Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Sequencing
2.3. Phylogenetic and Population Structure Analysis
2.4. Runs of Homozygosity, Linkage Disequilibrium, Genetic Diversity, and Inbreeding Coefficient Detection
2.5. Selective Sweep Identification
3. Results
3.1. Genome Sequencing and Population Structure Analysis
3.2. Patterns of Genomic Variation
3.3. Genome-Wide Selective Sweep Test and Enrichment Analysis of Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Decker, J.E.; Mckay, S.D. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLoS Genet. 2014, 10, e1004254. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yao, Z. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genom. 2022, 23, 460. [Google Scholar] [CrossRef]
- Georges, M.; Charlier, C. Harnessing genomic information for livestock improvement. Nat. Rev. Genet. 2019, 20, 135–156. [Google Scholar] [CrossRef] [PubMed]
- Chinese Academy of Agricultural Sciences. 2020. Available online: https://zypc.nahs.org.cn/pzml/index.html (accessed on 5 November 2023).
- Zhang, L.; Jia, S. Impact of Parental Bos taurus and Bos indicus Origins on Copy Number Variation in Traditional Chinese Cattle Breeds. Genome Biol. Evol. 2015, 7, 2352–2361. [Google Scholar] [CrossRef]
- Li, M.; Sun, X. SIRT1 gene polymorphisms are associated with growth traits in Nanyang cattle. Mol. Cell Probes 2013, 27, 215–220. [Google Scholar] [CrossRef]
- Pang, Y.; Wang, J. The polymorphisms of bovine VEGF gene and their associations with growth traits in Chinese cattle. Mol. Biol. Rep. 2011, 38, 755–759. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhang, Y. SNP identification in FBXO32 gene and their associations with growth traits in cattle. Gene 2013, 515, 181–186. [Google Scholar] [CrossRef]
- Xu, Y.; Cai, H. SNP and haplotype analysis of paired box 3 (PAX3) gene provide evidence for association with growth traits in Chinese cattle. Mol. Biol. Rep. 2014, 41, 4295–4303. [Google Scholar] [CrossRef]
- Ujan, J.A.; Zan, L.S. Lack of an association between a single nucleotide polymorphism in the bovine myogenic determination 1 (MyoD1) gene and meat quality traits in indigenous Chinese cattle breeds. Genet. Mol. Res. 2011, 10, 2213–2222. [Google Scholar] [CrossRef]
- Chen, N.; Fu, W. BGVD: An Integrated Database for Bovine Sequencing Variations and Selective Signatures. Genom. Proteom. Bioinform. 2020, 18, 186–193. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed]
- Van Der Auwera, G.A.; Carneiro, M.O. From FastQ data to high confidence variant calls: The Genome Analysis Toolkit best practices pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Danecek, P.; Auton, A. The variant call format and VCFtools. Bioinformatics 2011, 27, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B. Plink: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Alexander, D.H.; Lange, K. Enhancements to the ADMIXTURE algorithm for individual ancestry estimation. BMC Bioinform. 2011, 12, 246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dong, R. Analysis of the Genetic Diversity and Family Structure of the Licha Black Pig Population on Jiaodong Peninsula, Shandong Province, China. Animals 2022, 12, 1045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Dong, S.S. PopLDdecay: A fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 2018, 35, 1786–1788. [Google Scholar] [CrossRef]
- De Camargo, G.M.; Costa, R.B. Polymorphisms in TOX and NCOA2 genes and their associations with reproductive traits in cattle. Reprod. Fertil. Dev. 2015, 27, 523–528. [Google Scholar] [CrossRef]
- Nadeau, V.; Guillemette, S. Map2k1 and Map2k2 genes contribute to the normal development of syncytiotrophoblasts during placentation. Development 2009, 136, 1363–1374. [Google Scholar] [CrossRef]
- Fang, X.; Wu, L. Nuclear progestin receptor (Pgr) knockouts resulted in subfertility in male tilapia (Oreochromis niloticus). J. Steroid Biochem. Mol. Biol. 2018, 182, 62–71. [Google Scholar] [CrossRef]
- Mao, S.; Dong, S. Transcriptome analysis reveals pituitary lncRNA, circRNA and mRNA affecting fertility in high- and low-yielding goats. Front. Genet. 2023, 14, 1303031. [Google Scholar] [CrossRef]
- Wang, Q.; Tang, H. Immune-Associated Gene Signatures Serve as a Promising Biomarker of Immunotherapeutic Prognosis for Renal Clear Cell Carcinoma. Front. Immunol. 2022, 13, 890150. [Google Scholar] [CrossRef]
- Lira, M.C.; Rosa, F.D. NCoA3 upregulation in breast cancer-associated adipocytes elicits an inflammatory profile. Oncol. Rep. 2023, 49, 105. [Google Scholar] [CrossRef]
- Kajiro, M.; Tsuchiya, M. The E3 ubiquitin ligase activity of Trip12 is essential for mouse embryogenesis. PLoS ONE 2011, 6, e25871. [Google Scholar] [CrossRef]
- Wang, L.; Feng, W. Fbxw11 promotes the proliferation of lymphocytic leukemia cells through the concomitant activation of NF-κB and β-catenin/TCF signaling pathways. Cell Death Dis. 2018, 9, 427. [Google Scholar] [CrossRef]
- Mao, D.; Wu, M. MicroRNA-101a-3p could be involved in the pathogenesis of temporomandibular joint osteoarthritis by mediating UBE2D1 and FZD4. J. Oral. Pathol. Med. 2021, 50, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Zhu, J. Upregulated UBE4B expression correlates with poor prognosis and tumor immune infiltration in hepatocellular carcinoma. Aging 2022, 14, 9632–9646. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Shen, J. FBXO2 targets glycosylated SUN2 for ubiquitination and degradation to promote ovarian cancer development. Cell Death Dis. 2022, 13, 442. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chen, J. FOXK2 affects cancer cell response to chemotherapy by promoting nucleotide de novo synthesis. Drug Resist. Updat. 2023, 67, 100926. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Yang, M. HSF1 promotes the viability of islet β-cells via upregulating SIRPα expression. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 1939–1947. [Google Scholar] [PubMed]
- Calderón, L.; Schindler, K. Pax5 regulates B cell immunity by promoting PI3K signaling via PTEN down-regulation. Sci. Immunol. 2021, 6, eabg5003. [Google Scholar] [CrossRef]
- Shon, W.J.; Song, J.W. Gut taste receptor type 1 member 3 is an intrinsic regulator of Western diet-induced intestinal inflammation. BMC Med. 2023, 21, 165. [Google Scholar] [CrossRef]
- Mcquillan, R.; Leutenegger, A.L. Runs of homozygosity in European populations. Am. J. Hum. Genet. 2008, 83, 359–372. [Google Scholar] [CrossRef] [PubMed]
- Keller, M.C.; Visscher, P.M. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics 2011, 189, 237–249. [Google Scholar] [CrossRef]
- Xia, X.; Zhang, S. Assessing genomic diversity and signatures of selection in Jiaxian Red cattle using whole-genome sequencing data. BMC Genom. 2021, 22, 43. [Google Scholar] [CrossRef] [PubMed]
- Zhong, X.; Wu, H. Ncoa2 Promotes CD8+ T cell-Mediated Antitumor Immunity by Stimulating T-cell Activation via Upregulation of PGC-1α Critical for Mitochondrial Function. Cancer Immunol. Res. 2023, 11, 1414–1431. [Google Scholar] [CrossRef] [PubMed]
- Hiver, S.; Shimizu-Mizuno, N. Gse1, a component of the CoREST complex, is required for placenta development in the mouse. Dev. Biol. 2023, 498, 97–105. [Google Scholar] [CrossRef]
Region | Breed | Sample Size |
---|---|---|
Africa | NDama | 10 |
Africa | Kenana | 9 |
Africa | Ogaden | 9 |
Africa | Boran | 10 |
Africa | Shorthorn Zebu | 10 |
Africa | Nganda | 1 |
Africa | Nsongora | 1 |
Africa | Ankole | 20 |
Northwest China | Kazakh | 9 |
Northwest China | Mongolian | 7 |
Northwest China | Chaidamu | 5 |
Northwest China | Tibetan | 9 |
South China | Dianzhong | 6 |
South China | Leiqiong | 3 |
South China | Wannan | 5 |
South China | Wenshan | 8 |
South China | Guangfeng | 4 |
South China | Jian | 4 |
South China | Jinjiang | 3 |
Northeast Asia | Yanbian | 1 |
Northeast Asia | Hanwoo | 18 |
Northeast Asia | Mishima | 8 |
Northeast Asia | Kuchinoshima | 1 |
West Europe | Angus | 25 |
West Europe | Devon | 1 |
West Europe | Hereford | 21 |
West Europe | Holstein | 45 |
West Europe | Red Angus | 16 |
Central–South Europe | Charolais | 14 |
Central–South Europe | Gelbvieh | 21 |
Central–South Europe | Jersey | 12 |
Central–South Europe | Limousin | 1 |
Central–South Europe | Maine Anjou | 6 |
Central–South Europe | Piedmontese | 5 |
Central–South Europe | Salers | 1 |
Central–South Europe | Simmental | 23 |
India–Pakistan | Brahman | 9 |
India–Pakistan | Gir | 3 |
India–Pakistan | Hariana | 1 |
India–Pakistan | Nelore | 4 |
India–Pakistan | Sahiwal | 1 |
India–Pakistan | Srilanka | 5 |
India–Pakistan | Tharparkar | 1 |
Middle East | Rashoki | 9 |
North–Central China | Bashan | 5 |
North–Central China | Bohai Black | 5 |
North–Central China | Dabieshan | 2 |
North–Central China | Jiaxian Red | 5 |
North–Central China | Lingnan | 8 |
North–Central China | Luxi | 5 |
North–Central China | Nanyang | 5 |
North–Central China | Wandong | 2 |
North–Central China | Weining | 5 |
North–Central China | Zaobei | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wei, Z.; Zhang, M.; Wang, S.; Gao, T.; Huang, H.; Zhang, T.; Cai, H.; Liu, X.; Fu, T.; et al. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes 2024, 15, 351. https://doi.org/10.3390/genes15030351
Zhang Y, Wei Z, Zhang M, Wang S, Gao T, Huang H, Zhang T, Cai H, Liu X, Fu T, et al. Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes. 2024; 15(3):351. https://doi.org/10.3390/genes15030351
Chicago/Turabian StyleZhang, Yan, Zhitong Wei, Man Zhang, Shiwei Wang, Tengyun Gao, Hetian Huang, Tianliu Zhang, Hanfang Cai, Xian Liu, Tong Fu, and et al. 2024. "Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data" Genes 15, no. 3: 351. https://doi.org/10.3390/genes15030351
APA StyleZhang, Y., Wei, Z., Zhang, M., Wang, S., Gao, T., Huang, H., Zhang, T., Cai, H., Liu, X., Fu, T., & Liang, D. (2024). Population Structure and Selection Signal Analysis of Nanyang Cattle Based on Whole-Genome Sequencing Data. Genes, 15(3), 351. https://doi.org/10.3390/genes15030351