Understanding Hypertriglyceridemia: Integrating Genetic Insights
Abstract
:1. Introduction
2. Familial Chylomicronemia Syndrome
3. Multifactorial Chylomicronemia Syndrome
4. Lipoprotein Lipase
5. Apolipoprotein C-II
6. Apolipoprotein C-III
7. Apolipoprotein A-V
8. Lipase Maturation Factor 1
9. Glycosylphosphatidylinositol-Anchored High-Density Lipoprotein-Binding Protein 1
10. Hypertriglyceridemia and Pancreatitis
11. Hypertriglyceridemia and Atherosclerotic Cardiovascular Disease
12. Therapeutic Potential and Emerging Therapies
13. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Abedi, A.H.; Yildirim Simsir, I.; Bayram, F.; Onay, H.; Ozgur, S.; McIntyre, A.D.; Toth, P.P.; Hegele, R.A. Genetic Variants Associated with Severe Hypertriglyceridemia: LPL, APOC2, APOA5, GPIHBP1, LMF1, and APOE. Turk. Kardiyol. Dern. Ars. 2023, 51, 10–21. [Google Scholar] [CrossRef]
- Laufs, U.; Parhofer, K.G.; Ginsberg, H.N.; Hegele, R.A. Clinical review on triglycerides. Eur. Heart J. 2020, 41, 99–109c. [Google Scholar] [CrossRef]
- Dron, J.S.; Wang, J.; Cao, H.; McIntyre, A.D.; Iacocca, M.A.; Menard, J.R.; Movsesyan, I.; Malloy, M.J.; Pullinger, C.R.; Kane, J.P.; et al. Severe hypertriglyceridemia is primarily polygenic. J. Clin. Lipidol. 2019, 13, 80–88. [Google Scholar] [CrossRef] [PubMed]
- Simha, V. Management of hypertriglyceridemia. BMJ 2020, 371, m3109. [Google Scholar] [CrossRef]
- Packard, C.J.; Boren, J.; Taskinen, M.R. Causes and Consequences of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 252. [Google Scholar] [CrossRef]
- Johansen, C.T.; Kathiresan, S.; Hegele, R.A. Genetic determinants of plasma triglycerides. J. Lipid Res. 2011, 52, 189–206. [Google Scholar] [CrossRef]
- Johansen, C.T.; Hegele, R.A. Allelic and phenotypic spectrum of plasma triglycerides. Biochim. Biophys. Acta 2012, 1821, 833–842. [Google Scholar] [CrossRef]
- Brahm, A.; Hegele, R.A. Hypertriglyceridemia. Nutrients 2013, 5, 981–1001. [Google Scholar] [CrossRef]
- Dron, J.S.; Hegele, R.A. Genetics of Hypertriglyceridemia. Front. Endocrinol. 2020, 11, 455. [Google Scholar] [CrossRef]
- Hegele, R.A.; Ginsberg, H.N.; Chapman, M.J.; Nordestgaard, B.G.; Kuivenhoven, J.A.; Averna, M.; Boren, J.; Bruckert, E.; Catapano, A.L.; Descamps, O.S.; et al. The polygenic nature of hypertriglyceridaemia: Implications for definition, diagnosis, and management. Lancet Diabetes Endocrinol. 2014, 2, 655–666. [Google Scholar] [CrossRef]
- Falko, J.M. Familial Chylomicronemia Syndrome: A Clinical Guide for Endocrinologists. Endocr. Pract. 2018, 24, 756–763. [Google Scholar] [CrossRef] [PubMed]
- Hegele, R.A.; Berberich, A.J.; Ban, M.R.; Wang, J.; Digenio, A.; Alexander, V.J.; D’Erasmo, L.; Arca, M.; Jones, A.; Bruckert, E.; et al. Clinical and biochemical features of different molecular etiologies of familial chylomicronemia. J. Clin. Lipidol. 2018, 12, 920–927 e924. [Google Scholar] [CrossRef] [PubMed]
- Hegele, R.A.; Ban, M.R.; Hsueh, N.; Kennedy, B.A.; Cao, H.; Zou, G.Y.; Anand, S.; Yusuf, S.; Huff, M.W.; Wang, J. A polygenic basis for four classical Fredrickson hyperlipoproteinemia phenotypes that are characterized by hypertriglyceridemia. Hum. Mol. Genet. 2009, 18, 4189–4194. [Google Scholar] [CrossRef] [PubMed]
- Carr, R.A.; Rejowski, B.J.; Cote, G.A.; Pitt, H.A.; Zyromski, N.J. Systematic review of hypertriglyceridemia-induced acute pancreatitis: A more virulent etiology? Pancreatology 2016, 16, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Goldberg, R.B.; Chait, A. A Comprehensive Update on the Chylomicronemia Syndrome. Front. Endocrinol. 2020, 11, 593931. [Google Scholar] [CrossRef]
- Gallo, A.; Beliard, S.; D’Erasmo, L.; Bruckert, E. Familial Chylomicronemia Syndrome (FCS): Recent Data on Diagnosis and Treatment. Curr. Atheroscler. Rep. 2020, 22, 63. [Google Scholar] [CrossRef]
- Paquette, M.; Bernard, S.; Hegele, R.A.; Baass, A. Chylomicronemia: Differences between familial chylomicronemia syndrome and multifactorial chylomicronemia. Atherosclerosis 2019, 283, 137–142. [Google Scholar] [CrossRef]
- Lewis, G.F.; Xiao, C.; Hegele, R.A. Hypertriglyceridemia in the genomic era: A new paradigm. Endocr. Rev. 2015, 36, 131–147. [Google Scholar] [CrossRef] [PubMed]
- Moulin, P.; Dufour, R.; Averna, M.; Arca, M.; Cefalu, A.B.; Noto, D.; D’Erasmo, L.; Di Costanzo, A.; Marcais, C.; Alvarez-Sala Walther, L.A.; et al. Identification and diagnosis of patients with familial chylomicronaemia syndrome (FCS): Expert panel recommendations and proposal of an “FCS score”. Atherosclerosis 2018, 275, 265–272. [Google Scholar] [CrossRef]
- Nivedita Patni, Z.A.; Wilson, D.P.; Feingold, K.R.; Blackman, M.R.; Boyce, A.; Chrousos, G.; Corpas, E.; de Herder, W.W.; Dhatariya, K.; Dungan, K.; et al. Genetics and Dyslipidemia; Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2023. [Google Scholar]
- Strom, T.B.; Tveita, A.A.; Bogsrud, M.P.; Leren, T.P. Molecular genetic testing and measurement of levels of GPIHBP1 autoantibodies in patients with severe hypertriglyceridemia: The importance of identifying the underlying cause of hypertriglyceridemia. J. Clin. Lipidol. 2023, in press. [Google Scholar] [CrossRef]
- Hart, P.A.; Bellin, M.D.; Andersen, D.K.; Bradley, D.; Cruz-Monserrate, Z.; Forsmark, C.E.; Goodarzi, M.O.; Habtezion, A.; Korc, M.; Kudva, Y.C.; et al. Type 3c (pancreatogenic) diabetes mellitus secondary to chronic pancreatitis and pancreatic cancer. Lancet Gastroenterol. Hepatol. 2016, 1, 226–237. [Google Scholar] [CrossRef]
- MacLean, D.R.; Petrasovits, A.; Nargundkar, M.; Connelly, P.W.; MacLeod, E.; Edwards, A.; Hessel, P. Canadian heart health surveys: A profile of cardiovascular risk. Survey methods and data analysis. Canadian Heart Health Surveys Research Group. CMAJ 1992, 146, 1969–1974. [Google Scholar] [PubMed]
- Babirak, S.P.; Iverius, P.H.; Fujimoto, W.Y.; Brunzell, J.D. Detection and characterization of the heterozygote state for lipoprotein lipase deficiency. Arteriosclerosis 1989, 9, 326–334. [Google Scholar] [CrossRef]
- Julien, P.; Vohl, M.C.; Gaudet, D.; Gagne, C.; Levesque, G.; Despres, J.P.; Cadelis, F.; Brun, L.D.; Nadeau, A.; Ven Murthy, M.R. Hyperinsulinemia and abdominal obesity affect the expression of hypertriglyceridemia in heterozygous familial lipoprotein lipase deficiency. Diabetes 1997, 46, 2063–2068. [Google Scholar] [CrossRef]
- Johansen, C.T.; Wang, J.; McIntyre, A.D.; Martins, R.A.; Ban, M.R.; Lanktree, M.B.; Huff, M.W.; Peterfy, M.; Mehrabian, M.; Lusis, A.J.; et al. Excess of rare variants in non-genome-wide association study candidate genes in patients with hypertriglyceridemia. Circ. Cardiovasc. Genet. 2012, 5, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Surendran, R.P.; Visser, M.E.; Heemelaar, S.; Wang, J.; Peter, J.; Defesche, J.C.; Kuivenhoven, J.A.; Hosseini, M.; Peterfy, M.; Kastelein, J.J.; et al. Mutations in LPL, APOC2, APOA5, GPIHBP1 and LMF1 in patients with severe hypertriglyceridaemia. J. Intern. Med. 2012, 272, 185–196. [Google Scholar] [CrossRef] [PubMed]
- Perera, S.D.; Wang, J.; McIntyre, A.D.; Dron, J.S.; Hegele, R.A. The longitudinal triglyceride phenotype in heterozygotes with LPL pathogenic variants. J. Clin. Lipidol. 2023, 17, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Johansen, C.T.; Wang, J.; Lanktree, M.B.; McIntyre, A.D.; Ban, M.R.; Martins, R.A.; Kennedy, B.A.; Hassell, R.G.; Visser, M.E.; Schwartz, S.M.; et al. An increased burden of common and rare lipid-associated risk alleles contributes to the phenotypic spectrum of hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2011, 31, 1916–1926. [Google Scholar] [CrossRef]
- Teslovich, T.M.; Musunuru, K.; Smith, A.V.; Edmondson, A.C.; Stylianou, I.M.; Koseki, M.; Pirruccello, J.P.; Ripatti, S.; Chasman, D.I.; Willer, C.J.; et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 2010, 466, 707–713. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Ban, M.R.; Zou, G.Y.; Cao, H.; Lin, T.; Kennedy, B.A.; Anand, S.; Yusuf, S.; Huff, M.W.; Pollex, R.L.; et al. Polygenic determinants of severe hypertriglyceridemia. Hum. Mol. Genet. 2008, 17, 2894–2899. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Eckel, R.H. Lipoprotein lipase: From gene to obesity. Am. J. Physiol. Endocrinol. Metab. 2009, 297, E271–E288. [Google Scholar] [CrossRef]
- Wu, S.A.; Kersten, S.; Qi, L. Lipoprotein Lipase and Its Regulators: An Unfolding Story. Trends Endocrinol. Metab. 2021, 32, 48–61. [Google Scholar] [CrossRef] [PubMed]
- Ying, S.; Heung, T.; Thiruvahindrapuram, B.; Engchuan, W.; Yin, Y.; Blagojevic, C.; Zhang, Z.; Hegele, R.A.; Yuen, R.K.C.; Bassett, A.S. Polygenic risk for triglyceride levels in the presence of a high impact rare variant. BMC Med. Genom. 2023, 16, 281. [Google Scholar] [CrossRef]
- Basu, D.; Goldberg, I.J. Regulation of lipoprotein lipase-mediated lipolysis of triglycerides. Curr. Opin. Lipidol. 2020, 31, 154–160. [Google Scholar] [CrossRef]
- Hayden, M.R.; Ma, Y. Molecular genetics of human lipoprotein lipase deficiency. Mol. Cell. Biochem. 1992, 113, 171–176. [Google Scholar] [CrossRef]
- Murthy, V.; Julien, P.; Gagné, C. Molecular pathobiology of the human lipoprotein lipase gene. Pharmacol. Ther. 1996, 70, 101–135. [Google Scholar] [CrossRef]
- Kristensen, K.K.; Leth-Espensen, K.Z.; Kumari, A.; Gronnemose, A.L.; Lund-Winther, A.M.; Young, S.G.; Ploug, M. GPIHBP1 and ANGPTL4 Utilize Protein Disorder to Orchestrate Order in Plasma Triglyceride Metabolism and Regulate Compartmentalization of LPL Activity. Front. Cell Dev. Biol. 2021, 9, 702508. [Google Scholar] [CrossRef]
- Jiang, S.; Ren, Z.; Yang, Y.; Liu, Q.; Zhou, S.; Xiao, Y. The GPIHBP1-LPL complex and its role in plasma triglyceride metabolism: Insights into chylomicronemia. Biomed. Pharmacother. 2023, 169, 115874. [Google Scholar] [CrossRef] [PubMed]
- Birrane, G.; Beigneux, A.P.; Dwyer, B.; Strack-Logue, B.; Kristensen, K.K.; Francone, O.L.; Fong, L.G.; Mertens, H.D.T.; Pan, C.Q.; Ploug, M.; et al. Structure of the lipoprotein lipase-GPIHBP1 complex that mediates plasma triglyceride hydrolysis. Proc. Natl. Acad. Sci. USA 2019, 116, 1723–1732. [Google Scholar] [CrossRef]
- Gunn, K.H.; Neher, S.B. Structure of dimeric lipoprotein lipase reveals a pore adjacent to the active site. Nat. Commun. 2023, 14, 2569. [Google Scholar] [CrossRef] [PubMed]
- Beigneux, A.P.; Allan, C.M.; Sandoval, N.P.; Cho, G.W.; Heizer, P.J.; Jung, R.S.; Stanhope, K.L.; Havel, P.J.; Birrane, G.; Meiyappan, M.; et al. Lipoprotein lipase is active as a monomer. Proc. Natl. Acad. Sci. USA 2019, 116, 6319–6328. [Google Scholar] [CrossRef]
- Arora, R.; Nimonkar, A.V.; Baird, D.; Wang, C.; Chiu, C.H.; Horton, P.A.; Hanrahan, S.; Cubbon, R.; Weldon, S.; Tschantz, W.R.; et al. Structure of lipoprotein lipase in complex with GPIHBP1. Proc. Natl. Acad. Sci. USA 2019, 116, 10360–10365. [Google Scholar] [CrossRef] [PubMed]
- Gehrisch, S. Common mutations of the lipoprotein lipase gene and their clinical significance. Curr. Atheroscler. Rep. 1999, 1, 70–78. [Google Scholar] [CrossRef]
- Ramasamy, I. Update on the molecular biology of dyslipidemias. Clin. Chim. Acta 2016, 454, 143–185. [Google Scholar] [CrossRef]
- Hall, S.; Chu, G.; Miller, G.; Cruickshank, K.; Cooper, J.A.; Humphries, S.E.; Talmud, P.J. A common mutation in the lipoprotein lipase gene promoter, -93T/G, is associated with lower plasma triglyceride levels and increased promoter activity in vitro. Arterioscler. Thromb. Vasc. Biol. 1997, 17, 1969–1976. [Google Scholar] [CrossRef]
- McGladdery, S.H.; Pimstone, S.N.; Clee, S.M.; Bowden, J.F.; Hayden, M.R.; Frohlich, J.J. Common mutations in the lipoprotein lipase gene (LPL): Effects on HDL-cholesterol levels in a Chinese Canadian population. Atherosclerosis 2001, 156, 401–407. [Google Scholar] [CrossRef]
- Monsalve, M.V.; Henderson, H.; Roederer, G.; Julien, P.; Deeb, S.; Kastelein, J.J.; Peritz, L.; Devlin, R.; Bruin, T.; Murthy, M.R.; et al. A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J. Clin. Lipidol. 1990, 86, 728–734. [Google Scholar] [CrossRef]
- Fisher, R.M.; Humphries, S.E.; Talmud, P.J. Common variation in the lipoprotein lipase gene: Effects on plasma lipids and risk of atherosclerosis. Atherosclerosis 1997, 135, 145–159. [Google Scholar] [CrossRef]
- Ross, C.J.; Liu, G.; Kuivenhoven, J.A.; Twisk, J.; Rip, J.; van Dop, W.; Excoffon, K.J.; Lewis, S.M.; Kastelein, J.J.; Hayden, M.R. Complete rescue of lipoprotein lipase-deficient mice by somatic gene transfer of the naturally occurring LPLS447X beneficial mutation. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 2143–2150. [Google Scholar] [CrossRef]
- Scott, L.J. Alipogene tiparvovec: A review of its use in adults with familial lipoprotein lipase deficiency. Drugs 2015, 75, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Caussy, C.; Charriere, S.; Meirhaeghe, A.; Dallongeville, J.; Lefai, E.; Rome, S.; Cuerq, C.; Euthine, V.; Delay, M.; Marmontel, O.; et al. Multiple microRNA regulation of lipoprotein lipase gene abolished by 3′UTR polymorphisms in a triglyceride-lowering haplotype harboring p.Ser474Ter. Atherosclerosis 2016, 246, 280–286. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, G.; Yang, Q.; Pu, N.; Li, K.; Li, B.; Cooper, D.N.; Tong, Z.; Li, W.; Chen, J.M. The East Asian-specific LPL p.Ala288Thr (c.862G > A) missense variant exerts a mild effect on protein function. Lipids Health Dis. 2023, 22, 119. [Google Scholar] [CrossRef] [PubMed]
- Han, P.; Wei, G.; Cai, K.; Xiang, X.; Deng, W.P.; Li, Y.B.; Kuang, S.; Dong, Z.; Zheng, T.; Luo, Y.; et al. Identification and functional characterization of mutations in LPL gene causing severe hypertriglyceridaemia and acute pancreatitis. J. Cell Mol. Med. 2020, 24, 1286–1299. [Google Scholar] [CrossRef]
- Rahalkar, A.R.; Giffen, F.; Har, B.; Ho, J.; Morrison, K.M.; Hill, J.; Wang, J.; Hegele, R.A.; Joy, T. Novel LPL mutations associated with lipoprotein lipase deficiency: Two case reports and a literature review. Can. J. Physiol. Pharmacol. 2009, 87, 151–160. [Google Scholar] [CrossRef]
- Kobayashi, J.; Inadera, H.; Fujita, Y.; Talley, G.; Morisaki, N.; Yoshida, S.; Saito, Y.; Fojo, S.S.; Brewer, H.B., Jr. A naturally occurring mutation at the second base of codon asparagine 43 in the proposed N-linked glycosylation site of human lipoprotein lipase: In vivo evidence that asparagine 43 is essential for catalysis and secretion. Biochem. Biophys. Res. Commun. 1994, 205, 506–515. [Google Scholar] [CrossRef]
- Hoffmann, M.M.; Jacob, S.; Luft, D.; Schmülling, R.M.; Rett, K.; März, W.; Häring, H.U.; Matthaei, S. Type I hyperlipoproteinemia due to a novel loss of function mutation of lipoprotein lipase, Cys(239)→Trp, associated with recurrent severe pancreatitis. J. Clin. Endocrinol. Metab. 2000, 85, 4795–4798. [Google Scholar] [CrossRef]
- Gin, P.; Goulbourne, C.N.; Adeyo, O.; Beigneux, A.P.; Davies, B.S.; Tat, S.; Voss, C.V.; Bensadoun, A.; Fong, L.G.; Young, S.G. Chylomicronemia mutations yield new insights into interactions between lipoprotein lipase and GPIHBP1. Hum. Mol. Genet. 2012, 21, 2961–2972. [Google Scholar] [CrossRef] [PubMed]
- Wolska, A.; Dunbar, R.L.; Freeman, L.A.; Ueda, M.; Amar, M.J.; Sviridov, D.O.; Remaley, A.T. Apolipoprotein C-II: New findings related to genetics, biochemistry, and role in triglyceride metabolism. Atherosclerosis 2017, 267, 49–60. [Google Scholar] [CrossRef]
- Pégorier, J.P.; May, C.L.; Girard, J. Control of gene expression by fatty acids. J. Nutr. 2004, 134, 2444S–2449S. [Google Scholar] [CrossRef]
- Wolska, A.; Lo, L.; Sviridov, D.O.; Pourmousa, M.; Pryor, M.; Ghosh, S.S.; Kakkar, R.; Davidson, M.; Wilson, S.; Pastor, R.W.; et al. A dual apolipoprotein C-II mimetic-apolipoprotein C-III antagonist peptide lowers plasma triglycerides. Sci. Transl. Med. 2020, 12, 528. [Google Scholar] [CrossRef]
- Chyzhyk, V.; Brown, A.S. Familial chylomicronemia syndrome: A rare but devastating autosomal recessive disorder characterized by refractory hypertriglyceridemia and recurrent pancreatitis. Trends Cardiovasc. Med. 2020, 30, 80–85. [Google Scholar] [CrossRef]
- Wang, J.; Cao, H.; Ban, M.R.; Kennedy, B.A.; Zhu, S.; Anand, S.; Yusuf, S.; Pollex, R.L.; Hegele, R.A. Resequencing genomic DNA of patients with severe hypertriglyceridemia (MIM 144650). Arterioscler. Thromb. Vasc. Biol. 2007, 27, 2450–2455. [Google Scholar] [CrossRef]
- Tuzgöl, S.; Bijvoet, S.M.; Bruin, T.; Kastelein, J.J.; Hayden, M.R. Apolipoprotein CII-Padova (Tyr37→stop) as a cause of chylomicronaemia in an Italian kindred from Siculiana. J. Med. Genet. 1994, 31, 622–626. [Google Scholar] [CrossRef] [PubMed]
- Fojo, S.S.; de Gennes, J.L.; Chapman, J.; Parrott, C.; Lohse, P.; Kwan, S.S.; Truffert, J.; Brewer, H.B. An Initiation Codon Mutation in the ApoC-II Gene (ApoC-II Paris) of a Patient with a Deficiency of Apolipoprotein C-II. J. Biol. Chem. 1989, 264, 20839–20842. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.H.; Cao, Y.L.; Hu, W.C. Apolipoprotein C-II promoter T→A substitution at position -190 affects on the transcription of the gene and its relationship to hyperlipemia. Biochem. Biophys. Res. Commun. 2007, 354, 62–65. [Google Scholar] [CrossRef]
- Wolska, A.; Reimund, M.; Remaley, A.T. Apolipoprotein C-II: The re-emergence of a forgotten factor. Curr Opin Lipidol. 2020, 31, 147–153. [Google Scholar] [CrossRef] [PubMed]
- Fojo, S.S.; Lohse, P.; Parrott, C.; Baggio, G.; Gabelli, C.; Thomas, F.; Hoffman, J.; Brewer, H.B., Jr. A nonsense mutation in the apolipoprotein C-IIPadova gene in a patient with apolipoprotein C-II deficiency. J. Clin. Investig. 1989, 84, 1215–1219. [Google Scholar] [CrossRef]
- Connelly, P.W.; Maguire, G.F.; Little, J.A. Apolipoprotein CIISt. Michael. Familial apolipoprotein CII deficiency associated with premature vascular disease. J. Clin. Investig. 1987, 80, 1597–1606. [Google Scholar] [CrossRef] [PubMed]
- Okubo, M.; Toromanovic, A.; Ebara, T.; Murase, T. Apolipoprotein C-II Tuzla: A novel large deletion in APOC2 caused by Alu-Alu homologous recombination in an infant with apolipoprotein C-II deficiency. Clin. Chim. Acta 2015, 438, 148–153. [Google Scholar] [CrossRef] [PubMed]
- Inadera, H.; Hibino, A.; Kobayashi, J.; Kanzaki, T.; Shirai, K.; Yukawa, S.; Saito, Y.; Yoshida, S. A missense mutation (Trp 26→Arg) in exon 3 of the apolipoprotein CII gene in a patient with apolipoprotein CII deficiency (apo CII-Wakayama). Biochem. Biophys. Res. Commun. 1993, 193, 1174–1183. [Google Scholar] [CrossRef]
- Streicher, R.; Geisel, J.; Weisshaar, C.; Avci, H.; Oette, K.; Müller-Wieland, D.; Krone, W. A single nucleotide substitution in the promoter region of the apolipoprotein C-II gene identified in individuals with chylomicronemia. J. Lipid Res. 1996, 37, 2599–2607. [Google Scholar] [CrossRef]
- Wilson, C.J.; Oliva, C.P.; Maggi, F.; Catapano, A.L.; Calandra, S. Apolipoprotein C-II deficiency presenting as a lipid encephalopathy in infancy. Ann. Neurol. 2003, 53, 807–810. [Google Scholar] [CrossRef]
- Crecchio, C.; Capurso, A.; Pepe, G. Identification of the mutation responsible for a case of plasmatic apolipoprotein CII deficiency (Apo CII-Bari). Biochem. Biophys. Res. Commun. 1990, 168, 1118–1127. [Google Scholar] [CrossRef]
- Pinilla-Monsalve, G.D.; Lores, J.; Pachajoa, H.; Lopez-Ponce de Leon, J.D.; Lopez, A.; Rodriguez-Rojas, L.X.; Nastasi-Catanese, J.A. A Novel APOC2 Mutation in a Colombian Patient with Recurrent Hypertriglyceridemic Pancreatitis. Appl. Clin. Genet. 2020, 13, 63–69. [Google Scholar] [CrossRef]
- Fojo, S.S.; Stalenhoef, A.F.; Marr, K.; Gregg, R.E.; Ross, R.S.; Brewer, H.B. A deletion mutation in the ApoC-II gene (ApoC-II Nijmegen) of a patient with a deficiency of apolipoprotein C-II. J. Biol. Chem. 1988, 263, 17913–17916. [Google Scholar] [CrossRef]
- Jiang, J.; Wang, Y.; Ling, Y.; Kayoumu, A.; Liu, G.; Gao, X. A novel APOC2 gene mutation identified in a Chinese patient with severe hypertriglyceridemia and recurrent pancreatitis. Lipids Health Dis. 2016, 15, 12. [Google Scholar] [CrossRef]
- Cox, D.W.; Wills, D.E.; Quan, F.; Ray, P.N. A deletion of one nucleotide results in functional deficiency of apolipoprotein CII (apo CII Toronto). J. Med. Genet. 1988, 25, 649–652. [Google Scholar] [CrossRef]
- Parrott, C.L.; Alsayed, N.; Rebourcet, R.; Santamarina-Fojo, S. ApoC-IIParis2: A premature termination mutation in the signal peptide of apoC-II resulting in the familial chylomicronemia syndrome. J. Lipid Res. 1992, 33, 361–367. [Google Scholar] [CrossRef]
- Fojo, S.S.; Beisiegel, U.; Beil, U.; Higuchi, K.; Bojanovski, M.; Gregg, R.E.; Greten, H.; Brewer, H.B., Jr. Donor splice site mutation in the apolipoprotein (Apo) C-II gene (Apo C-IIHamburg) of a patient with Apo C-II deficiency. J. Clin. Investig. 1988, 82, 1489–1494. [Google Scholar] [CrossRef]
- Okubo, M.; Hasegawa, Y.; Aoyama, Y.; Murase, T. A G+1 to C mutation in a donor splice site of intron 2 in the apolipoprotein (apo) C-II gene in a patient with apo C-II deficiency. A possible interaction between apo C-II deficiency and apo E4 in a severely hypertriglyceridemic patient. Atherosclerosis 1997, 130, 153–160. [Google Scholar] [CrossRef]
- Dib, I.; Khalil, A.; Chouaib, R.; El-Makhour, Y.; Noureddine, H. Apolipoprotein C-III and cardiovascular diseases: When genetics meet molecular pathologies. Mol. Biol. Rep. 2021, 48, 875–886. [Google Scholar] [CrossRef]
- Jin, J.L.; Guo, Y.L.; Li, J.J. Apoprotein C-III: A review of its clinical implications. Clin. Chim. Acta 2016, 460, 50–54. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Niimi, M.; Matsuhisa, F.; Zhou, H.; Kitajima, S.; Chen, Y.; Wang, C.; Yang, X.; Yao, J.; Yang, D.; et al. Apolipoprotein CIII Deficiency Protects Against Atherosclerosis in Knockout Rabbits. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 2095–2107. [Google Scholar] [CrossRef] [PubMed]
- Meyers, N.L.; Larsson, M.; Vorrsjo, E.; Olivecrona, G.; Small, D.M. Aromatic residues in the C terminus of apolipoprotein C-III mediate lipid binding and LPL inhibition. J. Lipid Res. 2017, 58, 840–852. [Google Scholar] [CrossRef]
- Larsson, M.; Vorrsjo, E.; Talmud, P.; Lookene, A.; Olivecrona, G. Apolipoproteins C-I and C-III inhibit lipoprotein lipase activity by displacement of the enzyme from lipid droplets. J. Biol. Chem. 2013, 288, 33997–34008. [Google Scholar] [CrossRef] [PubMed]
- Ramms, B.; Gordts, P. Apolipoprotein C-III in triglyceride-rich lipoprotein metabolism. Curr. Opin. Lipidol. 2018, 29, 171–179. [Google Scholar] [CrossRef] [PubMed]
- Jorgensen, A.B.; Frikke-Schmidt, R.; Nordestgaard, B.G.; Tybjaerg-Hansen, A. Loss-of-function mutations in APOC3 and risk of ischemic vascular disease. N. Engl. J. Med. 2014, 371, 32–41. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Wang, Y.; Zhu, H.; Fan, J.; Yu, L.; Liu, G.; Liu, E. Hypertriglyceridemia and delayed clearance of fat load in transgenic rabbits expressing human apolipoprotein CIII. Transgenic Res. 2011, 20, 867–875. [Google Scholar] [CrossRef]
- Song, Y.; Zhu, L.; Richa, M.; Li, P.; Yang, Y.; Li, S. Associations of the APOC3 rs5128 polymorphism with plasma APOC3 and lipid levels: A meta-analysis. Lipids Health Dis. 2015, 14, 32. [Google Scholar] [CrossRef]
- Esterbauer, H.; Hell, E.; Krempler, F.; Patsch, W. Allele-specific differences in apolipoprotein C-III mRNA expression in human liver. Clin. Chem. 1999, 45, 331–339. [Google Scholar] [CrossRef]
- Petersen, K.F.; Dufour, S.; Hariri, A.; Nelson-Williams, C.; Foo, J.N.; Zhang, X.M.; Dziura, J.; Lifton, R.P.; Shulman, G.I. Apolipoprotein C3 gene variants in nonalcoholic fatty liver disease. N. Engl. J. Med. 2010, 362, 1082–1089. [Google Scholar] [CrossRef]
- Dancer, M.; Caussy, C.; Di Filippo, M.; Moulin, P.; Marcais, C.; Charriere, S. Lack of evidence for a liver or intestinal miRNA regulation involved in the hypertriglyceridemic effect of APOC3 3′UTR variant SstI. Atherosclerosis 2016, 255, 6–10. [Google Scholar] [CrossRef]
- Atzmon, G.; Rincon, M.; Schechter, C.B.; Shuldiner, A.R.; Lipton, R.B.; Bergman, A.; Barzilai, N. Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol. 2006, 4, e113. [Google Scholar] [CrossRef]
- TG and HDL Working Group of the Exome Sequencing Project, National Heart, Lung, and Blood Institute; Blood, I.; Crosby, J.; Peloso, G.M.; Auer, P.L.; Crosslin, D.R.; Stitziel, N.O.; Lange, L.A.; Lu, Y. Loss-of-function mutations in APOC3, triglycerides, and coronary disease. N. Engl. J. Med. 2014, 371, 22–31. [Google Scholar] [CrossRef]
- Hubacek, J.A. Apolipoprotein A5 fifteen years anniversary: Lessons from genetic epidemiology. Gene 2016, 592, 193–199. [Google Scholar] [CrossRef]
- May-Zhang, L.; Liu, M.; Black, D.; Tso, P. Apolipoprotein A5, a unique modulator of fasting and postprandial triglycerides. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2022, 1867, 159185. [Google Scholar] [CrossRef]
- Garelnabi, M.; Lor, K.; Jin, J.; Chai, F.; Santanam, N. The paradox of ApoA5 modulation of triglycerides: Evidence from clinical and basic research. Clin. Biochem. 2013, 46, 12–19. [Google Scholar] [CrossRef]
- Nilsson, S.K.; Heeren, J.; Olivecrona, G.; Merkel, M. Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 2011, 219, 15–21. [Google Scholar] [CrossRef]
- van der Vliet, H.N.; Schaap, F.G.; Levels, J.H.; Ottenhoff, R.; Looije, N.; Wesseling, J.G.; Groen, A.K.; Chamuleau, R.A. Adenoviral overexpression of apolipoprotein A-V reduces serum levels of triglycerides and cholesterol in mice. Biochem. Biophys. Res. Commun. 2002, 295, 1156–1159. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, P.J.; Alborn, W.E.; Sloan, J.H.; Ulmer, M.; Boodhoo, A.; Knierman, M.D.; Schultze, A.E.; Konrad, R.J. The novel apolipoprotein A5 is present in human serum, is associated with VLDL, HDL, and chylomicrons, and circulates at very low concentrations compared with other apolipoproteins. Clin. Chem. 2005, 51, 351–359. [Google Scholar] [CrossRef]
- Pennacchio, L.A.; Olivier, M.; Hubacek, J.A.; Cohen, J.C.; Cox, D.R.; Fruchart, J.C.; Krauss, R.M.; Rubin, E.M. An apolipoprotein influencing triglycerides in humans and mice revealed by comparative sequencing. Science 2001, 294, 169–173. [Google Scholar] [CrossRef]
- Trudy M Forte, R.O.R. Apolipoprotein A5: Extracellular and Intracellular Roles in Triglyceride Metabolism. Current Drug Targets 2015, 16, 1274–1280. [Google Scholar] [CrossRef] [PubMed]
- Palmen, J.; Smith, A.J.; Dorfmeister, B.; Putt, W.; Humphries, S.E.; Talmud, P.J. The functional interaction on in vitro gene expression of APOA5 SNPs, defining haplotype APOA52, and their paradoxical association with plasma triglyceride but not plasma apoAV levels. Biochim. Biophys. Acta 2008, 1782, 447–452. [Google Scholar] [CrossRef]
- Sharma, V.; Forte, T.M.; Ryan, R.O. Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr. Opin. Lipidol. 2013, 24, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Bi, N.; Li, G.; Zhu, X.; Zeng, W.; Wu, G.; Xue, H.; Chen, B. Identification of lipid binding and lipoprotein lipase activation domains of human apoAV. Chem. Phys. Lipids 2006, 143, 22–28. [Google Scholar] [CrossRef] [PubMed]
- Talmud, P.J.; Palmen, J.; Putt, W.; Lins, L.; Humphries, S.E. Determination of the functionality of common APOA5 polymorphisms. J. Biol. Chem. 2005, 280, 28215–28220. [Google Scholar] [CrossRef]
- Sharma, V.; Ryan, R.O.; Forte, T.M. Apolipoprotein A-V dependent modulation of plasma triacylglycerol: A puzzlement. Biochim. Biophys. Acta 2012, 1821, 795–799. [Google Scholar] [CrossRef]
- Kim, M.; Kim, M.; Yoo, H.J.; Lee, E.; Chae, J.S.; Lee, S.H.; Lee, J.H. A promoter variant of the APOA5 gene increases atherogenic LDL levels and arterial stiffness in hypertriglyceridemic patients. PLoS ONE 2017, 12, e0186693. [Google Scholar] [CrossRef]
- Martinelli, N.; Trabetti, E.; Bassi, A.; Girelli, D.; Friso, S.; Pizzolo, F.; Sandri, M.; Malerba, G.; Pignatti, P.F.; Corrocher, R.; et al. The -1131 T>C and S19W APOA5 gene polymorphisms are associated with high levels of triglycerides and apolipoprotein C-III, but not with coronary artery disease: An angiographic study. Atherosclerosis 2007, 191, 409–417. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, L.; Huang, R.S.; Huang, Y.; Le, Y.; Jiang, D.; Yang, X.; Xu, W.; Huang, X.; Dong, C.; et al. Apolipoprotein A5 gene variants and the risk of coronary heart disease: A case-control study and meta-analysis. Mol. Med. Rep. 2013, 8, 1175–1182. [Google Scholar] [CrossRef]
- Mattei, J.; Demissie, S.; Tucker, K.L.; Ordovas, J.M. Apolipoprotein A5 polymorphisms interact with total dietary fat intake in association with markers of metabolic syndrome in Puerto Rican older adults. J. Nutr. 2009, 139, 2301–2308. [Google Scholar] [CrossRef]
- Sanchez-Moreno, C.; Ordovas, J.M.; Smith, C.E.; Baraza, J.C.; Lee, Y.C.; Garaulet, M. APOA5 gene variation interacts with dietary fat intake to modulate obesity and circulating triglycerides in a Mediterranean population. J. Nutr. 2011, 141, 380–385. [Google Scholar] [CrossRef]
- Priore Oliva, C.; Pisciotta, L.; Li Volti, G.; Sambataro, M.P.; Cantafora, A.; Bellocchio, A.; Catapano, A.; Tarugi, P.; Bertolini, S.; Calandra, S. Inherited apolipoprotein A-V deficiency in severe hypertriglyceridemia. Arterioscler. Thromb. Vasc. Biol. 2005, 25, 411–417. [Google Scholar] [CrossRef] [PubMed]
- Marcais, C.; Verges, B.; Charriere, S.; Pruneta, V.; Merlin, M.; Billon, S.; Perrot, L.; Drai, J.; Sassolas, A.; Pennacchio, L.A.; et al. Apoa5 Q139X truncation predisposes to late-onset hyperchylomicronemia due to lipoprotein lipase impairment. J. Clin. Investig. 2005, 115, 2862–2869. [Google Scholar] [CrossRef]
- Priore Oliva, C.; Tarugi, P.; Calandra, S.; Pisciotta, L.; Bellocchio, A.; Bertolini, S.; Guardamagna, O.; Schaap, F.G. A novel sequence variant in APOA5 gene found in patients with severe hypertriglyceridemia. Atherosclerosis 2006, 188, 215–217. [Google Scholar] [CrossRef]
- Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; Buchkovich, M.L.; Mora, S.; et al. Discovery and refinement of loci associated with lipid levels. Nat. Genet. 2013, 45, 1274–1283. [Google Scholar] [CrossRef]
- Guardiola, M.; Ribalta, J. Update on APOA5 Genetics: Toward a Better Understanding of Its Physiological Impact. Curr. Atheroscler. Rep. 2017, 19, 30. [Google Scholar] [CrossRef]
- Lai, C.Q.; Wojczynski, M.K.; Parnell, L.D.; Hidalgo, B.A.; Irvin, M.R.; Aslibekyan, S.; Province, M.A.; Absher, D.M.; Arnett, D.K.; Ordovas, J.M. Epigenome-wide association study of triglyceride postprandial responses to a high-fat dietary challenge. J. Lipid Res. 2016, 57, 2200–2207. [Google Scholar] [CrossRef]
- Caussy, C.; Charriere, S.; Marcais, C.; Di Filippo, M.; Sassolas, A.; Delay, M.; Euthine, V.; Jalabert, A.; Lefai, E.; Rome, S.; et al. An APOA5 3′ UTR variant associated with plasma triglycerides triggers APOA5 downregulation by creating a functional miR-485-5p binding site. Am. J. Hum. Genet. 2014, 94, 129–134. [Google Scholar] [CrossRef]
- Peterfy, M. Lipase maturation factor 1: A lipase chaperone involved in lipid metabolism. Biochim. Biophys. Acta 2012, 1821, 790–794. [Google Scholar] [CrossRef]
- Peterfy, M.; Ben-Zeev, O.; Mao, H.Z.; Weissglas-Volkov, D.; Aouizerat, B.E.; Pullinger, C.R.; Frost, P.H.; Kane, J.P.; Malloy, M.J.; Reue, K.; et al. Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia. Nat. Genet. 2007, 39, 1483–1487. [Google Scholar] [CrossRef]
- Cefalu, A.B.; Noto, D.; Arpi, M.L.; Yin, F.; Spina, R.; Hilden, H.; Barbagallo, C.M.; Carroccio, A.; Tarugi, P.; Squatrito, S.; et al. Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia. J. Clin. Endocrinol. Metab. 2009, 94, 4584–4590. [Google Scholar] [CrossRef]
- Tanaka, M.; Takase, S.; Ishiura, H.; Yamauchi, T.; Okazaki, S.; Okazaki, H. A novel homozygous nonsense variant of LMF1 in pregnancy-induced hypertriglyceridemia with acute pancreatitis. J. Clin. Lipidol. 2023, 17, 327–331. [Google Scholar] [CrossRef]
- Rabacchi, C.; D’Addato, S.; Palmisano, S.; Lucchi, T.; Bertolini, S.; Calandra, S.; Tarugi, P. Clinical and genetic features of 3 patients with familial chylomicronemia due to mutations in GPIHBP1 gene. J. Clin. Lipidol. 2016, 10, 915–921 e914. [Google Scholar] [CrossRef]
- Lima, J.G.; Helena, C.N.L.; Moura Bandeira, F.T.; Pires Sousa, A.G.; Medeiros de Araujo Macedo, T.B.; Cavalcante Nogueira, A.C.; Fernandes de Oliveira Filho, A.; Alves, R.J.; Costa Gurgel Castelo, M.H.; Silva Coelho, F.M.; et al. A novel GPIHBP1 mutation related to familial chylomicronemia syndrome: A series of cases. Atherosclerosis 2021, 322, 31–38. [Google Scholar] [CrossRef]
- Kristensen, K.K.; Midtgaard, S.R.; Mysling, S.; Kovrov, O.; Hansen, L.B.; Skar-Gislinge, N.; Beigneux, A.P.; Kragelund, B.B.; Olivecrona, G.; Young, S.G.; et al. A disordered acidic domain in GPIHBP1 harboring a sulfated tyrosine regulates lipoprotein lipase. Proc. Natl. Acad. Sci. USA 2018, 115, E6020–E6029. [Google Scholar] [CrossRef] [PubMed]
- Young, S.G.; Davies, B.S.; Voss, C.V.; Gin, P.; Weinstein, M.M.; Tontonoz, P.; Reue, K.; Bensadoun, A.; Fong, L.G.; Beigneux, A.P. GPIHBP1, an endothelial cell transporter for lipoprotein lipase. J. Lipid Res. 2011, 52, 1869–1884. [Google Scholar] [CrossRef] [PubMed]
- Baass, A.; Paquette, M.; Bernard, S.; Hegele, R.A. Familial chylomicronemia syndrome: An under-recognized cause of severe hypertriglyceridaemia. J. Intern. Med. 2020, 287, 340–348. [Google Scholar] [CrossRef] [PubMed]
- Young, S.G.; Fong, L.G.; Beigneux, A.P.; Allan, C.M.; He, C.; Jiang, H.; Nakajima, K.; Meiyappan, M.; Birrane, G.; Ploug, M. GPIHBP1 and Lipoprotein Lipase, Partners in Plasma Triglyceride Metabolism. Cell Metab. 2019, 30, 51–65. [Google Scholar] [CrossRef]
- Beigneux, A.P.; Gin, P.; Davies, B.S.; Weinstein, M.M.; Bensadoun, A.; Fong, L.G.; Young, S.G. Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J. Biol. Chem. 2009, 284, 30240–30247. [Google Scholar] [CrossRef]
- Ariza, M.J.; Martinez-Hernandez, P.L.; Ibarretxe, D.; Rabacchi, C.; Rioja, J.; Grande-Aragon, C.; Plana, N.; Tarugi, P.; Olivecrona, G.; Calandra, S.; et al. Novel mutations in the GPIHBP1 gene identified in 2 patients with recurrent acute pancreatitis. J. Clin. Lipidol. 2016, 10, 92–100 e1. [Google Scholar] [CrossRef]
- Navina, S.; Acharya, C.; DeLany, J.P.; Orlichenko, L.S.; Baty, C.J.; Shiva, S.S.; Durgampudi, C.; Karlsson, J.M.; Lee, K.; Bae, K.T.; et al. Lipotoxicity causes multisystem organ failure and exacerbates acute pancreatitis in obesity. Sci. Transl. Med. 2011, 3, 107ra110. [Google Scholar] [CrossRef]
- Yadav, D.; Lowenfels, A.B. The epidemiology of pancreatitis and pancreatic cancer. Gastroenterology 2013, 144, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Kiss, L.; Fur, G.; Pisipati, S.; Rajalingamgari, P.; Ewald, N.; Singh, V.; Rakonczay, Z., Jr. Mechanisms linking hypertriglyceridemia to acute pancreatitis. Acta Physiol. 2023, 237, e13916. [Google Scholar] [CrossRef] [PubMed]
- Durgampudi, C.; Noel, P.; Patel, K.; Cline, R.; Trivedi, R.N.; DeLany, J.P.; Yadav, D.; Papachristou, G.I.; Lee, K.; Acharya, C.; et al. Acute lipotoxicity regulates severity of biliary acute pancreatitis without affecting its initiation. Am. J. Pathol. 2014, 184, 1773–1784. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, S.B.; Langsted, A.; Nordestgaard, B.G. Nonfasting Mild-to-Moderate Hypertriglyceridemia and Risk of Acute Pancreatitis. JAMA Intern. Med. 2016, 176, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.H.; Tepikin, A.V.; Gerasimenko, J.V.; Gerasimenko, O.V.; Sutton, R.; Criddle, D.N. Fatty acids, alcohol and fatty acid ethyl esters: Toxic Ca2+ signal generation and pancreatitis. Cell Calcium 2009, 45, 634–642. [Google Scholar] [CrossRef]
- Criddle, D.N.; Murphy, J.; Fistetto, G.; Barrow, S.; Tepikin, A.V.; Neoptolemos, J.P.; Sutton, R.; Petersen, O.H. Fatty acid ethyl esters cause pancreatic calcium toxicity via inositol trisphosphate receptors and loss of ATP synthesis. Gastroenterology 2006, 130, 781–793. [Google Scholar] [CrossRef]
- Maleth, J.; Rakonczay, Z., Jr.; Venglovecz, V.; Dolman, N.J.; Hegyi, P. Central role of mitochondrial injury in the pathogenesis of acute pancreatitis. Acta Physiol. 2013, 207, 226–235. [Google Scholar] [CrossRef]
- Saharia, P.; Margolis, S.; Zuidema, G.D.; Cameron, J.L. Acute pancreatitis with hyperlipemia: Studies with an isolated perfused canine pancreas. Surgery 1977, 82, 60–67. [Google Scholar]
- Kiss, L.; Fur, G.; Matrai, P.; Hegyi, P.; Ivany, E.; Cazacu, I.M.; Szabo, I.; Habon, T.; Alizadeh, H.; Gyongyi, Z.; et al. The effect of serum triglyceride concentration on the outcome of acute pancreatitis: Systematic review and meta-analysis. Sci. Rep. 2018, 8, 14096. [Google Scholar] [CrossRef]
- Fan, W.; Philip, S.; Granowitz, C.; Toth, P.P.; Wong, N.D. Hypertriglyceridemia in statin-treated US adults: The National Health and Nutrition Examination Survey. J. Clin. Lipidol. 2019, 13, 100–108. [Google Scholar] [CrossRef]
- Nordestgaard, B.G. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights from Epidemiology, Genetics, and Biology. Circ. Res. 2016, 118, 547–563. [Google Scholar] [CrossRef] [PubMed]
- Nichols, G.A.; Philip, S.; Reynolds, K.; Granowitz, C.B.; Fazio, S. Increased Cardiovascular Risk in Hypertriglyceridemic Patients with Statin-Controlled LDL Cholesterol. J. Clin. Endocrinol. Metab. 2018, 103, 3019–3027. [Google Scholar] [CrossRef]
- Rosenson, R.S.; Davidson, M.H.; Hirsh, B.J.; Kathiresan, S.; Gaudet, D. Genetics and causality of triglyceride-rich lipoproteins in atherosclerotic cardiovascular disease. J. Am. Coll. Cardiol. 2014, 64, 2525–2540. [Google Scholar] [CrossRef] [PubMed]
- Arca, M.; Veronesi, C.; D’Erasmo, L.; Borghi, C.; Colivicchi, F.; De Ferrari, G.M.; Desideri, G.; Pontremoli, R.; Temporelli, P.L.; Perrone, V.; et al. Association of Hypertriglyceridemia with All-Cause Mortality and Atherosclerotic Cardiovascular Events in a Low-Risk Italian Population: The TG-REAL Retrospective Cohort Analysis. J. Am. Heart Assoc. 2020, 9, e015801. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Danesh, J.; Eiriksdottir, G.; Sigurdsson, G.; Wareham, N.; Bingham, S.; Boekholdt, S.M.; Khaw, K.T.; Gudnason, V. Triglycerides and the risk of coronary heart disease: 10,158 incident cases among 262,525 participants in 29 Western prospective studies. Circulation 2007, 115, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Do, R.; Willer, C.J.; Schmidt, E.M.; Sengupta, S.; Gao, C.; Peloso, G.M.; Gustafsson, S.; Kanoni, S.; Ganna, A.; Chen, J.; et al. Common variants associated with plasma triglycerides and risk for coronary artery disease. Nat. Genet. 2013, 45, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Khera, A.V.; Won, H.H.; Peloso, G.M.; O’Dushlaine, C.; Liu, D.; Stitziel, N.O.; Natarajan, P.; Nomura, A.; Emdin, C.A.; Gupta, N.; et al. Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease. JAMA 2017, 317, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Lotta, L.A.; Stewart, I.D.; Sharp, S.J.; Day, F.R.; Burgess, S.; Luan, J.; Bowker, N.; Cai, L.; Li, C.; Wittemans, L.B.L.; et al. Association of Genetically Enhanced Lipoprotein Lipase-Mediated Lipolysis and Low-Density Lipoprotein Cholesterol-Lowering Alleles with Risk of Coronary Disease and Type 2 Diabetes. JAMA Cardiol. 2018, 3, 957–966. [Google Scholar] [CrossRef]
- Allara, E.; Morani, G.; Carter, P.; Gkatzionis, A.; Zuber, V.; Foley, C.N.; Rees, J.M.B.; Mason, A.M.; Bell, S.; Gill, D.; et al. Genetic Determinants of Lipids and Cardiovascular Disease Outcomes: A Wide-Angled Mendelian Randomization Investigation. Circ. Genom. Precis. Med. 2019, 12, e002711. [Google Scholar] [CrossRef] [PubMed]
- Holmes, M.V.; Asselbergs, F.W.; Palmer, T.M.; Drenos, F.; Lanktree, M.B.; Nelson, C.P.; Dale, C.E.; Padmanabhan, S.; Finan, C.; Swerdlow, D.I.; et al. Mendelian randomization of blood lipids for coronary heart disease. Eur. Heart J. 2015, 36, 539–550. [Google Scholar] [CrossRef] [PubMed]
- Sarwar, N.; Sandhu, M.S.; Ricketts, S.L.; Butterworth, A.S.; Di Angelantonio, E.; Boekholdt, S.M.; Ouwehand, W.; Watkins, H.; Samani, N.J.; Saleheen, D.; et al. Triglyceride-mediated pathways and coronary disease: Collaborative analysis of 101 studies. Lancet 2010, 375, 1634–1639. [Google Scholar] [CrossRef]
- Ference, B.A.; Kastelein, J.J.P.; Ray, K.K.; Ginsberg, H.N.; Chapman, M.J.; Packard, C.J.; Laufs, U.; Oliver-Williams, C.; Wood, A.M.; Butterworth, A.S.; et al. Association of Triglyceride-Lowering LPL Variants and LDL-C-Lowering LDLR Variants With Risk of Coronary Heart Disease. JAMA 2019, 321, 364–373. [Google Scholar] [CrossRef] [PubMed]
- Sniderman, A.D.; Thanassoulis, G.; Glavinovic, T.; Navar, A.M.; Pencina, M.; Catapano, A.; Ference, B.A. Apolipoprotein B Particles and Cardiovascular Disease: A Narrative Review. JAMA Cardiol. 2019, 4, 1287–1295. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.C.S. Hypertriglyceridemia: Pathophysiology, Role of Genetics, Consequences, and Treatment; Endotext [Internet]; MDText.com, Inc.: South Dartmouth, MA, USA, 2019. [Google Scholar]
- Texis, T.; Rivera-Mancia, S.; Colin-Ramirez, E.; Cartas-Rosado, R.; Koepsell, D.; Rubio-Carrasco, K.; Rodriguez-Dorantes, M.; Gonzalez-Covarrubias, V. Genetic Determinants of Atherogenic Indexes. Genes 2023, 14, 1214. [Google Scholar] [CrossRef]
- Tani, M.; Horvath, K.V.; Lamarche, B.; Couture, P.; Burnett, J.R.; Schaefer, E.J.; Asztalos, B.F. High-density lipoprotein subpopulation profiles in lipoprotein lipase and hepatic lipase deficiency. Atherosclerosis 2016, 253, 7–14. [Google Scholar] [CrossRef]
- Ayyappa, K.A.; Ghosh, S.; Mohan, V.; Radha, V. Association of hepatic lipase gene polymorphisms with hypertriglyceridemia and low high-density lipoprotein-cholesterol levels among South Indian subjects without diabetes. Diabetes Technol. Ther. 2013, 15, 503–512. [Google Scholar] [CrossRef]
- Posadas-Sanchez, R.; Ocampo-Arcos, W.A.; Lopez-Uribe, A.R.; Posadas-Romero, C.; Villarreal-Molina, T.; Leon, E.A.; Perez-Hernandez, N.; Rodriguez-Perez, J.M.; Cardoso-Saldana, G.; Medina-Urrutia, A.; et al. Hepatic lipase (LIPC) C-514T gene polymorphism is associated with cardiometabolic parameters and cardiovascular risk factors but not with fatty liver in Mexican population. Exp. Mol. Pathol. 2015, 98, 93–98. [Google Scholar] [CrossRef]
- Brunzell, J.D.; Zambon, A.; Deeb, S.S. The effect of hepatic lipase on coronary artery disease in humans is influenced by the underlying lipoprotein phenotype. Biochim. Biophys. Acta 2012, 1821, 365–372. [Google Scholar] [CrossRef]
- Ginsberg, H.N.; Goldberg, I.J. Broadening the Scope of Dyslipidemia Therapy by Targeting APOC3 (Apolipoprotein C3) and ANGPTL3 (Angiopoietin-Like Protein 3). Arterioscler. Thromb. Vasc. Biol. 2023, 43, 388–398. [Google Scholar] [CrossRef]
- Gouni-Berthold, I.; Schwarz, J.; Berthold, H.K. Updates in Drug Treatment of Severe Hypertriglyceridemia. Curr. Atheroscler. Rep. 2023, 25, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Stitziel, N.O.; Khera, A.V.; Wang, X.; Bierhals, A.J.; Vourakis, A.C.; Sperry, A.E.; Natarajan, P.; Klarin, D.; Emdin, C.A.; Zekavat, S.M.; et al. ANGPTL3 Deficiency and Protection Against Coronary Artery Disease. J. Am. Coll. Cardiol. 2017, 69, 2054–2063. [Google Scholar] [CrossRef] [PubMed]
- Muniraj, T. Efficacy and Safety of Evinacumab in Adult Patients with Severe Hypertriglyceridemia for the Prevention of Recurrent Acute Pancreatitis. 2023. Available online: https://clinicaltrials.gov/ (accessed on 10 January 2024).
- Watts, G.F.; Schwabe, C.; Scott, R.; Gladding, P.A.; Sullivan, D.; Baker, J.; Clifton, P.; Hamilton, J.; Given, B.; Melquist, S.; et al. RNA interference targeting ANGPTL3 for triglyceride and cholesterol lowering: Phase 1 basket trial cohorts. Nat. Med. 2023, 29, 2216–2223. [Google Scholar] [CrossRef] [PubMed]
- Malick, W.A.; Do, R.; Rosenson, R.S. Severe hypertriglyceridemia: Existing and emerging therapies. Pharmacol. Ther. 2023, 251, 108544. [Google Scholar] [CrossRef] [PubMed]
Variant ID | Location | LPL Variant | Consequence | Type |
---|---|---|---|---|
rs1801177 | Exon 2 | c.106G>A | p.Asp36Asn ~85% of LPL secretion rate | Missense |
rs118204057 | Exon 5 | c.644G>A | p.Gly215Glu Catalytically defective LPL | Missense |
rs118204060 | Exon 5 | c.701C>T | p.Pro234Leu Catalytically defective LPL | Missense |
rs118204068 | Exon 6 | c.829G>A | p.Asp277Asn Catalytically defective LPL | Missense |
rs268 | Exon 6 | c.953A>G | p.Asn318Ser Partial LPL catalytic activity Low secretion rate of LPL | Missense |
rs1800590 | Promoter | c.-188-93T>G | Increased LPL promoter activity 18–24% (LD with p.Asp36Asn) | Regulatory |
rs328 | Exon 9 | c.1421C>A | p.Ser474* Potential loss of miRNA binding site | Nonsense |
rs1800011 | Exon 6 | c.862G>A | p.Ala288Thr ~80% of LPL secretion rate | Missense |
______ | Intron 8 | c.1322+1G>A | Aberrant splicing and alternative transcripts | Splicing |
CR951556 (HGMD) | Promoter | c.-188-39 T>C | Loss of transcription factor Oct-1 binding site Inhibits LPL promoter activity by 85% | Regulatory |
CM941049 (HGMD) | Exon 2 | c.209A>G | p.Asn70Ser N-glycosylation | Missense |
______ | Exon 5 | c.615T>A | p.Cys243Ser Disulfide bond | Missense |
rs118204082 | Exon 6 | c.798C>G | p.Cys266Trp Disulfide bond | Missense |
rs781614031 | Exon 5 | c.547G>A | p.Asp183Asn Catalytic triad | Missense |
rs118204064 | Exon 5 | c.548A>G | p.Asp183Gly Catalytic triad | Missense |
rs781614031 | Exon 5 | c.547G>C | p.Asp183His Catalytic triad | Missense |
rs191402029 | Exon 5 | c.542G>A | p.Gly181Ser Close to catalytic triad | Missense |
rs118204062 | Exon 6 | c.809G>A | p.Arg270His Close to catalytic triad | Missense |
CM962613 (HGMD) | Exon 6 | c.809G>T | p.Arg270Leu Close to catalytic triad | Missense |
rs587777909 | Exon 8 | c.1306G>A | p.Gly436Arg Furin cleavage | Missense |
CM941058 (HGMD) | Exon 8 | c.1310A>T | p.Glu437Val Furin cleavage | Missense |
rs1296226558 | Exon 8 | c.1211T>G | p.Met404Arg Abolishes LPL-GPIHBP1 bond | Missense |
rs118204079 | Exon 9 | c.1334G>A | p.Cys445Tyr Abolishes LPL-GPIHBP1 bond | Missense |
CM040449 (HGMD) | Exon 5 | c.602A>T | p.Asp201Val Abolishes LPL-GPIHBP1 bond | Missense |
Variant ID | Location | APOC2 Variant | Consequence | Type |
---|---|---|---|---|
rs120074116 | Exon 4 | c.255C>A (apoC-IIAuckland) | p.Tyr85* | Nonsense |
rs120074111 | Exon 3 | c.177C>G (apoC-IIBari) | p.Tyr59* | Nonsense |
rs1430203751 | Exon 3 | c.133_134del (apoC-IIColombia) | p.Ser45Glnfs*24 | Frameshift |
rs368487465 | Exon 3 | c.118del (apoC-IINijmegen) | p.Val40* | Frameshift |
rs120074111 | Exon 3 | c.177C>A (apoC-IIPadova) | p.Tyr59* | Nonsense |
CX160305 (HGMD) | Exon 3 | c.86delinsCC (apoC-IIShangai) | p.Asn29Alafs*2 | Frameshift |
CD880084 (HGMD) | Exon 4 | c.270del (apoC-IIToronto) | p.Asp69Thrfs*7 | Frameshift |
rs202190413 | Exon 2 | c.10C>T (apoC-IIParis2) | p.Arg4* | Nonsense |
rs120074112 | Exon 2 | c.1A>G (apoC-IIParis1) | p.? | Missense |
rs111628497 | Intron 2 | c.55+1G>C (apoC-IIHamburg/Tokyo) | Aberrant splicing and alternative transcripts | Splicing |
______ | Intron 1 | g.17,719,326_17,722,303del (apoC-IITuzla) | Deletion of exons 2, 3 and 4 | Deletion |
______ | Promoter | c.-25-90A>G | Loss of transcription factor binding site Decreased APOC2 promoter activity | Regulatory |
______ | Promoter | c.-25-190T>A | Loss of transcription factor binding site Decreased APOC2 transcriptional activity | Regulatory |
Variant ID | Location | APOC3 Variant | Consequence | Type |
---|---|---|---|---|
rs5128 | 3’UTR | c.*40G>C (Sst l) | Potential loss of miRNA binding site Increased APOC3 promoter activity | Regulatory |
rs2854117 | Promoter | c.-47-481T>C | Loss of transcription factor insulin binding site Increased APOC3 promoter activity (LD with c.*40G>C) | Regulatory |
rs2854116 | Promoter | c.-47-454C>T | Loss of transcription factor insulin binding site Increased APOC3 promoter activity (LD with c.*40G>C) | Regulatory |
rs2542052 | Promoter | c.-47-639A>C | Decreased APOC3 promoter activity | Regulatory |
rs147210663 | Exon 2 | c.127G>A | p.Ala43Thr | Missense |
rs76353203 | Exon 1 | c.55C> T | p.Arg19* | Nonsense |
rs138326449 | Intron 2 | c.55+1G>A | Aberrant splicing | Splicing |
rs140621530 | Intron 3 | c.179+1G>T | Aberrant splicing and alternative transcripts | Splicing |
Variant ID | Location | APOA5 Variant | Consequence | Type |
---|---|---|---|---|
rs2266788 | 3′UTR | c.*158T>C (SNP1) | APOA5*2 haplotype | Regulatory |
rs2072560 | Intron 3 | c.162-43A>G (SNP2) | APOA5*2 haplotype | Regulatory |
rs662799 | Intergenic region | c.-72-571T>C (SNP3) | APOA5*2 haplotype | Regulatory |
rs651821 | Intron 1 | c.-3A>G | APOA5*2 haplotype Kozak sequence Reduced translation initiation efficiency | Regulatory |
rs3135506 | Exon 3 | c.56C>G | p.Ser19Trp 50% secretion rate | Missense |
rs2075291 | Exon 4 | c.553G>T | p.Gly185Cys Intramolecular disulfide bond | Missense |
CM050179 (HGMD) | Exon 4 | c.442C>T | p.Gln148* | Nonsense |
rs121917821 | Exon 4 | c.415C>T | p.Gln139* | Nonsense |
rs372791079 | intron 3 | c.161+3G>C | Aberrant splicing and alternative transcripts | Splicing |
Variant ID | Location | LMF1 Variant | Consequence | Type |
---|---|---|---|---|
rs121909397 | Exon 9 | c.1317C>G | p.Tyr439* 93% loss of LPL catalytic activity | Nonsense |
rs587777626 | Exon 9 | c.1391G>A | p.Trp464* 76% loss of LPL catalytic activity | Nonsense |
rs199953320 | Exon 5 | c.697C>T | p.Arg233* | Nonsense |
Variant ID | Location | GPIHBP1 Variant | Consequence | Type |
---|---|---|---|---|
rs587777638 | Exon 3 | c.194G>C | p.Cys65Ser Disulfide bond of LU domain | Missense |
CM102481 (HGMD) | Exon 3 | c.194G>A | p.Cys65Tyr Disulfide bond of LU domain | Missense |
rs587777639 | Exon 3 | c.202T>G | p.Cys68Gly Disulfide bond of LU domain | Missense |
CM102970 (HGMD) | Exon 3 | c.202T>C | p.Cys68Tyr Disulfide bond of LU domain | Missense |
______ | Exon 3 | c.203G>A | p.Cys68Arg Disulfide bond of LU domain | Missense |
CM1610274 (HGMD) | Exon 3 | c.247T>C | p.Cys83Arg Disulfide bond of LU domain | Missense |
rs587777640 | Exon 3 | c.266G>T | p.Cys89Phe Disulfide bond of LU domain | Missense |
rs1328400518 | Exon 4 | c.329G>A | p.Cys110Val Disulfide bond of LU domain | Missense |
rs587777637 | Exon 4 | c.344A>C | p.Gln115Pro Close to Cys from disulfide bond of LU domain | Missense |
rs587777641 | Exon 4 | c.331A>C | p.Thr111Pro Close to Cys from disulfide bond of LU domain | Missense |
rs749374488 | Exon 3 | c.239C>A | p.Thr80Lys N-glycosylation | Missense |
rs145844329 | Exon 4 | c.523G>C | p.Gly175Arg Trafficking | Missense |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alves, M.; Laranjeira, F.; Correia-da-Silva, G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes 2024, 15, 190. https://doi.org/10.3390/genes15020190
Alves M, Laranjeira F, Correia-da-Silva G. Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes. 2024; 15(2):190. https://doi.org/10.3390/genes15020190
Chicago/Turabian StyleAlves, Mara, Francisco Laranjeira, and Georgina Correia-da-Silva. 2024. "Understanding Hypertriglyceridemia: Integrating Genetic Insights" Genes 15, no. 2: 190. https://doi.org/10.3390/genes15020190
APA StyleAlves, M., Laranjeira, F., & Correia-da-Silva, G. (2024). Understanding Hypertriglyceridemia: Integrating Genetic Insights. Genes, 15(2), 190. https://doi.org/10.3390/genes15020190