Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges
Abstract
:1. Introduction
2. Pathophysiology
3. Clinical Presentation
JALS Type | Epidemiology | Clinical and Neuroimaging Features | Genetics (Locus; Inheritance) | Allelic Disorders |
---|---|---|---|---|
JALS type 1 | Second decade of life; global distribution (rare). | LMN-dominant, asymmetric; rapidly progressive. Neuroimaging: non-specific features. | SOD1 (21q22.11); “de novo” (most cases), AD. | STAHP (AR). |
JALS type 2 | First/second decade of life; global distribution (more common in familial aggregates and consanguinity). | Slowly progressive spastic paraparesis/quadriparesis, pseudobulbar affect, facial spasticity, dysarthria, scoliosis; dystonia in some cases. Neuroimaging: cortical and spinal cord atrophy. | ALS2 (2q33.1); AR. | Juvenile PLS; IAHSP. |
JALS type 4 | Second/third decade; global distribution; founder effect in Maryland, USA. | Slowly progressive distal amyotrophy of the lower and upper limbs; variable pyramidal release signs; variable cerebellar ataxia. Neuroimaging: non-specific features. | SETX (9q34); AD. | Ataxia-oculomotor apraxia type 2; Non-5q SMA with pyramidal release signs. |
JALS type 5 | Second/third decade; global distribution. | Slowly progressive spastic paraparesis/quadriparesis, bulbar involvement; cognitive and psychiatric disturbances; variable autonomic compromise; progressive amyotrophy during clinical course. Neuroimaging: cortical atrophy; thin corpus callosum; leukoencephalopathy (variable). | SPG11 (15q21.1); AR. | SPG11; CMT type 2X. |
JALS type 6 | First-third decade of life; global distribution. | LMN-dominant with early bulbar symptoms; rapidly progressive (most cases); variable cognitive dysfunction, tremor, and myoclonus. Neuroimaging: frontal cortical atrophy; corticospinal tract signal change. | FUS (16p11.2); “de novo” variant (most); AD. | Hereditary essential tremor type 4; FTD. |
JALS type 10 | Second/third decade of life; very rare. | Rapidly progressive brachial paraparesis with distal predominance evolving to quadriparesis. Neuroimaging: non-specific changes. | TARDBP (1p36.22); “de novo” variant; AD. | Familial ALS type 10; FTD. |
JALS type 15 | Second decade of life; very rare. | Slowly progressive spastic quadriparesis; cognitive dysfunction or FTD. Neuroimaging: non-specific changes (most cases). | UBQLN2 (Xp11.21); XLD. | FTD. |
JALS type 16 | First/second decade of life; rare, global distribution. | Slowly progressive brachial paraparesis, evolving to quadriparesis. Neuroimaging: non-specific changes. | SIGMAR1 (9p13.3); AR. | AR distal SMA type 2. |
6p25 and 21q22 related JALS (Utah) ** | First decade of life; single consanguineous family (Utah, USA). | Slowly progressive spastic paraparesis/quadriparesis; eyelid ptosis, late bulbar involvement; dysarthria; scoliosis; gynecomastia. Neuroimaging: non-specific changes. | Unknown monogenic basis; AR. | Unknown allelic disorders. |
ERLIN1-related JALS | Second decade of life; very rare. | Slowly progressive spastic quadriparesis, with associated motor neuronopathy. Neuroimaging: non-specific changes. | ERLIN1 (10q24.31); AR. | SPG62. |
DDHD1-related JALS | Second decade of life; very rare. | Progressive spastic quadriparesis with distal amyotrophy, with associated sensory neuronopathy. Neuroimaging: non-specific changes. | DDHD1 (14q22.1); AR. | SPG28. |
JALS with dementia ** | First/second decade of life; single Dutch family (consanguineous). | Slowly progressive spastic paraparesis; distal amyotrophy of the hands; late bulbar involvement; severe intellectual disability, cognitive decline. Neuroimaging: unavailable (description in 1968). | Unknown monogenic basis; AR. | Unknown allelic disorders. |
SORD-related JALS | Third decade of life; very rare. | Progressive distal amyotrophy, postural tremor, sensorineural hearing loss; scoliosis. Neuroimaging: non-specific changes. | SORD (15q21.1); AR. | Distal SMA, axonal CMT. |
SPTLC1-related JALS | First/second decade of life; global distribution (rare). | Slowly progressive spastic paraparesis/quadriparesis with bulbar involvement; failure to thrive; variable sensory neuronopathy. Neuroimaging: non-specific changes. | SPTLC1 (9q22.31); AD, “de novo” variant. | HSAN type IA. |
SPTLC2-related JALS | Early-childhood-onset (<4 years); global distribution (rare). | LMN and UMN disease, tongue fasciculation; most cases with significant bulbar involvement (mainly dysphagia) and non-invasive ventilation support. Prior history of speech delay. Neuroimaging: normal brain and spine studies. | SPTLC2 (14q24.3); AD; “de novo” variant. | HSAN type IC. |
SYNE1-related JALS | Second decade of life; rare. | Progressive distal amyotrophy, dysarthria, dysphagia, cognitive decline, mild cerebellar ataxia (variable), sensory neuronopathy. Neuroimaging: mild cerebellar atrophy. | SYNE1 (6q25.2); AR. | AR cerebellar ataxia with retained reflexes; Emery-Dreifuss muscular dystrophy type 4; Arthrogryposis multiplex congenita type 3. |
GNE-related JALS | Second/third decade of life; very rare. | Progressive distal amyotrophy of the lower limbs; bulbar and axial involvement. Neuroimaging: non-specific changes. | GNE (9p13.3); AR. | Nonaka distal myopathy; Sialuria. |
C19orf12-related JALS | First decade of life; rare. | Progressive spastic paraparesis, global amyotrophy, anarthria, pseudobulbar affect; some cases with onset as floppy baby. Neuroimaging: non-specific changes (early stages); late iron deposition. | C19orf12 (19q12); AR. | SPG43; NBIA type 4. |
CLEC4C-related JALS | Second decade of life; very rare. | Progressive asymmetric quadriparesis with brisk reflexes, amyotrophy and other pyramidal release signs. Neuroimaging: unknown (not reported). | CLEC4C (12p13.31); “de novo” variant, AD. | Increased general risk for Psoriasis and Systemic Erythematosus Lupus. |
VRK1-related JALS | First decade of life; very rare. | Slowly progressive spastic paraparesis; mild cognitive decline, sensory neuronopathy; late amyotrophy of the hands. Neuroimaging: non-specific changes. | VRK1 (14q32.2); AR. | Early-onset non-5q SMA; pontocerebellar hypoplasia type 1A. |
BICD2-related JALS | Second decade of life; very rare. | UMN-dominant-ALS with bulbar involvement, tongue fasciculation, dysarthria, and pseudobulbar affect. Neuroimaging: non-specific changes. | BICD2 (9q22.31); “de novo” variant, AD. | SMALED syndrome types 2A and 2B. |
ATP13A2-related JALS | Third decade of life; very rare. | UMN-dominant, late bulbar involvement. Neuroimaging: cortical atrophy; cerebellar atrophy. | ATP13A2 (1p36.13); AR. | Kufor-Rakeb syndrome, SPG78, Neuronal ceroid lipofuscinosis type 12. |
TRMT2B-related JALS | Second decade of life; very rare. | UMN and LMN compromise, deformities of hands and feet; unclosed eyes, eyelid opening difficulty. Neuroimaging: normal brain and spine studies. | TRMT2B (Xq22.1); XLD | Unknown allelic disorders. |
Differential Diagnosis | Red Flags, Clues, and General Aspects per Group | Diagnostic Work-Up |
---|---|---|
Hereditary Spastic Paraplegia (complicated forms) |
| Targeted NGS-based gene panel or whole exome sequencing (WES). |
dHMN/distal SMA |
| Targeted NGS-based gene panel or WES. |
Non-5q proximal SMA |
| Targeted NGS-based gene panel or WES. |
SCA |
| Gene panel for SCA (highlighting genetic analysis for ATXN2, ATXN3, and NOP56 genes). Single gene testing also possible (CAG trinucleotide repeat expansion detection)—PCR/Southern blot. |
Inherited neurometabolic disorders |
| Targeted NGS-based gene panel for potentially treatable inherited metabolic diseases or WES. Specific enzymatic assays or measurement of specific biochemical biomarkers:
|
4. Diagnostic Work-Up and Differential Diagnosis
5. Treatment
6. Prognosis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AD | autosomal dominant |
ALS | Amyotrophic Lateral Sclerosis |
AR | autosomal recessive |
CMT | Charcot-Marie-Tooth disease |
dHMN | distal hereditary motor neuronopathy |
fALS | familial Amyotrophic Lateral Sclerosis |
FTD | Frontotemporal Dementia |
GBE | glycogen branching enzyme |
HSAN | Hereditary Sensory and Autonomic Neuropathy |
HSP | Hereditary Spastic Paraplegia |
IAHSP | Infantile-onset Ascending Hereditary Spastic Paralysis |
JALS | Juvenile Amyotrophic Lateral Sclerosis |
L-BMAA | L-β-N-methylamino-L-alanine |
LMN | Lower Motor Neuron |
MND | Motor Neuron Disease |
MUNE | Motor Unit Number Estimation |
MUNIX | Motor Unit Number Index |
NGS | Next-generation sequencing |
NMDA | N-methyl-D-aspartate |
PCR | Polymerase Chain Reaction |
PLS | Primary Lateral Sclerosis |
RWE | Real-world Evidence |
sALS | sporadic Amyotrophic Lateral Sclerosis |
SCA | spinocerebellar ataxia |
SMA | Spinal Muscular Atrophy |
SMALED | Spinal Muscular Atrophy with lower extremity dominance |
SPG | Spastic Paraplegia |
STAHP | Progressive Spastic Tetraplegia and Axial Hypotonia |
TUDCA | Tauro-ursodeoxycholic acid |
UMN | Upper Motor Neuron |
WES | Whole-exome sequencing |
XLD | X-linked inheritance (dominant) |
References
- Van Es, M.A.; Hardiman, O.; Chio, A.; Al-Chalabi, A.; Pasterkamp, R.J.; Veldink, J.H.; van den Berg, L.H. Amyotrophic lateral sclerosis. Lancet 2017, 390, 2084–2098. [Google Scholar] [CrossRef]
- Sabatelli, M.; Madia, F.; Conte, A.; Luigetti, M.; Zollino, M.; Mancuso, I.; Lo Monaco, M.; Lippi, G.; Tonali, P. Natural history of young-adult amyotrophic lateral sclerosis. Neurology 2008, 71, 876–881. [Google Scholar] [CrossRef]
- Turner, M.R.; Barnwell, J.; Al-Chalabi, A.; Eisen, A. Young-onset amyotrophic lateral sclerosis: Historical and other observations. Brain 2012, 135, 2883–2891. [Google Scholar] [CrossRef]
- Deng, J.; Wu, W.; Xie, Z.; Gang, Q.; Yu, M.; Liu, J.; Wang, Q.; Lv, H.; Zhang, W.; Huang, Y.; et al. Novel and recurrent mutations in a cohort of Chinese patients with young-onset amyotrophic lateral sclerosis. Front. Neurosci. 2019, 13, 1289. [Google Scholar] [CrossRef]
- Lehky, T.; Grunseich, C. Juvenile Amyotrophic Lateral Sclerosis: A review. Genes 2021, 12, 1935. [Google Scholar] [CrossRef]
- Kliest, T.; Van Eijk, R.P.A.; Al-Chalabi, A.; Albanese, A.; Andersen, P.M.; Amador, M.D.M.; BrAthen, G.; Brunaud-Danel, V.; Brylev, L.; Camu, W.; et al. Clinical trials in pediatric ALS: A TRICALS feasibility study. Amyotroph. Lateral Scler. Front. Degener. 2022, 23, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.O.; Gromicho, M.; Pinto, S.; Carvalho, M. Clinical characteristics in young-adult ALS—Results a Portuguese cohort study. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 620–623. [Google Scholar] [CrossRef] [PubMed]
- Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci. 2014, 17, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med. 2017, 377, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Mejzini, R.; Flynn, L.L.; Pitout, I.L.; Fletcher, S.; Wilton, S.D.; Akkari, P.A. ALS genetics, mechanisms, and therapeutics: Where are we now? Front. Neurosci. 2019, 13, 1310. [Google Scholar] [CrossRef] [PubMed]
- De Souza, P.V.S.; Pinto, W.B.V.R.; Batistella, G.N.R.; Bortholin, T.; Oliveira, A.S.B. Hereditary spastic paraplegia: Clinical and genetic hallmarks. Cerebellum 2017, 16, 525–551. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Bortholin, T.; Naylor, F.G.M.; Chieia, M.A.T.; Pinto, W.B.V.R.; Oliveira, A.S.B. Motor neuron disease in inherited neurometabolic disorders. Rev. Neurol. (Paris) 2018, 174, 115–124. [Google Scholar] [CrossRef]
- Connolly, O.; Le Gall, L.; McCluskey, G.; Donaghy, C.G.; Duddy, W.J.; Duguez, S. A systematic review of genotype-phenotype correlation across cohorts having causal mutations of different genes in ALS. J. Pers. Med. 2020, 10, 58. [Google Scholar] [CrossRef] [PubMed]
- Souza, P.V.S.; Pinto, W.B.V.R.; Ricarte, A.; Badia, B.M.L.; Seneor, D.D.; Teixeira, D.T.; Caetano, L.; Gonçalves, E.A.; Chieia, M.A.T.; Farias, I.B.; et al. Clinical and radiological profile of patients with spinal muscular atrophy type 4. Eur. J. Neurol. 2021, 28, 609–619. [Google Scholar] [CrossRef]
- Pinto, W.B.V.R.; Debona, R.; Nunes, P.P.; Assis, A.C.D.; Lopes, C.G.; Bortholin, T.; Dias, R.B.; Naylor, F.G.M.; Chieia, M.A.T.; Souza, P.V.S.; et al. Atypical Motor Neuron Disease variants: Still a diagnostic challenge in Neurology. Rev. Neurol. 2019, 175, 221–232. [Google Scholar] [CrossRef]
- Garg, N.; Park, S.B.; Vucic, S.; Yiannikas, C.; Spies, J.; Howells, J.; Huynh, W.; Matamala, J.M.; Krishnan, A.V.; Pollard, J.D.; et al. Differentiating lower motor neuron syndromes. J. Neurol. Neurosurg. Psychiatry 2017, 88, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Hamida, M.B.; Hentati, F.; Hamida, C.B. Hereditary motor system disease (chronic juvenile amyotrophic lateral sclerosis). Conditions combining a bilateral pyramidal syndrome with limb and bulbar amyotrophy. Brain 1990, 113, 347–363. [Google Scholar] [CrossRef]
- Staal, A.; Went, L.N. Juvenile Amyotrophic lateral sclerosis-dementia complex in a Dutch family. Neurology 1968, 18, 800–806. [Google Scholar] [CrossRef]
- Butterfield, R.J.; Ramachandran, D.; Hasstedt, S.J.; Otterud, B.E.; Leppert, M.F.; Swoboda, K.J.; Flanigan, K.M. A novel form of juvenile recessive ALS maps to loci on 6p25 and 21q22. Neuromuscul. Disord. 2009, 19, 279–287. [Google Scholar] [CrossRef] [PubMed]
- Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol. 2011, 70, 913–919. [Google Scholar] [CrossRef]
- Deng, H.X.; Chen, W.; Hong, S.T.; Boycott, K.M.; Gorrie, G.H.; Siddique, N.; Yang, Y.; Fecto, F.; Shi, Y.; Zhai, H.; et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset ALS and ALS/dementia. Nature 2011, 477, 211–215. [Google Scholar] [CrossRef]
- Fecto, F.; Siddique, T. SIGMAR1 mutations, genetic heterogeneity at the chromosome 9p locus, and the expanding etiological diversity of amyotrophic lateral sclerosis. Ann. Neurol. 2011, 70, 867–870. [Google Scholar] [CrossRef] [PubMed]
- Deschauer, M.; Gaul, C.; Behrmann, C.; Prokisch, H.; Zierz, S.; Haack, T.B. C19orf12 mutations in neurodegeneration with brain iron accumulation mimicking juvenile amyotrophic lateral sclerosis. J. Neurol. 2012, 259, 2434–2439. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.M.; Kim, Y.E.; Choi, W.J.; Oh, K.W.; Noh, M.Y.; Kwon, M.S.; Nahm, M.; Kim, N.; Ki, C.S.; Kim, S.H. CLEC4C p.K210del variant causes impaired cell surface transport in plasmacytoid dentritic cells of amyotrophic lateral sclerosis. Oncotarget 2016, 7, 24942–24949. [Google Scholar] [CrossRef]
- Wu, C.; Fan, D. A novel missense mutation of the DDHD1 gene associated with Juvenile Amyotrophic Lateral Sclerosis. Front. Aging. Neurosci. 2016, 8, 291. [Google Scholar] [CrossRef]
- Köroglu, Ç.; Yilmaz, R.; Sorgun, M.H.; Solakoglu, S.; Sener, Ö. GNE missense mutation in recessive familial amyotrophic lateral sclerosis. Neurogenetics 2017, 18, 237–243. [Google Scholar] [CrossRef]
- Tunca, C.; Akcimen, F.; Coskun, C.; Gündogud-Eken, A.; Kocoglu, C.; Çevik, B.; Bekircan-Kurt, C.E.; Tan, E.; Basak, A.N. ERLIN1 mutations cause teenage-onset slowly progressive ALS in a large Turkish pedigree. Eur. J. Hum. Genet. 2018, 26, 745–748. [Google Scholar] [CrossRef]
- Lee, S.; Park, J.; Oh, K.W.; Kim, S.H. Clinical characteristics of Korean Juvenile Amyotrophic Lateral Sclerosis. Korean J. Neuromuscul. Disord. 2020, 12, 17–23. [Google Scholar] [CrossRef]
- Johnson, J.O.; Chia, R.; Miller, D.E.; Li, R.; Kumaran, R.; Abramzon, Y.; Alahmady, N.; Renton, A.E.; Topp, S.D.; Gibbs, J.R.; et al. Association of variants in the SPTLC1 gene with juvenile amyotrophic lateral sclerosis. JAMA Neurol. 2021, 78, 1236–1248. [Google Scholar] [CrossRef]
- Mohassel, P.; Donkervoort, S.; Lone, M.A.; Nalls, M.; Gable, K.; Gupta, S.D.; Foley, A.R.; Hu, Y.; Saute, J.A.M.; Moreira, A.L.; et al. Childhood amyotrophic lateral sclerosis caused by excess sphingolipid synthesis. Nat. Med. 2021, 27, 1197–1204. [Google Scholar] [CrossRef]
- Naruse, H.; Ishiura, H.; Mitsui, J.; Takahashi, Y.; Matsukawa, T.; Toda, T.; Tsuj, S. Juvenile amyotrophic lateral sclerosis with complex phenotypes associated with novel SYNE1 mutations. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 576–578. [Google Scholar] [CrossRef] [PubMed]
- Bernard, E.; Pegat, A.; Vallet, A.E.; Leblanc, P.; Lumbroso, S.; Mouzat, K.; Latour, P. Juvenile amyotrophic lateral sclerosis associated with biallelic c.757delG mutation of sorbitol dehydrogenase gene. Amyotroph. Lateral Scler. Front. Degener. 2022, 23, 473–475. [Google Scholar] [CrossRef] [PubMed]
- Orlacchio, A.; Babalini, C.; Borreca, A.; Patrono, C.; Massa, R.; Basaran, S.; Munhoz, R.P.; Rogaeva, E.A.; St George-Hyslop, P.H.; Bernardi, G.; et al. SPATACSIN mutations cause autosomal recessive juvenile amyotrophic lateral sclerosis. Brain 2010, 133, 591–598. [Google Scholar] [CrossRef] [PubMed]
- Yamaura, G.; Higashiyama, Y.; Kusama, K.; Kunii, M.; Tanaka, K.; Koyano, S.; Nakashima, M.; Tsurusaki, Y.; Miyake, N.; Saitsu, H.; et al. Novel VRK1 mutations in a patient with childhood-onset motor neuron disease. Intern. Med. 2019, 58, 2715–2719. [Google Scholar] [CrossRef]
- Conte, A.; Lattante, S.; Zollino, M.; Marangi, G.; Luigetti, M.; Del Grande, A.; Servidei, S.; Trombetta, F.; Sabatelli, M. P525L FUS mutation is consistently associated with a severe form of juvenile amyotrophic lateral sclerosis. Neuromuscul. Disord. 2012, 22, 73–75. [Google Scholar] [CrossRef]
- Arning, L.; Epplen, J.T.; Rahikkala, E.; Hendrich, C.; Ludolph, A.C.; Sperfeld, A.D. The SETX missense variation spectrum as evaluated in patients with ALS4-like motor neuron diseases. Neurogenetics 2013, 14, 53–61. [Google Scholar] [CrossRef]
- Dohrn, M.F.; Beijer, D.; Lone, M.A.; Bayraktar, E.; Oflazer, P.; Orbach, R.; Donkervoort, S.; Foley, A.R.; Rose, A.; Lyons, M.; et al. Recurrent de-novo gain-of-function mutation in SPTLC2 confirms dysregulated sphingolipid production to cause juvenile amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2023, 95, 201–205. [Google Scholar] [CrossRef]
- Syeda, S.B.; Lone, M.A.; Mohassel, P.; Donkervoort, S.; Munot, P.; França Jr, M.C.; Galarza-Brito, J.E.; Eckenweiler, M.; Asamoah, A.; Gable, K.; et al. Recurrent de novo SPTLC2 variant causes childhood-onset amyotrophic lateral sclerosis (ALS) by excess sphingolipid synthesis. J. Neurol. Neurosurg. Psychiatry 2023, 95, 103–113. [Google Scholar] [CrossRef]
- Liu, Y.; He, X.; Yuan, Y.; Li, B.; Liu, Z.; Li, W.; Li, K.; Tan, S.; Zhu, Q.; Tang, Z.; et al. Association of TRMT2B gene variants with juvenile amyotrophic lateral sclerosis. Front. Med. 2023. Epub ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Fan, D. A novel mutation of BICD2 gene associated with juvenile amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.Z.; Bennett, C.L.; Huynh, H.M.; Blair, I.P.; Puls, I.; Irobi, J.; Dierick, I.; Abel, A.; Kennerson, M.L.; Rabin, B.A.; et al. DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am. J. Hum. Genet. 2004, 74, 1128–1135. [Google Scholar] [CrossRef]
- Chen, L. FUS mutation is probably the most common pathogenic gene for JALS, especially sporadic JALS. Rev. Neurol. 2021, 177, 333–340. [Google Scholar] [CrossRef]
- Grunseich, C.; Patankar, A.; Amaya, J.; Watts, J.A.; Li, D.; Ramirez, P.; Schindler, A.B.; Fischbeck, K.H.; Cheung, V.G. Clinical and molecular aspects of senataxin mutations in Amyotrophic Lateral Sclerosis 4. Ann. Neurol. 2020, 87, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.Y.; Liu, M.S.; Li, X.G.; Cui, L.Y. Mutations in FUS are the most frequent genetic cause in juvenile sporadic ALS patients of Chinese origin. Amyotroph. Lateral Scler. Front. Degener. 2016, 17, 249–252. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.-J.; Lin, H.-X.; Liu, G.-L.; Toa, Q.-Q.; Ni, W.; Xiao, B.-G.; Wu, Z.-Y. The investigation of genetic and clinical features in Chinese patients with juvenile amyotrophic lateral sclerosis. Clin. Genet. 2017, 92, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Marin, B.; Kacem, I.; Diagana, M.; Boulesteix, M.; Gouider, R.; Preux, P.M.; Couratier, P.; Tropals Collaboration. Juvenile and adult-onset ALS/MND among Africans: Incidence, phenotype, survival: A review. Amyotroph. Lateral. Scler. 2012, 13, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.Y.; Liu, M.S.; Li, X.G.; Cui, L.Y. Mutations in SOD1 and FUS caused juvenile-onset sporadic amyotrophic lateral sclerosis with aggressive progression. Ann. Transl. Med. 2015, 3, 221. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.Y.; Che, C.H.; Feng, S.Y.; Fang, X.Y.; Huang, H.P.; Liu, C.Y. Novel FUS mutation Y526F causing rapidly progressive familial amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Front. Degener. 2021, 22, 73–79. [Google Scholar] [CrossRef]
- Blair, I.P.; Williams, K.L.; Warraich, S.T.; Durnall, J.C.; Thoeng, A.D.; Manvais, J.; Blumbergs, P.C.; Vucic, S.; Kiernan, M.C.; Nicholson, G.A. FUS mutations in amyotrophic lateral sclerosis: Clinical, pathological, neurophysiological and genetic analysis. J. Neurol. Neurosurg. Psychiatry 2010, 81, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Keckarevic, D.; Stevic, Z.; Keckarevic-Markovic, M.; Kecmanovic, M.; Romac, S. A novel P66S mutation in exon 3 of the SOD1 gene with early onset and rapid progression. Amyotroph. Lateral. Scler. 2012, 13, 237–240. [Google Scholar] [CrossRef]
- Georgoulopoulou, E.; Gellera, C.; Bragato, C.; Sola, P.; Chiari, A.; Bernabei, C.; Mandrioli, J. A novel SOD1 mutation in a young amyotrophic lateral sclerosis patient with a very slowly progressive clinical course. Muscle Nerve 2010, 42, 596–597. [Google Scholar] [CrossRef] [PubMed]
- Pupillo, E.; Messina, P.; Logroscino, G.; Beghi, E.; SLALOM Group. Long-term survival in amyotrophic lateral sclerosis: A population-based study. Ann. Neurol. 2014, 75, 287–297. [Google Scholar] [CrossRef]
- Yamashita, S.; Mori, A.; Sakaguchi, H.; Suga, T.; Ishihara, D.; Ueda, A.; Yamashita, T.; Maeda, Y.; Uchino, M.; Hirano, T. Sporadic juvenile amyotrophic lateral sclerosis caused by mutant FUS/TLS: Possible association of mental retardation with this mutation. J. Neurol. 2012, 259, 1039–1044. [Google Scholar] [CrossRef]
- Eura, N.; Sugie, K.; Suzuki, N.; Kiriyama, T.; Izumi, T.; Shimakura, N.; Kato, M.; Aoki, M. A juvenile sporadic amyotrophic lateral sclerosis case with P525L mutation in the FUS gene: A rare co-occurrence of autism spectrum disorder and tremor. J. Neurol. Sci. 2019, 398, 67–68. [Google Scholar] [CrossRef]
- Dodd, K.C.; Power, R.; Ealing, J.; Hamdalla, H. FUS-ALS presenting with myoclonic jerks in a 17-year-old man. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 278–280. [Google Scholar] [CrossRef]
- Leblond, C.S.; Webber, A.; Gan-Or, Z.; Moore, F.; Dagher, A.; Dion, P.A.; Rouleau, G.A. De novo FUS P525L mutation in juvenile amyotrophic lateral sclerosis with dysphonia and diplopia. Neurol. Genet. 2016, 2, e63. [Google Scholar] [CrossRef]
- Souza, P.V.S.; Pinto, W.B.V.R.; Farias, I.B.; Badia, B.M.L.; Pinto, I.F.N.; Costa, G.C.; Marin, C.M.; Jorge, A.C.S.; Souto, E.C.; Serrano, P.L.; et al. Progressive spastic tetraplegia and axial hypotonia (STAHP) due to SOD1 deficiency: Is it really a new entity? Orphanet J. Rare Dis. 2021, 16, 360. [Google Scholar] [CrossRef]
- Silva, D.P.; Sá, M.S.E.; Silveira, F.; Pinto, S.; Gromicho, M.; Sousa, A.B.; Leão, M.; Carvalho, M. VRK1 variants in two Portuguese unrelated patients with childhood-onset motor neuron disease. Amyotroph. Lateral Scler. Front. Degener. 2020, 21, 291–295. [Google Scholar] [CrossRef]
- Gawel, M. Electrodiagnostics: MUNE and MUNIX as methods of estimating the number of motor units—Biomarkers in lower motor neurone disease. Neurol. Neurochir. Pol. 2019, 53, 251–257. [Google Scholar] [CrossRef] [PubMed]
- Geevasinga, N.; Howells, J.; Menon, P.; van den Bos, M.; Shibuya, K.; Matamala, J.M.; Park, S.B.; Byth, K.; Kierna, M.C.; Vucic, S. Amyotrophic lateral sclerosis diagnostic index: Toward a personalized diagnosis of ALS. Neurology 2019, 92, e536–e547. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.L.; Liu, M.; Ding, Q.; Hu, Y.; Cui, L. Split-hand index in amyotrophic lateral sclerosis: An F-wave study. Amyotroph. Lateral Scler. Front. Degener. 2019, 20, 562–567. [Google Scholar] [CrossRef]
- Corcia, P.; Bede, P.; Pradat, P.F.; Couratier, P.; Vucic, S.; Carvalho, M. Split-hand and split-limb phenomena in amyotrophic lateral sclerosis: Pathophysiology, electrophysiology and clinical manifestations. J. Neurol. Neurosurg. Psychiatry 2021, 92, 1126–1130. [Google Scholar] [CrossRef]
- Brooks, B.R.; Miller, R.G.; Swash, M.; Munsat, T.L.; World Federation of Neurology Research Group on Motor Neuron Diseases. El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler. Other Motor. Neuron. Disord. 2000, 1, 293–299. [Google Scholar] [CrossRef]
- Carvalho, M.; Dengler, R.; Eisen, A.; England, J.D.; Kaji, R.; Kimura, J.; Mills, K.; Mitsumoto, H.; Nodera, H.; Shefner, J.; et al. Electrodiagnostic criteria for diagnosis of ALS. Clin. Neurophysiol. 2008, 119, 497–503. [Google Scholar] [CrossRef]
- Costa, J.; Swash, M.; Carvalho, M. Awaji criteria for the diagnosis of amyotrophic lateral sclerosis: A systematic review. Arch. Neurol. 2012, 69, 1410–1416. [Google Scholar] [CrossRef]
- Shefner, J.M.; Al-Chalabi, A.; Baker, M.R.; Cui, L.-Y.; Carvalho, M.; Eisen, A.; Grosskreutz, J.; Hardiman, O.; Henderson, R.; Matamala, J.M.; et al. A proposal for new diagnostic criteria for ALS. Clin. Neurophysiol. 2020, 131, 1975–1978. [Google Scholar] [CrossRef] [PubMed]
- Cirulli, E.T.; Lasseigne, B.N.; Petrovski, S.; Sapp, P.C.; Dion, P.A.; Leblond, C.S.; Couthouis, J.; Lu, Y.-F.; Wang, Q.; Krueger, B.J.; et al. Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways. Science 2015, 347, 1436–1441. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, S.; Potocki, L.; Collier, T.R.; Woodbury, S.L.; Adesina, A.M.; Jones, J.; Lotze, T.E. Utility of whole exome sequencing in evaluation of juvenile motor neuron disease. Muscle Nerve 2016, 53, 648–652. [Google Scholar] [CrossRef] [PubMed]
- Klim, J.R.; Vance, C.; Scotter, E.L. Antisense oligonucleotide therapies for Amyotrophic Lateral Sclerosis: Existing and emerging targets. Int. J. Biochem. Cell Biol. 2019, 110, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Benatar, M.; Wuu, J.; Andersen, P.M.; Bucelli, R.C.; Andrews, J.A.; Otto, M.; Farahany, N.A.; Harrington, E.A.; Chen, W.; Mitchell, A.A.; et al. Design of a randomized, placebo-controlled, Phase 3 trial of Tofersen initiated in clinically presymptomatic SOD1 variant carriers: The ATLAS study. Neurotherapeutics 2022, 19, 1248–1258. [Google Scholar] [CrossRef] [PubMed]
- Cappella, M.; Pradat, P.F.; Querin, G.; Biferi, M.G. Beyond the traditional clinical trials for amyotrophic lateral sclerosis and the future impact of gene therapy. J. Neuromuscul. Dis. 2021, 8, 25–38. [Google Scholar] [CrossRef]
- Xu, X.; Shen, D.; Gao, Y.; Zhou, Q.; Ni, Y.; Meng, H.; Shi, H.; Le, W.; Chen, S.; Chen, S. A perspective on therapies for amyotrophic lateral sclerosis: Can disease progression be curbed? Transl. Neurodegener. 2021, 10, 29. [Google Scholar] [CrossRef] [PubMed]
- Codron, P.; Cassereau, J.; Vourc’h, P. InFUSing antisense oligonucleotides for treating ALS. Trends. Mol. Med. 2022, 28, 253–254. [Google Scholar] [CrossRef] [PubMed]
- Korobeynikov, V.A.; Lyashchenko, A.K.; Blanco-Redondo, B.; Jafar-Nejad, P.; Shneider, N.A. Antisense oligonucleotide silencing of FUS expression as a therapeutic approach in amyotrophic lateral sclerosis. Nat. Med. 2022, 28, 104–116. [Google Scholar] [CrossRef]
- Miller, T.; Cudkowicz, M.; Genge, A.; Shaw, P.J.; Sobue, G.; Bucelli, R.C.; Chiò, A.; Van Damme, P.; Ludolph, A.C.; Glass, J.D.; et al. Trial of antisense oligonucleotide Tofersen for SOD1 ALS. N. Engl. J. Med. 2022, 387, 1099–1110. [Google Scholar] [CrossRef]
- Levine, T.D.; Miller, R.G.; Bradley, W.G.; Moore, D.H.; Saperstein, D.S.; Flynn, L.E.; Katz, J.S.; Forshew, D.A.; Metcalf, J.S.; Banack, S.A.; et al. Phase I clinical trial of safety of L-serine for ALS patients. Amyotroph. Lateral Scler. Front. Degener. 2017, 18, 107–111. [Google Scholar] [CrossRef]
- Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Macklin, E.A.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; et al. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve 2021, 63, 31–39. [Google Scholar] [CrossRef]
- Chio, A.; Logroscino, G.; Hardiman, O.; Swingler, R.; Mitchell, D.; Beghi, E.; Traynor, B.G.; Eurals Consortium. Prognostic factors in ALS: A critical review. Amyotroph. Lateral. Scler. 2009, 10, 310–323. [Google Scholar] [CrossRef] [PubMed]
- Westeneng, H.J.; Debray, T.P.A.; Visser, A.E.; van Eijk, R.P.A.; Rooney, J.P.K.; Calvo, A.; Martin, S.; McDermott, C.J.; Thompson, A.G.; Pinto, S.; et al. Prognosis for patients with amyotrophic lateral sclerosis: Development and validation of a personalized prediction model. Lancet Neurol. 2018, 17, 423–433. [Google Scholar] [CrossRef] [PubMed]
Type of Therapy | Mechanism of Action and Characteristics of Targeted Therapies for ALS (sALS, fALS, JALS) | Phase | Level of Evidence | Reference |
---|---|---|---|---|
Non-pharmacological approaches | ||||
- Hypercaloric enteral nutrition | Specific studies were not performed in JALS. | II | IV, RWE | [1,9] |
- Early noninvasive ventilation | Early indication; dysphagia, decrease in at least 10% of body weight, or forced vital capacity < 50%. | N/A | II, RWE | [1,9] |
- Physical therapy | Improvement in fatigue, quality of life and sleep. | N/A | IV, RWE | [1,9] |
Riluzole | Inhibition of NMDA and kainate glutamate receptors, sodium channel block. Specific studies were not performed in JALS. | III/IV | I, RWE | [1,9] |
Edaravone | Antioxidative agent, block of hydroxyl radicals. Specific studies were not performed in JALS. | III | II, RWE | [1,9] |
Sodium phenylbutyrate associated with TUDCA (taurursodiol) | Phenylbutyrate: histone deacetylase inhibitor. TUDCA: neuroprotective action, anti-neuronal apoptosis. Specific studies were not performed in JALS. | III | II | [77] |
AT-007 (Applied Therapeutics) | Aldose reductase-targeted inhibition: reduced conversion of glucose to sorbitol. Analysis in trials only for sensorimotor neuropathy and galactosemia. Studies were not performed in JALS. | I/II | III | [32] |
L-Serine supplementation | Inhibition of β-N-methylamino-L-alanine (L-BMAA) neurotoxicity; activation of autophagic and lysosomal-endosomal pathways. Oral L-serine supplementation for JALS associated with SPTLC1 variants. | I | IV, RWE | [29,76] |
Gene-based therapies | ||||
- SOD1 (Tofersen) | Specific studies were not performed in JALS. | III | II | [70,75] |
- FUS (Jacifusen; ION363) | Intrathecal antisense oligonucleotides developed to perform transcript knockdown by ribonuclease. | III * | II | [73,74] |
- ATXN2 | H-dependent degradation of mRNA. | I | IV | [69] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Souza, P.V.S.d.; Serrano, P.d.L.; Farias, I.B.; Machado, R.I.L.; Badia, B.d.M.L.; Oliveira, H.B.d.; Barbosa, A.S.; Pereira, C.A.; Moreira, V.d.F.; Chieia, M.A.T.; et al. Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes 2024, 15, 311. https://doi.org/10.3390/genes15030311
Souza PVSd, Serrano PdL, Farias IB, Machado RIL, Badia BdML, Oliveira HBd, Barbosa AS, Pereira CA, Moreira VdF, Chieia MAT, et al. Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes. 2024; 15(3):311. https://doi.org/10.3390/genes15030311
Chicago/Turabian StyleSouza, Paulo Victor Sgobbi de, Paulo de Lima Serrano, Igor Braga Farias, Roberta Ismael Lacerda Machado, Bruno de Mattos Lombardi Badia, Hélvia Bertoldo de Oliveira, Alana Strucker Barbosa, Camila Alves Pereira, Vanessa de Freitas Moreira, Marco Antônio Troccoli Chieia, and et al. 2024. "Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges" Genes 15, no. 3: 311. https://doi.org/10.3390/genes15030311
APA StyleSouza, P. V. S. d., Serrano, P. d. L., Farias, I. B., Machado, R. I. L., Badia, B. d. M. L., Oliveira, H. B. d., Barbosa, A. S., Pereira, C. A., Moreira, V. d. F., Chieia, M. A. T., Barbosa, A. R., Braga, V. L., Pinto, W. B. V. d. R., & Oliveira, A. S. B. (2024). Clinical and Genetic Aspects of Juvenile Amyotrophic Lateral Sclerosis: A Promising Era Emerges. Genes, 15(3), 311. https://doi.org/10.3390/genes15030311