Quantitative Trait Loci Mappings for the Sulfur Utilization Efficiency-Related Traits at the Seedling Stage of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Experimental Design
2.3. Trait Measurement
2.4. Data Analysis
2.5. QTL Analysis
3. Results
3.1. Phenotypic Variation and Correlations Between Traits
3.2. Major Characteristics of the QTLs
3.3. QTL Clusters
4. Discussion
4.1. Impact of S Treatment on Seedling Traits in RILs
4.2. QTL Location and QTL Clusters
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marschner, H. Introduction, Definition, and Classificatin of Mineral Nutrients. In Mineral Nutrition of Higher Plants, 2nd ed.; Marschner, H., Ed.; Academic Press: London, UK, 1995; Volume 1, pp. 3–5. [Google Scholar]
- Leustek, T.; Martin, M.N.; Bick, J.-A.; Davies, J.P. Pathways and Regulation of Sulfur Metabolism Revealed through Molecular and Genetic Studies. Annu. Rev. Plant Biol. 2000, 51, 141–165. [Google Scholar] [CrossRef] [PubMed]
- Zamboni, A.; Celletti, S.; Zenoni, S.; Astolfi, S.; Varanini, Z. Root Physiological and Transcriptional Response to Single and Combined S and Fe Deficiency in Durum Wheat. Environ. Exp. Bot. 2017, 143, 172–184. [Google Scholar] [CrossRef]
- Yu, Z.; Juhasz, A.; Islam, S.; Diepeveen, D.; Zhang, J.; Wang, P.; Ma, W. Impact of Mid-Season Sulphur Deficiency on Wheat Nitrogen Metabolism and Biosynthesis of Grain Protein. Sci. Rep. 2018, 8, 2499. [Google Scholar] [CrossRef]
- Saito, K. Regulation of Sulfate Transport and Synthesis of Sulfur-Containing Amino Acids. Curr. Opin. Plant Biol. 2000, 3, 188–195. [Google Scholar] [CrossRef]
- Koprivova, A.; Giovannetti, M.; Baraniecka, P.; Lee, B.-R.; Grondin, C.; Loudet, O.; Kopriva, S. Natural Variation in the ATPS1 Isoform of ATP Sulfurylase Contributes to the Control of Sulfate Levels in Arabidopsis. Plant Physiol. 2013, 163, 1133–1141. [Google Scholar] [CrossRef]
- Khan, N.A.; Anjum, N.A.; Nazar, R.; Iqbal, N. Increased Activity of ATP-Sulfurylase and Increased Contents of Cysteine and Glutathione Reduce High Cadmium-Induced Oxidative Stress in Mustard Cultivar with High Photosynthetic Potential. Russ. J. Plant Physiol. 2009, 56, 670–677. [Google Scholar] [CrossRef]
- Astolfi, S.; Zuchi, S. Adequate S Supply Protects Barley Plants from Adverse Effects of Salinity Stress by Increasing Thiol Contents. Acta Physiol. Plant. 2013, 35, 175–181. [Google Scholar] [CrossRef]
- Fatma, M.; Asgher, M.; Masood, A.; Khan, N.A. Excess Sulfur Supplementation Improves Photosynthesis and Growth in Mustard under Salt Stress through Increased Production of Glutathione. Environ. Exp. Bot. 2014, 107, 55–63. [Google Scholar] [CrossRef]
- Cao, Y.; Ma, C.; Yu, H.; Tan, Q.; Dhankher, O.P.; White, J.C.; Xing, B. The Role of Sulfur Nutrition in Plant Response to Metal(Loid) Stress: Facilitating Biofortification and Phytoremediation. J. Hazard. Mater. 2023, 443, 130283. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Hawkesford, M.; McGrath, S. Sulphur Assimilation and Effects on Yield and Quality of Wheat. J. Cereal Sci. 1999, 30, 1–17. [Google Scholar] [CrossRef]
- De Ruiter, J.M.; Martin, R.J. Management of Nitrogen and Sulphur Fertiliser for Improved Bread Wheat (Triticum Aestivum) Quality. N. Z. J. Crop Hortic. Sci. 2001, 29, 287–299. [Google Scholar] [CrossRef]
- Bouranis, D.L.; Malagoli, M.; Avice, J.-C.; Bloem, E. Advances in Plant Sulfur Research. Plants 2020, 9, 256. [Google Scholar] [CrossRef]
- Lee, B.-R.; Zaman, R.; Avice, J.-C.; Ourry, A.; Kim, T.-H. Sulfur Use Efficiency Is a Significant Determinant of Drought Stress Tolerance in Relation to Photosynthetic Activity in Brassica napus Cultivars. Front. Plant Sci. 2016, 7, 459. [Google Scholar] [CrossRef] [PubMed]
- Kusaka, M.; Ohta, M.; Fujimura, T. Contribution of Inorganic Components to Osmotic Adjustment and Leaf Folding for Drought Tolerance in Pearl Millet. Physiol. Plant. 2005, 125, 474–489. [Google Scholar] [CrossRef]
- Scherer, H.W. Sulphur in Crop Production—Invited Paper. Eur. J. Agron. 2001, 14, 81–111. [Google Scholar] [CrossRef]
- Ali, I.; Aydin, G.; Mehmet, A.; Sait, A.M.; Süleyman, T.; Figen, E. Diagnosis of Sulfur Deficiency and Effects of Sulfur on Yield and Yield Components of Wheat Grown in Central Anatolia, Turkey. J. Plant Nutr. 2003, 26, 1483–1498. [Google Scholar] [CrossRef]
- Singh, S.P.; Singh, M.P. Effect of Sulphur Fertilization on Sulphur Balance in Soil and Productivity of Wheat in a Wheat–Rice Cropping System. Agric. Res. 2014, 3, 284–292. [Google Scholar] [CrossRef]
- Castellari, M.P.; Poffenbarger, H.J.; Van Sanford, D.A. Sulfur Fertilization Effects on Protein Concentration and Yield of Wheat: A Meta-Analysis. Field Crops Res. 2023, 302, 109061. [Google Scholar] [CrossRef]
- Hesse, H.; Nikiforova, V.; Gakière, B.; Hoefgen, R. Molecular Analysis and Control of Cysteine Biosynthesis: Integration of Nitrogen and Sulphur Metabolism. J. Exp. Bot. 2004, 55, 1283–1292. [Google Scholar] [CrossRef]
- Dai, Z.; Plessis, A.; Vincent, J.; Duchateau, N.; Besson, A.; Dardevet, M.; Prodhomme, D.; Gibon, Y.; Hilbert, G.; Pailloux, M.; et al. Transcriptional and Metabolic Alternations Rebalance Wheat Grain Storage Protein Accumulation under Variable Nitrogen and Sulfur Supply. Plant J. 2015, 83, 326–343. [Google Scholar] [CrossRef]
- Fismes, J.; Vong, P.C.; Guckert, A.; Frossard, E. Influence of Sulfur on Apparent N-Use Efficiency, Yield and Quality of Oilseed Rape (Brassica napus L.) Grown on a Calcareous Soil. Eur. J. Agron. 2000, 12, 127–141. [Google Scholar] [CrossRef]
- Salvagiotti, F.; Castellarín, J.M.; Miralles, D.J.; Pedrol, H.M. Sulfur Fertilization Improves Nitrogen Use Efficiency in Wheat by Increasing Nitrogen Uptake. Field Crops Res. 2009, 113, 170–177. [Google Scholar] [CrossRef]
- Carciochi, W.D.; Divito, G.A.; Fernández, L.A.; Echeverría, H.E. Sulfur Affects Root Growth and Improves Nitrogen Recovery and Internal Efficiency in Wheat. J. Plant Nutr. 2017, 40, 1231–1242. [Google Scholar] [CrossRef]
- Tea, I.; Genter, T.; Violleau, F.; Kleiber, D. Changes in the Glutathione Thiol-Disulfide Status in Wheat Grain by Foliar Sulphur Fertilization: Consequences for the Rheological Properties of Dough. J. Cereal Sci. 2005, 41, 305–315. [Google Scholar] [CrossRef]
- Tea, I.; Genter, T.; Naulet, N.; Lummerzheim, M.; Kleiber, D. Interaction between Nitrogen and Sulfur by Foliar Application and Its Effects on Flour Bread-Making Quality. J. Sci. Food Agric. 2007, 87, 2853–2859. [Google Scholar] [CrossRef]
- Wilson, T.L.; Guttieri, M.J.; Nelson, N.O.; Fritz, A.; Tilley, M. Nitrogen and Sulfur Effects on Hard Winter Wheat Quality and Asparagine Concentration. J. Cereal Sci. 2020, 93, 102969. [Google Scholar] [CrossRef]
- Guerrini, L.; Napoli, M.; Mancini, M.; Masella, P.; Cappelli, A.; Parenti, A.; Orlandini, S. Wheat Grain Composition, Dough Rheology and Bread Quality as Affected by Nitrogen and Sulfur Fertilization and Seeding Density. Agronomy 2020, 10, 233. [Google Scholar] [CrossRef]
- Cai, J.; Zang, F.; Xin, L.; Zhou, Q.; Wang, X.; Zhong, Y.; Huang, M.; Dai, T.; Jiang, D. Effects of Cysteine and Inorganic Sulfur Applications at Different Growth Stages on Grain Protein and End-Use Quality in Wheat. Foods 2022, 11, 3252. [Google Scholar] [CrossRef]
- Wrigley, C.W.; Du Cros, D.L.; Fullington, J.G.; Kasarda, D.D. Changes in Polypeptide Composition and Grain Quality Due to Sulfur Deficiency in Wheat. J. Cereal Sci. 1984, 2, 15–24. [Google Scholar] [CrossRef]
- Swamy, U.; Wang, M.; Tripathy, J.N.; Kim, S.-K.; Hirasawa, M.; Knaff, D.B.; Allen, J.P. Structure of Spinach Nitrite Reductase: Implications for Multi-Electron Reactions by the Iron−Sulfur:Siroheme Cofactor. Biochemistry 2005, 44, 16054–16063. [Google Scholar] [CrossRef]
- Geng, J.; Ma, Q.; Chen, J.; Zhang, M.; Li, C.; Yang, Y.; Yang, X.; Zhang, W.; Liu, Z. Effects of Polymer Coated Urea and Sulfur Fertilization on Yield, Nitrogen Use Efficiency and Leaf Senescence of Cotton. Field Crops Res. 2016, 187, 87–95. [Google Scholar] [CrossRef]
- Tao, Z.; Chang, X.; Wang, D.; Wang, Y.; Ma, S.; Yang, Y.; Zhao, G. Effects of Sulfur Fertilization and Short-Term High Temperature on Wheat Grain Production and Wheat Flour Proteins. Crop J. 2018, 6, 413–425. [Google Scholar] [CrossRef]
- Steinfurth, D.; Zörb, C.; Braukmann, F.; Mühling, K.H. Time-Dependent Distribution of Sulphur, Sulphate and Glutathione in Wheat Tissues and Grain as Affected by Three Sulphur Fertilization Levels and Late S Fertilization. J. Plant Physiol. 2012, 169, 72–77. [Google Scholar] [CrossRef]
- Daher Al-Salami, A.S.; Hanoon Mohson, K.; Abdullhay Desher, M. Effect of Agriculture Sulfur Fertilizer Levels on Growth, and Yield of Wheat (Triticum aestivum L.). Plant Arch. 2021, 21, 1102–1107. [Google Scholar] [CrossRef]
- Doerge, R.W. Mapping and Analysis of Quantitative Trait Loci in Experimental Populations. Nat. Rev. Genet. 2002, 3, 43–52. [Google Scholar] [CrossRef]
- Cao, W.; Jia, J.; Jin, J. Identification and Interaction Analysis of QTL for Phosphorus Use Efficiency in Wheat Seedlings. In Plant Nutrition: Food Security and Sustainability of Agro-Ecosystems Through Basic and Applied Research; Horst, W.J., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H., Olfs, H.-W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 76–77. ISBN 978-0-306-47624-2. [Google Scholar]
- Su, J.-Y.; Zheng, Q.; Li, H.-W.; Li, B.; Jing, R.-L.; Tong, Y.-P.; Li, Z.-S. Detection of QTLs for Phosphorus Use Efficiency in Relation to Agronomic Performance of Wheat Grown under Phosphorus Sufficient and Limited Conditions. Plant Sci. 2009, 176, 824–836. [Google Scholar] [CrossRef]
- Guo, Y.; Kong, F.; Xu, Y.; Zhao, Y.; Liang, X.; Wang, Y.; An, D.; Li, S. QTL Mapping for Seedling Traits in Wheat Grown under Varying Concentrations of N, P and K Nutrients. Theor. Appl. Genet. 2012, 124, 851–865. [Google Scholar] [CrossRef]
- Kong, F.-M.; Guo, Y.; Liang, X.; Wu, C.-H.; Wang, Y.-Y.; Zhao, Y.; Li, S.-S. Potassium (K) Effects and QTL Mapping for K Efficiency Traits at Seedling and Adult Stages in Wheat. Plant Soil 2013, 373, 877–892. [Google Scholar] [CrossRef]
- Sun, J.; Guo, Y.; Zhang, G.; Gao, M.; Zhang, G.; Kong, F.; Zhao, Y.; Li, S. QTL Mapping for Seedling Traits under Different Nitrogen Forms in Wheat. Euphytica 2013, 191, 317–331. [Google Scholar] [CrossRef]
- Zhao, Y.; Li, X.; Zhang, S.; Wang, J.; Yang, X.; Tian, J.; Hai, Y.; Yang, X. Mapping QTLs for Potassium-Deficiency Tolerance at the Seedling Stage in Wheat (Triticum aestivum L.). Euphytica 2014, 198, 185–198. [Google Scholar] [CrossRef]
- Gong, X.-P.; Liang, X.; Guo, Y.; Wu, C.-H.; Zhao, Y.; Li, X.-H.; Li, S.-S.; Kong, F.-M. Quantitative Trait Locus Mapping for Potassium Use Efficiency Traits at the Seedling Stage in Wheat under Different Nitrogen and Phosphorus Treatments. Crop Sci. 2015, 55, 2690–2700. [Google Scholar] [CrossRef]
- Yuan, Y.; Zhang, M.; Zheng, H.; Kong, F.; Guo, Y.; Zhao, Y.; An, Y. Detection of QTL for Phosphorus Efficiency and Biomass Traits at the Seedling Stage in Wheat. Cereal Res. Commun. 2020, 48, 517–524. [Google Scholar] [CrossRef]
- Safdar, L.B.; Andleeb, T.; Latif, S.; Umer, M.J.; Tang, M.; Li, X.; Liu, S.; Quraishi, U.M. Genome-Wide Association Study and QTL Meta-Analysis Identified Novel Genomic Loci Controlling Potassium Use Efficiency and Agronomic Traits in Bread Wheat. Front. Plant Sci. 2020, 11, 70. [Google Scholar] [CrossRef]
- Lavoignat, M.; Cassan, C.; Pétriacq, P.; Gibon, Y.; Heumez, E.; Duque, C.; Momont, P.; Rincent, R.; Blancon, J.; Ravel, C.; et al. Different Wheat Loci Are Associated to Heritable Free Asparagine Content in Grain Grown under Different Water and Nitrogen Availability. Theor. Appl. Genet. 2024, 137, 46. [Google Scholar] [CrossRef] [PubMed]
- Peleg, Z.; Cakmak, I.; Ozturk, L.; Yazici, A.; Jun, Y.; Budak, H.; Korol, A.B.; Fahima, T.; Saranga, Y. Quantitative Trait Loci Conferring Grain Mineral Nutrient Concentrations in Durum Wheat × Wild Emmer Wheat RIL Population. Theor. Appl. Genet. 2009, 119, 353–369. [Google Scholar] [CrossRef] [PubMed]
- Fradgley, N.S.; Gardner, K.; Kerton, M.; Swarbreck, S.M.; Bentley, A.R. Trade-Offs in the Genetic Control of Functional and Nutritional Quality Traits in UK Winter Wheat. Heredity 2022, 128, 420–433. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ni, Z.; Peng, H.; Liu, Z.; Nie, X.; Xu, S. Molecular Mapping of QTLs for Root Response to Phosphorus Deficiency at Seedling Stage in Wheat (Triticum aestivum L.). Prog. Nat. Sci. 2007, 10, 1177–1184. [Google Scholar]
- Wang, Y.; Sun, X.; Zhao, Y.; Kong, F.; Guo, Y.; Zhang, G.; Pu, Y.; Wu, K.; Li, S. Enrichment of a Common Wheat Genetic Map and QTL Mapping for Fatty Acid Content in Grain. Plant Sci. 2011, 181, 65–75. [Google Scholar] [CrossRef]
- Hoagland, D.R.; Arnon, D.I. The Water Culture Method for Growing Plant Without Soil; University of California, College of Agriculture, Agricultural Experiment Station: Davis, CA, USA, 1938; Volume 347. [Google Scholar]
- Knapp, S.J.; Stroup, W.W.; Ross, W.M. Exact Confidence Intervals for Heritability on a Progeny Mean Basis. Crop Sci. 1985, 25, 192–194. [Google Scholar] [CrossRef]
- Wang, S.; Basten, C.; Gaffney, P.; Zeng, Z. Windows QTL Cartographer 2.0; Department of Statics, North Carolina State University: Raleigh, NC, USA, 2007. [Google Scholar]
- Churchill, G.A.; Doerge, R.W. Empirical Threshold Values for Quantitative Trait Mapping. Genetics 1994, 138, 963–971. [Google Scholar] [CrossRef]
- Stoll, M.; Kwitek-Black, A.E.; Cowley, A.W.; Harris, E.L.; Harrap, S.B.; Krieger, J.E.; Printz, M.P.; Provoost, A.P.; Sassard, J.; Jacob, H.J. New Target Regions for Human Hypertension via Comparative Genomics. Genome Res. 2000, 10, 473–482. [Google Scholar] [CrossRef]
- Tsujimoto, Y.; Yamamoto, Y.; Hayashi, K.; Zakaria, A.I.; Inusah, Y.; Hatta, T.; Fosu, M.; Sakagami, J.-I. Topographic Distribution of the Soil Total Carbon Content and Sulfur Deficiency for Rice Cultivation in a Floodplain Ecosystem of the Northern Region of Ghana. Field Crops Res. 2013, 152, 74–82. [Google Scholar] [CrossRef]
- Sharma, V.; Rena, V.; Kumar, D.; Pandey, R.N.; Singh, B. Sulfur Regulates Iron Uptake and Iron Use Efficiency in Bread and Durum Wheat. Indian J. Plant Physiol. 2016, 21, 189–196. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, H. QTL Mapping for Traits Related to P-Deficient Tolerance Using Three Related RIL Populations in Wheat. Euphytica 2015, 203, 505–520. [Google Scholar] [CrossRef]
- Zhang, M.; Gao, M.; Zheng, H.; Yuan, Y.; Zhou, X.; Guo, Y.; Zhang, G.; Zhao, Y.; Kong, F.; An, Y.; et al. QTL Mapping for Nitrogen Use Efficiency and Agronomic Traits at the Seedling and Maturity Stages in Wheat. Mol. Breed. 2019, 39, 71. [Google Scholar] [CrossRef]
- An, D.; Su, J.; Liu, Q.; Zhu, Y.; Tong, Y.; Li, J.; Jing, R.; Li, B.; Li, Z. Mapping QTLs for Nitrogen Uptake in Relation to the Early Growth of Wheat (Triticum aestivum L.). Plant Soil 2006, 284, 73–84. [Google Scholar] [CrossRef]
- Laperche, A.; Devienne-Barret, F.; Maury, O.; Le Gouis, J.; Ney, B. A Simplified Conceptual Model of Carbon/Nitrogen Functioning for QTL Analysis of Winter Wheat Adaptation to Nitrogen Deficiency. Theor. Appl. Genet. 2006, 113, 1131–1146. [Google Scholar] [CrossRef]
- Cui, F.; Fan, X.; Zhao, C.; Zhang, W.; Chen, M.; Ji, J.; Li, J. A Novel Genetic Map of Wheat: Utility for Mapping QTL for Yield under Different Nitrogen Treatments. BMC Genet. 2014, 15, 57. [Google Scholar] [CrossRef] [PubMed]
- Collins, N.C.; Tardieu, F.; Tuberosa, R. Quantitative Trait Loci and Crop Performance under Abiotic Stress: Where Do We Stand? Plant Physiol. 2008, 147, 469–486. [Google Scholar] [CrossRef] [PubMed]
- Ninkuu, V.; Zhou, Y.; Liu, H.; Sun, S.; Liu, Z.; Liu, Y.; Yang, J.; Hu, M.; Guan, L.; Sun, X. Regulation of Nitrogen Metabolism by COE2 under Low Sulfur Stress in Arabidopsis. Plant Sci. 2024, 346, 112137. [Google Scholar] [CrossRef]
- Forieri, I.; Aref, R.; Wirtz, M.; Hell, R. Micrografting Provides Evidence for Systemic Regulation of Sulfur Metabolism between Shoot and Root. Plants 2021, 10, 1729. [Google Scholar] [CrossRef]
Trials | Treatments | |||
---|---|---|---|---|
Name | Code | S Concentration | ||
Hydroponic culture trial | E1 | LS (T1) | T1E1 | 0.1 mmol·L−1 |
MS (T2) | T2E1 | 0.5 mmol·L−1 | ||
HS (T3) | T3E1 | 1.5 mmol·L−1 | ||
E2 | LS (T1) | T1E2 | 0.1 mmol·L−1 | |
MS (T2) | T2E2 | 0.5 mmol·L−1 | ||
HS (T3) | T3E2 | 1.5 mmol·L−1 |
Abbreviation | Traits | Units | Methods of Trait Measurement |
---|---|---|---|
SH | shoot height per plant | cm | Measured with a ruler |
MRL | maximum root length per plant | cm | Measured with a ruler |
RN | root number per plant | number | Average number of nine plants |
RDW | root dry weight per plant | mg∙plant−1 | Oven-dried and weighed on 1/10,000 balances |
SDW | shoot dry weight per plant | mg∙plant−1 | Oven dried and weighed on 1/10,000 balances |
TDW | total dry weight per plant | mg∙plant−1 | RDW+SDW |
RSR | root–shoot ratio | - | RDW/SDW |
RSC | root sulfur content per plant | mg∙plant−1 | Using a sequential plasma spectrometer (ICPS-7500, Japan) |
SSC | shoot sulfur content per plant | mg∙plant−1 | Using a sequential plasma spectrometer (ICPS-7500, Japan) |
TSC | total sulfur content per plant | mg∙plant−1 | RSC + SSC |
RSUE | root sulfur utilization efficiency | mg2RDW∙μg−1RSC | RDW2/(RSC × 1000) |
SSUE | shoot sulfur utilization efficiency | mg2SDW∙μg−1SSC | SDW2/(SSC × 1000) |
TSUE | total sulfur utilization efficiency | mg2TDW∙μg−1TSC | TDW2/(TSC × 1000) |
Traits | QTL | Treatments | Marker Intervals | Additive Effects | R2 (%) | ||||
---|---|---|---|---|---|---|---|---|---|
Min | Max | Average | Min | Max | Average | ||||
SH | QSh-1D | T1E1,T1AV,T2E1,T2AV,T3E1 | wmc432b-swes1100 | −2.14 | −0.97 | −1.56 | 10.90 | 26.50 | 18.70 |
MRL | QMrl.1-2D | T1E2,T3AV,T2E2,T2AV,T3E2 | wPt2544-trap4d | −1.82 | −1.02 | −1.42 | 11.30 | 23.10 | 17.20 |
RN | QRn-1D | T1E1,T1AV,T2E1,T2AV,T3E1 | wmc336b-wPt666067 | −0.72 | −0.40 | −0.56 | 13.00 | 18.30 | 15.65 |
RDW | QRdw-6A | T1E1,T1E2,T1AV,T2E2,T2AV,T3E2,T3AV | wPt672030-wPt7204 | 2.86 | 5.88 | 4.37 | 10.5 | 23.30 | 16.90 |
SDW | QSdw-1D | T1E1,T2E1,T2AV,T3E1,T3AV | wmc432b-wPt4647 | −20.52 | −9.62 | −15.07 | 9.80 | 21.60 | 15.70 |
QSdw-6A | T1E2,T1AV,T2E2,T2AV,T3E3,T3AV | wPt668031-swes1062 | 8.66 | 22.48 | 15.57 | 8.70 | 21.70 | 15.20 | |
TDW | QTdw-1D | T1E1,T2E1,T2AV,T3E1,T3AV | wmc432b-wPt665480 | −24.55 | −11.95 | −18.25 | 10.80 | 28.40 | 19.60 |
QTdw-6A | T1E2,T1AV,T2E2,T2AV,T3E3,T3AV | wPt3247-swes1062 | 13.85 | 27.54 | 20.70 | 15.00 | 22.30 | 18.65 | |
RSC | QRsc-6A | T1E2,T1AV,T2E2,T3E2,T3AV | wPt672030-wPt731002 | 0.01 | 0.02 | 0.02 | 10.40 | 27.50 | 18.95 |
SSC | QSsc-6A | T1E1,T1E2,T1AV,T2E2,T2AV,T3E2,T3AV | wPt672030-wPt4229 | 0.03 | 0.05 | 0.04 | 7.80 | 17.10 | 12.45 |
TSC | QTsc-1D | T1E1,T2E1,T2AV,T3E1,T3AV | wmc432b-wPt665480 | −0.05 | −0.04 | −0.05 | 10.3 | 15.50 | 12.90 |
QTsc-6A | T1E1,T1E2,T1AV,T2E2,T2AV,T3E2,T3AV | wPt672030-wPt7204 | 0.04 | 0.06 | 0.05 | 9.60 | 19.40 | 14.50 | |
SSUE | QSsue-1D | T1E1,T3E1,T1E2 | wmc432b-GlluD1 | −6.25 | 6.52 | 0.14 | 8.90 | 15.70 | 12.30 |
Cluster Code | Chromosome | Marker Intervals | QTL Number | QTLs for Seedling Traits | Treatments | |||
---|---|---|---|---|---|---|---|---|
C1 | 1A | wPt731490-wPt669484 | 4 | QRsc-1A | QSh.1-1A | QSsc.1-1A | QTsc.1-1A | T1E1,T3E1,T1AV,T3AV, |
C2 | 1B | wmc314-ubc880d | 4 | QSdw.2-1B | QSsue-1B | QTdw.2-1B | QTsue-1B | T2E1,T2AV |
C3 | 1D | wPt7946-GlluD1 | 11 | QRdw-1D | QRsc-1D | QSdw-1D | QSh-1D | T1E1,T1AV,T1E2,T2E1, |
QSsue-1D | QTdw-1D | QTsue-1D | QTsc-1D | T2AV,T3E1,T3AV | ||||
QRn-1D | QRSue-1D | QSsc-1D | ||||||
C4 | 2A | swes217b-barc15 | 9 | QRdw-2A | QRsue-2A | QSsue-2A | QTsue-2A | T1E2,T1AV,T2E2,T2AV, |
QRsc-2A | QSdw-2A | QSsc-2A | QTdw-2A | T3E2 | ||||
QTsc-2A | ||||||||
C5 | 2B | wPt5374-wPt7970 | 7 | QSdw-2B | QSsc-2B | QSsue-2B | QTdw-2B | T1AV,T2E2,T3E2,T3AV |
QTsc-2B | QRn.1-2B | QSh.1-2B | ||||||
C6 | 3B | swes862-ubc853c | 5 | QRsr.1-3B | QSh.1-3B | QRsc.1-3B | QSsc-3B | T1E1,T1AV,T2E1,T2E2, |
QTsc-3B | T3E1,T3AV | |||||||
C7 | 3B | wPt0751-issr25a | 9 | QRsr.2-3B | QRsue-3B | QTsue.2-3B | QRdw-3B | T1E2,T2E1,T2E2,T2AV, |
QRn-3B | QRsc.3-3B | QSdw-3B | QSsue-3B | T3AV | ||||
QTdw-3B | ||||||||
C8 | 4A | wPt0032-wPt5172 | 6 | QSdw.1-4A | QTdw.1-4A | QRn-4A | QRsue-4A | T3E2,T3E2,T3AV |
QSsc-4A | QSsue-4A | |||||||
C9 | 4B | swes24c-wPt5334 | 7 | QSh-4B | QSdw-4B | QSsue-4B | QTdw-4B | T1E2,T2E2,T3E2,T3AV |
QTsc-4B | QTsue-4B | QRn-4B | ||||||
C10 | 6A | wPt672030-swes1062 | 11 | QSsc-6A | QRsc-6A | QSh-6A | QMrl-6A | T1E1,T1E2,T1AV,T2E2, |
QRsue.3-6A | QSdw-6A | QTdw-6A | QRdw-6A | T2AV,T3E2,T3AV | ||||
QSsue-6A | QTsc-6A | QTsue.2-6A | ||||||
C11 | 7A | wPt4637-barc121 | 5 | QSsue-7A | QSsc.2-7A | QTdw-7A | QSdw-7A | T1E1,T2E1,T3AV |
QRn.2-7A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, L.; Li, J.; Wang, H.; Zhai, Y.; Xu, Q.; Yang, H.; Li, Y.; Guo, Y.; Kong, F.; Li, S.; et al. Quantitative Trait Loci Mappings for the Sulfur Utilization Efficiency-Related Traits at the Seedling Stage of Wheat. Genes 2024, 15, 1550. https://doi.org/10.3390/genes15121550
Ma L, Li J, Wang H, Zhai Y, Xu Q, Yang H, Li Y, Guo Y, Kong F, Li S, et al. Quantitative Trait Loci Mappings for the Sulfur Utilization Efficiency-Related Traits at the Seedling Stage of Wheat. Genes. 2024; 15(12):1550. https://doi.org/10.3390/genes15121550
Chicago/Turabian StyleMa, Longteng, Jiali Li, Hui Wang, Yunhui Zhai, Qing Xu, Hongling Yang, Yizheng Li, Ying Guo, Fanmei Kong, Sishen Li, and et al. 2024. "Quantitative Trait Loci Mappings for the Sulfur Utilization Efficiency-Related Traits at the Seedling Stage of Wheat" Genes 15, no. 12: 1550. https://doi.org/10.3390/genes15121550
APA StyleMa, L., Li, J., Wang, H., Zhai, Y., Xu, Q., Yang, H., Li, Y., Guo, Y., Kong, F., Li, S., & Zhao, Y. (2024). Quantitative Trait Loci Mappings for the Sulfur Utilization Efficiency-Related Traits at the Seedling Stage of Wheat. Genes, 15(12), 1550. https://doi.org/10.3390/genes15121550