its direct relationship with mood dis-
orders both during the peripartum period and beyond has not been explored, dysfunction
in placental health has been associated with an increased risk of PPD [77]. In addition, sex
hormone binding globulin (SHBG) was also found to affect PPD status. The production of
this protein, which has a key role in transporting androgens and estrogens and regulating
the amount of free hormones available for tissues to utilize [78], physiologically increases
up to ten-fold during pregnancy [79]. Interestingly, one Mendelian randomization study
found a significant positive correlation between SHBG and risk of depression only in fe-
males, underlying its possible specific role in estrogen-related mood episodes [80]. Finally,
higher PRSs for age at menopause were associated with PPD in the BD model, which could
reflect a complex interplay between genetic factors influencing reproductive hormones
and mood regulation. Both menopause timing and mood disorders are influenced by
hormonal fluctuations [81]. The genes that affect menopause timing might also influence
how sensitive a woman is to changes in hormone levels during the peripartum period. The
genetic predisposition for a later age at menopause could imply that a woman has genes
promoting longer reproductive function and, therefore, a more prolonged exposure to more
cycles of fluctuations of steroid hormones known to be involved in depression [82].

Concerning psychiatric genetic risk, PRSs for MDD and BD were significant contribut-
ing factors for PPD. Surprisingly, the PRSs for MDD were negatively associated with PPD in
all models. Previous studies employing healthy controls found mostly positive associations
for this genetic trait [29,83], and yet comparisons between cases of PPD and other mood
disorders are mixed [84,85]. Similarly, BD PRSs were negatively associated with PPD in the
BD sample. On the other hand, in the MDD sample, BD PRSs were positively associated
with PPD. One other study found similar results suggesting that PPD cases share more
genetic overlap with BD than MDD cases do [28], supporting the long-held clinical view
linking postpartum episodes to bipolar vulnerability [86]. In our sample, all patients had
a diagnosis of either MDD or BD, thus sharing a common genetic landscape for mood
disorders. Therefore, in light of our findings revealing the role of genetic factors related
to hormones, inflammation, and chronotype contributing to PPD, our results suggest that
the contribution of genes associated with these other factors associated with PPD could be
independent from the effect of genes related to BD and MDD diagnosis.

Lastly, when observing results in the whole sample, while some association between
PRSs and PPD seemed to be driven by either MDD (inflammation) or BD (circadian rhythms
and sleep disorders) samples, the contribution of other PRSs seemed to be independent of
diagnosis, such as obesity and duration of sleep. Obesity PRSs were negatively associated
with PPD, suggesting that having lower scores for obesity is protective for developing PPD
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in the context of mood disorders. These effects could be due to the protective physiological
and hormonal changes that occur during pregnancy, including metabolic adaptations that
counterbalance the effects of obesity-related insulin resistance and an anti-inflammatory
immune shift. These changes may temporarily mitigate the risk factors associated with
obesity that typically increase the risk of depression [87], thereby lowering the risk of
peripartum depression in individuals with a genetic predisposition to obesity. Interestingly,
self-reported sleep duration had a positive association with PPD in the whole sample,
suggesting that women who are genetically predisposed to sleep longer have an increased
risk of PPD. Both short and long sleep durations have been shown to be associated with
psychiatric disorders [88]. One study, examining the effects of aggregate SNPs contained
in the PRS for sleep duration, found positive associations between the genetics scores of
sleep duration and psychiatric illness [89]. In addition, it is possible that women who are
predisposed to sleeping longer may have a harder time adjusting to shorter sleep times
associated with the perinatal period.

However, our study should be viewed in light of some limitations. First, this study
was conducted in a sample of Italian women from one center, possibly limiting the general-
izability of the results. Furthermore, despite the specialized selected sample, the sample
size could be considered small for a genetics study. Moreover, our sample was derived
from a larger cohort that included male subjects, thus potentially biasing the imputation
procedure. In addition, in our models, there are multiple PRSs for the same phenotype
that were derived from different source articles using various calculation and imputation
methods, which may skew the predictive power of the analysis. However, we attempted to
mitigate this issue by using a PLS regression to combat multicollinearity. Lastly, without a
healthy control comparison, we do not know how well these PRSs predict PPD diagnosis
outside of mood disorder patients and in the general population. Therefore, larger sam-
ples from multiple centers including only one PRS per trait using parous female patients
for imputation procedures and a matched healthy control group are needed to confirm
these results.

5. Conclusions

PPD is complex and there are numerous avenues of potential interest related to its
biological etiology and what separates it from MDD and BD. Therefore, in this study, we
used multiple PRSs from four different categories including psychiatric symptoms and
disorders, hormones and pregnancy-related conditions, immune-inflammatory markers,
and circadian rhythms and sleep-related problems in a machine learning approach to
predict positive history of PPD. From our results, it is evident that the genetics related to
inflammation are important for the development of PPD in the context of MDD and in BD,
genetics for sleep alterations and circadian rhythms are the most impactful. Overall, our
study introduces an innovative and powerful methodology for investigating the genetic
basis of PPD. By employing a multi-polygenic score approach and leveraging advanced
machine learning techniques, we provided an accurate prediction model disentangling
PPD risk among mood disorders. This not only advances the field methodologically but
also paves the way for future studies to further explore the genetic mechanisms underlying
PPD and other psychiatric conditions.
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