Immunogenetics of Systemic Sclerosis
Abstract
:1. Introduction
- Centromere pattern—(anti-centromere antibodies ACA) characteristics for lcSSc;
- Speckled pattern suggesting the presence of anti-TOPO I (SCL-70) anti-RNA polymerase III. The presence of these antibodies suggests dcSSc;
- Nucleolar pattern suggestive of anti-PM/SCl, anti-NOR90 U3RNP, anti-Th/To [6].
Genomics of Systemic Sclerosis
2. Scientific Methods Used in SSc Studies
- -
- Major Histocompatibility Complex (MHC) Region HLA genes;
- -
- Major Histocompatibility Complex (MHC) Region non-HLA genes;
- -
- Non-Major Histocompatibility Complex (non-MHC) Region genes;
- -
- Genes involved in cytokine synthesis regulation;
- -
- Genes involved in immune signaling pathway regulation.
3. Major Histocompatibility Complex Region HLA Genes
4. Non-HLA Complex Genes
5. The Interferon Regulatory Factor Genes
6. STAT Genes and JAK-STAT Pathway
7. Toll-like Receptors
8. The Nuclear Factor κB
9. Macrophage Migration Inhibitory Factor (MIF)
10. The Interleukin-1 Receptor Associated Kinases
11. Adaptive Immune System
12. IL12 Axis and Its Receptors
13. TNF Superfamily Member 4 (TNFSF4)
14. The Role and Polymorphism of Interleukin-6 (IL6)
15. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Denton, C.P.; Khanna, D. Systemic sclerosis. Lancet 2017, 390, 1685–1699. [Google Scholar] [CrossRef] [PubMed]
- Allanore, Y.; Simms, R.; Distler, O.; Trojanowska, M.; Pope, J.; Denton, C.P.; Varga, J. Systemic sclerosis. Nat. Rev. Dis. Primers 2015, 1, 15002. [Google Scholar] [CrossRef]
- Varga, J.; Abraham, D. Systemic sclerosis: A prototypic multisystem fibrotic disorder. J. Clin. Investig. 2007, 117, 557–567. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y. The Pathogenesis of Systemic Sclerosis: An Understanding Based on a Common Pathologic Cascade across Multiple Organs and Additional Organ-Specific Pathologies. J. Clin. Med. 2020, 9, 2687. [Google Scholar] [CrossRef] [PubMed]
- Bairkdar, M.; Rossides, M.; Westerlind, H.; Hesselstrand, R.; Arkema, E.V.; Holmqvist, M. Incidence and prevalence of systemic sclerosis globally: A comprehensive systematic review and meta-analysis. Rheumatology 2021, 60, 3121–3133. [Google Scholar] [CrossRef] [PubMed]
- Stochmal, A.; Czuwara, J.; Trojanowska, M.; Rudnicka, L. Antinuclear Antibodies in Systemic Sclerosis: An Update. Clin. Rev. Allergy Immunol. 2020, 58, 40–51. [Google Scholar] [CrossRef] [PubMed]
- LeRoy, E.C.; Black, C.; Fleischmajer, R.; Jablonska, S.; Krieg, T.; Medsger, T.A., Jr.; Rowell, N.; Wollheim, F. Scleroderma (systemic sclerosis): Classification, subsets and pathogenesis. J. Rheumatol. 1988, 15, 202–205. [Google Scholar] [PubMed]
- Maricq, H.R.; Valter, I. A working classification of scleroderma spectrum disorders: A proposal and the results of testing on a sample of patients. Clin. Exp. Rheumatol. 2004, 22, S5–S13. [Google Scholar] [PubMed]
- Bobeica, C.; Niculet, E.; Craescu, M.; Parapiru, E.L.; Musat, C.L.; Dinu, C.; Chiscop, I.; Nechita, L.; Debita, M.; Stefanescu, V.; et al. CREST Syndrome in Systemic Sclerosis Patients—Is Dystrophic Calcinosis a Key Element to a Positive Diagnosis? J. Inflamm. Res. 2022, 15, 3387–3394. [Google Scholar] [CrossRef]
- Velayos, E.E.; Masi, A.T.; Stevens, M.B.; Shulman, L.E. The’CREST’Syndrome: Comparison with Systemic Sclerosis (Scleroderma). Arch. Intern. Med. 1979, 139, 1240–1244. [Google Scholar] [CrossRef]
- Kuwana, M. Circulating anti-nuclear antibodies in systemic sclerosis: Utility in diagnosis and disease subsetting. J. Nippon. Med. Sch. 2017, 84, 56–63. [Google Scholar] [CrossRef]
- Mecoli, C.A.; Casciola-Rosen, L. An update on autoantibodies in scleroderma. Curr. Opin. Rheumatol. 2018, 30, 548. [Google Scholar] [CrossRef] [PubMed]
- Chepy, A.; Bourel, L.; Koether, V.; Launay, D.; Dubucquoi, S.; Sobanski, V. Can Antinuclear Antibodies Have a Pathogenic Role in Systemic Sclerosis? Front. Immunol. 2022, 13, 930970. [Google Scholar] [CrossRef] [PubMed]
- Mora, G.F. Systemic Sclerosis: Environmental Factors. J. Rheumatol. 2009, 36, 2383–2396. [Google Scholar] [CrossRef] [PubMed]
- Marie, I. Systemic sclerosis and exposure to heavy metals. Autoimmun. Rev. 2019, 18, 62–72. [Google Scholar] [CrossRef]
- Hussein, H.M.; Rahal, E.A. The role of viral infections in the development of autoimmune diseases. Crit. Rev. Microbiol. 2019, 45, 394–412. [Google Scholar] [CrossRef]
- White, B. Immunopathogenesis of systemic sclerosis. Rheum. Dis. Clin. 1996, 22, 695–708. [Google Scholar] [CrossRef]
- Kotyla, P.J. Chapter 49—Systemic Sclerosis: An Autoimmune Disease without a Known Pathology and to Be Conquered. In Mosaic of Autoimmunity; Perricone, C., Shoenfeld, Y., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 549–558. [Google Scholar]
- Laurent, P.; Sisirak, V.; Lazaro, E.; Richez, C.; Duffau, P.; Blanco, P.; Truchetet, M.-E.; Contin-Bordes, C. Innate Immunity in Systemic Sclerosis Fibrosis: Recent Advances. Front. Immunol. 2018, 9, 1702. [Google Scholar] [CrossRef]
- Kakkar, V.; Assassi, S.; Allanore, Y.; Kuwana, M.; Denton, C.P.; Khanna, D.; Del Galdo, F. Type 1 interferon activation in systemic sclerosis: A biomarker, a target or the culprit. Curr. Opin. Rheumatol. 2022, 34, 357–364. [Google Scholar] [CrossRef]
- Brkic, Z.; van Bon, L.; Cossu, M.; van Helden-Meeuwsen, C.G.; Vonk, M.C.; Knaapen, H.; van den Berg, W.; Dalm, V.A.; Van Daele, P.L.; Severino, A.; et al. The interferon type I signature is present in systemic sclerosis before overt fibrosis and might contribute to its pathogenesis through high BAFF gene expression and high collagen synthesis. Ann. Rheum. Dis. 2016, 75, 1567–1573. [Google Scholar] [CrossRef]
- Agarwal, S.K.; Tan, F.K.; Arnett, F.C. Genetics and genomic studies in scleroderma (systemic sclerosis). Rheum. Dis. Clin. N. Am. 2008, 34, 17–40. [Google Scholar] [CrossRef] [PubMed]
- Englert, H.; Small-McMahon, J.; Chambers, P.; O’Connor, H.; Davis, K.; Manolios, N.; White, R.; Dracos, G.; Brooks, P. Familial risk estimation in systemic sclerosis. Aust. N. Z. J. Med. 1999, 29, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Kuwana, M.; Feghali, C.A.; Medsger Jr, T.A.; Wright, T.M. Autoreactive T cells to topoisomerase I in monozygotic twins discordant for systemic sclerosis. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2001, 44, 1654–1659. [Google Scholar] [CrossRef]
- Feghali-Bostwick, C.; Medsger Jr, T.A.; Wright, T.M. Analysis of systemic sclerosis in twins reveals low concordance for disease and high concordance for the presence of antinuclear antibodies. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2003, 48, 1956–1963. [Google Scholar] [CrossRef] [PubMed]
- Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T.; Posthuma, D. Genome-wide association studies. Nat. Rev. Methods Primers 2021, 1, 59. [Google Scholar] [CrossRef]
- Bossini-Castillo, L.; Villanueva-Martin, G.; Kerick, M.; Acosta-Herrera, M.; López-Isac, E.; Simeón, C.P.; Ortego-Centeno, N.; Assassi, S.; Hunzelmann, N.; Gabrielli, A.; et al. Genomic Risk Score impact on susceptibility to systemic sclerosis. Ann. Rheum. Dis. 2021, 80, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Abraham, G.; Inouye, M. Genomic risk prediction of complex human disease and its clinical application. Curr. Opin. Genet. Dev. 2015, 33, 10–16. [Google Scholar] [CrossRef] [PubMed]
- Vivian-Griffiths, T.; Baker, E.; Schmidt, K.M.; Bracher-Smith, M.; Walters, J.; Artemiou, A.; Holmans, P.; O’Donovan, M.C.; Owen, M.J.; Pocklington, A.; et al. Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. Am. J. Med. Genetics. Part B Neuropsychiatr. Genet. Off. Publ. Int. Soc. Psychiatr. Genet. 2019, 180, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Klein, J.; Sato, A. The HLA system. First of two parts. N. Engl. J. Med. 2000, 343, 702–709. [Google Scholar] [CrossRef]
- Klein, J. Natural History of the Major Histocompatibility Complex; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
- Neefjes, J.; Jongsma, M.L.M.; Paul, P.; Bakke, O. Towards a systems understanding of MHC class I and MHC class II antigen presentation. Nat. Rev. Immunol. 2011, 11, 823–836. [Google Scholar] [CrossRef]
- Gough, S.C.; Simmonds, M.J. The HLA Region and Autoimmune Disease: Associations and Mechanisms of Action. Curr. Genom. 2007, 8, 453–465. [Google Scholar] [CrossRef] [PubMed]
- Ota, Y.; Kuwana, M. Updates on genetics in systemic sclerosis. Inflamm. Regen. 2021, 41, 17. [Google Scholar] [CrossRef] [PubMed]
- Arnett, F.C.; Gourh, P.; Shete, S.; Ahn, C.W.; Honey, R.; Agarwal, S.K.; Tan, F.K.; McNearney, T.; Fischbach, M.; Fritzler, M.J. Major Histocompatibility Complex (MHC) class II alleles, haplotypes, and epitopes which confer susceptibility or protection in the fibrosing autoimmune disease systemic sclerosis: Analyses in 1300 Caucasian, African-American and Hispanic cases and 1000 controls. Ann. Rheum. Dis. 2010, 69, 822–827. [Google Scholar] [PubMed]
- Zhou, X.; Lee, J.E.; Arnett, F.C.; Xiong, M.; Park, M.Y.; Yoo, Y.K.; Shin, E.S.; Reveille, J.D.; Mayes, M.D.; Kim, J.H. HLA–DPB1 and DPB2 are genetic loci for systemic sclerosis: A genome-wide association study in Koreans with replication in North Americans. Arthritis Rheum. Off. J. Am. Coll. Rheumatol. 2009, 60, 3807–3814. [Google Scholar] [CrossRef] [PubMed]
- Gilchrist, F.C.; Bunn, C.; Foley, P.J.; Lympany, P.A.; Black, C.M.; Welsh, K.I.; du Bois, R.M. Class II HLA associations with autoantibodies in scleroderma: A highly significant role for HLA-DP. Genes Immun. 2001, 2, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Reveille, J.D.; Fischbach, M.; McNearney, T.; Friedman, A.W.; Aguilar, M.B.; Lisse, J.; Fritzler, M.J.; Ahn, C.; Arnett, F.C. Systemic sclerosis in 3 US ethnic groups: A comparison of clinical, sociodemographic, serologic, and immunogenetic determinants. Semin. Arthritis Rheum. 2001, 30, 332–346. [Google Scholar] [CrossRef] [PubMed]
- Louthrenoo, W.; Kasitanon, N.; Wongthanee, A.; Okudaira, Y.; Takeuchi, M.; Nakajima, F.; Habata, M.; Masuya, A.; Noguchi, H.; Inoko, H.; et al. Association of HLA-DRB1*15:02:01, DQB1*05:01:24 and DPB1*13:01:01 in Thai patients with systemic sclerosis. Hla 2022, 100, 563–581. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, H.; Oka, S.; Kawasaki, A.; Shimada, K.; Sugii, S.; Matsushita, T.; Hashimoto, A.; Komiya, A.; Fukui, N.; Kobayashi, K.; et al. Human Leukocyte Antigen and Systemic Sclerosis in Japanese: The Sign of the Four Independent Protective Alleles, DRB1*13:02, DRB1*14:06, DQB1*03:01, and DPB1*02:01. PLoS ONE 2016, 11, e0154255. [Google Scholar] [CrossRef] [PubMed]
- Hanson, A.L.; Sahhar, J.; Ngian, G.S.; Roddy, J.; Walker, J.; Stevens, W.; Nikpour, M.; Assassi, S.; Proudman, S.; Mayes, M.D.; et al. Contribution of HLA and KIR Alleles to Systemic Sclerosis Susceptibility and Immunological and Clinical Disease Subtypes. Front. Genet. 2022, 13, 913196. [Google Scholar] [CrossRef]
- Pende, D.; Falco, M.; Vitale, M.; Cantoni, C.; Vitale, C.; Munari, E.; Bertaina, A.; Moretta, F.; Del Zotto, G.; Pietra, G.; et al. Killer Ig-Like Receptors (KIRs): Their Role in NK Cell Modulation and Developments Leading to Their Clinical Exploitation. Front. Immunol. 2019, 10, 461739. [Google Scholar] [CrossRef]
- Karimizadeh, E.; Mostafaei, S.; Aslani, S.; Gharibdoost, F.; Xavier, R.M.; Salim, P.H.; Kavosi, H.; Farhadi, E.; Mahmoudi, M. Evaluation of the association between KIR polymorphisms and systemic sclerosis: A meta-analysis. Adv. Rheumatol. 2020, 60, 8. [Google Scholar] [CrossRef]
- Machado-Sulbaran, A.C.; Ramírez-Dueñas, M.G.; Navarro-Zarza, J.E.; Muñoz-Valle, J.F.; Mendoza-Carrera, F.; Baños-Hernández, C.J.; Parra-Rojas, I.; Montoya-Buelna, M.; Sánchez-Hernández, P.E. KIR/HLA Gene Profile Implication in Systemic Sclerosis Patients from Mexico. J. Immunol. Res. 2019, 2019, 6808061. [Google Scholar] [CrossRef]
- Dowson, C.; Simpson, N.; Duffy, L.; O’Reilly, S. Innate Immunity in Systemic Sclerosis. Curr. Rheumatol. Rep. 2017, 19, 2. [Google Scholar] [CrossRef] [PubMed]
- O’Reilly, S. Innate immunity in systemic sclerosis. Clin. Exp. Immunol. 2020, 201, 12–13. [Google Scholar] [CrossRef] [PubMed]
- Rosendahl, A.H.; Schönborn, K.; Krieg, T. Pathophysiology of systemic sclerosis (scleroderma). Kaohsiung J. Med. Sci. 2022, 38, 187–195. [Google Scholar] [CrossRef]
- Vlachogiannis, N.I.; Pappa, M.; Ntouros, P.A.; Nezos, A.; Mavragani, C.P.; Souliotis, V.L.; Sfikakis, P.P. Association Between DNA Damage Response, Fibrosis and Type I Interferon Signature in Systemic Sclerosis. Front. Immunol. 2020, 11, 582401. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Assassi, S. The role of type 1 interferon in systemic sclerosis. Front. Immunol. 2013, 4, 266. [Google Scholar] [CrossRef]
- Ramaswamy, M.; Tummala, R.; Streicher, K.; Nogueira da Costa, A.; Brohawn, P.Z. The Pathogenesis, Molecular Mechanisms, and Therapeutic Potential of the Interferon Pathway in Systemic Lupus Erythematosus and Other Autoimmune Diseases. Int. J. Mol. Sci. 2021, 22, 11286. [Google Scholar] [CrossRef]
- Gallay, L.; Mouchiroud, G.; Chazaud, B. Interferon-signature in idiopathic inflammatory myopathies. Curr. Opin. Rheumatol. 2019, 31, 634–642. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Zhang, W.; Sun, J.; Liu, R.; Pan, Z.; Zhang, P.; Liu, S. Type 1 interferon signature in peripheral blood mononuclear cells and monocytes of idiopathic inflammatory myopathy patients with different myositis-specific autoantibodies. Front. Immunol. 2023, 14, 1169057. [Google Scholar] [CrossRef]
- Tanaka, Y.; Kusuda, M.; Yamaguchi, Y. Interferons and systemic lupus erythematosus: Pathogenesis, clinical features, and treatments in interferon-driven disease. Mod. Rheumatol. 2023, 33, 857–867. [Google Scholar] [CrossRef]
- Jiang, J.; Zhao, M.; Chang, C.; Wu, H.; Lu, Q. Type I Interferons in the Pathogenesis and Treatment of Autoimmune Diseases. Clin. Rev. Allergy Immunol. 2020, 59, 248–272. [Google Scholar] [CrossRef]
- Nocturne, G.; Mariette, X. Interferon signature in systemic autoimmune diseases: What does it mean? RMD Open 2022, 8, e002687. [Google Scholar] [CrossRef]
- Negishi, H.; Taniguchi, T.; Yanai, H. The Interferon (IFN) Class of Cytokines and the IFN Regulatory Factor (IRF) Transcription Factor Family. Cold Spring Harb. Perspect. Biol. 2018, 10, a028423. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, N.; Kawakami, T.; Taniguchi, T. Recognition DNA sequences of interferon regulatory factor 1 (IRF-1) and IRF-2, regulators of cell growth and the interferon system. Mol. Cell. Biol. 1993, 13, 4531–4538. [Google Scholar] [PubMed]
- Cho, H.-Y.; Lee, S.-W.; Seo, S.-K.; Choi, I.-W.; Choi, I.; Lee, S.-W. Interferon-sensitive response element (ISRE) is mainly responsible for IFN-α-induced upregulation of programmed death-1 (PD-1) in macrophages. Biochim. Biophys. Acta (BBA)—Gene Regul. Mech. 2008, 1779, 811–819. [Google Scholar] [CrossRef]
- Ünlü, B.; Türsen, Ü.; Rajabi, Z.; Jabalameli, N.; Rajabi, F. The Immunogenetics of Systemic Sclerosis. Adv. Exp. Med. Biol. 2022, 1367, 259–298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yue, X.; Liu, K.; Zheng, J.; Huang, R.; Zou, J.; Riemekasten, G.; Petersen, F.; Yu, X. The status of pulmonary fibrosis in systemic sclerosis is associated with IRF5, STAT4, IRAK1, and CTGF polymorphisms. Rheumatol. Int. 2017, 37, 1303–1310. [Google Scholar] [CrossRef]
- Stock, C.J.W.; De Lauretis, A.; Visca, D.; Daccord, C.; Kokosi, M.; Kouranos, V.; Margaritopoulos, G.; George, P.M.; Molyneaux, P.L.; Nihtyanova, S.; et al. Defining genetic risk factors for scleroderma-associated interstitial lung disease: IRF5 and STAT4 gene variants are associated with scleroderma while STAT4 is protective against scleroderma-associated interstitial lung disease. Clin. Rheumatol. 2020, 39, 1173–1179. [Google Scholar] [CrossRef]
- González-Serna, D.; Ochoa, E.; López-Isac, E.; Julià, A.; Degenhardt, F.; Ortego-Centeno, N.; Radstake, T.; Franke, A.; Marsal, S.; Mayes, M.D.; et al. A cross-disease meta-GWAS identifies four new susceptibility loci shared between systemic sclerosis and Crohn’s disease. Sci. Rep. 2020, 10, 1862. [Google Scholar] [CrossRef]
- Radstake, T.R.; Gorlova, O.; Rueda, B.; Martin, J.E.; Alizadeh, B.Z.; Palomino-Morales, R.; Coenen, M.J.; Vonk, M.C.; Voskuyl, A.E.; Schuerwegh, A.J.; et al. Genome-wide association study of systemic sclerosis identifies CD247 as a new susceptibility locus. Nat. Genet. 2010, 42, 426–429. [Google Scholar] [CrossRef] [PubMed]
- López-Isac, E.; Martín, J.E.; Assassi, S.; Simeón, C.P.; Carreira, P.; Ortego-Centeno, N.; Freire, M.; Beltrán, E.; Narváez, J.; Alegre-Sancho, J.J.; et al. Brief Report: IRF4 Newly Identified as a Common Susceptibility Locus for Systemic Sclerosis and Rheumatoid Arthritis in a Cross-Disease Meta-Analysis of Genome-Wide Association Studies. Arthritis Rheumatol. 2016, 68, 2338–2344. [Google Scholar] [CrossRef] [PubMed]
- Gorlova, O.; Martin, J.E.; Rueda, B.; Koeleman, B.P.; Ying, J.; Teruel, M.; Diaz-Gallo, L.M.; Broen, J.C.; Vonk, M.C.; Simeon, C.P.; et al. Identification of novel genetic markers associated with clinical phenotypes of systemic sclerosis through a genome-wide association strategy. PLoS Genet. 2011, 7, e1002178. [Google Scholar] [CrossRef] [PubMed]
- Terao, C.; Ohmura, K.; Kawaguchi, Y.; Nishimoto, T.; Kawasaki, A.; Takehara, K.; Furukawa, H.; Kochi, Y.; Ota, Y.; Ikari, K.; et al. PLD4 as a novel susceptibility gene for systemic sclerosis in a Japanese population. Arthritis Rheum. 2013, 65, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Ototake, Y.; Yamaguchi, Y.; Asami, M.; Komitsu, N.; Akita, A.; Watanabe, T.; Kanaoka, M.; Kurotaki, D.; Tamura, T.; Aihara, M. Downregulated IRF8 in Monocytes and Macrophages of Patients with Systemic Sclerosis May Aggravate the Fibrotic Phenotype. J. Investig. Dermatol. 2021, 141, 1954–1963. [Google Scholar] [CrossRef] [PubMed]
- Kotyla, P.J. Are Janus Kinase Inhibitors Superior over Classic Biologic Agents in RA Patients? BioMed Res. Int. 2018, 2018, 7492904. [Google Scholar] [CrossRef] [PubMed]
- Gumkowska-Sroka, O.; Kotyla, K.; Mojs, E.; Palka, K.; Kotyla, P. Novel Therapeutic Strategies in the Treatment of Systemic Sclerosis. Pharmaceuticals 2023, 16, 1066. [Google Scholar] [CrossRef] [PubMed]
- Kotyla, P.; Gumkowska-Sroka, O.; Wnuk, B.; Kotyla, K. Jak Inhibitors for Treatment of Autoimmune Diseases: Lessons from Systemic Sclerosis and Systemic Lupus Erythematosus. Pharmaceuticals 2022, 15, 936. [Google Scholar] [CrossRef] [PubMed]
- Chang, Z.; Wang, Y.; Zhou, X.; Long, J.-E. STAT3 roles in viral infection: Antiviral or proviral? Future Virol. 2018, 13, 557–574. [Google Scholar] [CrossRef]
- Rueda, B.; Broen, J.; Simeon, C.; Hesselstrand, R.; Diaz, B.; Suárez, H.; Ortego-Centeno, N.; Riemekasten, G.; Fonollosa, V.; Vonk, M.C.; et al. The STAT4 gene influences the genetic predisposition to systemic sclerosis phenotype. Hum. Mol. Genet. 2009, 18, 2071–2077. [Google Scholar] [CrossRef]
- Krylov, M.Y.; Ananyeva, L.P.; Koneva, O.; Starovoytova, M.N.; Desinova, O.V.; Ovsyannikova, O.B.; Aleksandrova, E.N.; Novikov, A.A.; Guseva, I.A.; Konovalova, N.V.; et al. The influence of STAT4 rs7574865 (G/T) polymorphism on the risk of clinical and immunological phenotypes of systemic sclerosis in a Russian patient population: Results of a pilot study. Ter. Arkhiv 2017, 89, 20–25. [Google Scholar] [CrossRef] [PubMed]
- Dieudé, P.; Guedj, M.; Wipff, J.; Ruiz, B.; Hachulla, E.; Diot, E.; Granel, B.; Sibilia, J.; Tiev, K.; Mouthon, L.; et al. STAT4 is a genetic risk factor for systemic sclerosis having additive effects with IRF5 on disease susceptibility and related pulmonary fibrosis. Arthritis Rheum. 2009, 60, 2472–2479. [Google Scholar] [CrossRef] [PubMed]
- Tsuchiya, N.; Kawasaki, A.; Hasegawa, M.; Fujimoto, M.; Takehara, K.; Kawaguchi, Y.; Kawamoto, M.; Hara, M.; Sato, S. Association of STAT4 polymorphism with systemic sclerosis in a Japanese population. Ann. Rheum. Dis. 2009, 68, 1375–1376. [Google Scholar] [CrossRef] [PubMed]
- Gourh, P.; Agarwal, S.K.; Divecha, D.; Assassi, S.; Paz, G.; Arora-Singh, R.K.; Reveille, J.D.; Shete, S.; Mayes, M.D.; Arnett, F.C.; et al. Polymorphisms in TBX21 and STAT4 increase the risk of systemic sclerosis: Evidence of possible gene-gene interaction and alterations in Th1/Th2 cytokines. Arthritis Rheum. 2009, 60, 3794–3806. [Google Scholar] [CrossRef]
- Wang, W.; Bhattacharyya, S.; Marangoni, R.G.; Carns, M.; Dennis-Aren, K.; Yeldandi, A.; Wei, J.; Varga, J. The JAK/STAT pathway is activated in systemic sclerosis and is effectively targeted by tofacitinib. J. Scleroderma Relat. Disord. 2019, 5, 40–50. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, D.; Šumová, B.; Mallano, T.; Chen, C.-W.; Distler, A.; Bergmann, C.; Ludolph, I.; Horch, R.E.; Gelse, K.; Ramming, A.; et al. Activation of STAT3 integrates common profibrotic pathways to promote fibroblast activation and tissue fibrosis. Nat. Commun. 2017, 8, 1130. [Google Scholar] [CrossRef] [PubMed]
- López-Isac, E.; Campillo-Davo, D.; Bossini-Castillo, L.; Guerra, S.G.; Assassi, S.; Simeón, C.P.; Carreira, P.; Ortego-Centeno, N.; García de la Peña, P.; Beretta, L.; et al. Influence of TYK2 in systemic sclerosis susceptibility: A new locus in the IL-12 pathway. Ann. Rheum. Dis. 2016, 75, 1521–1526. [Google Scholar] [CrossRef] [PubMed]
- Frasca, L.; Lande, R. Toll-like receptors in mediating pathogenesis in systemic sclerosis. Clin. Exp. Immunol. 2020, 201, 14–24. [Google Scholar] [CrossRef] [PubMed]
- Broen, J.C.; Bossini-Castillo, L.; van Bon, L.; Vonk, M.C.; Knaapen, H.; Beretta, L.; Rueda, B.; Hesselstrand, R.; Herrick, A.; Worthington, J.; et al. A rare polymorphism in the gene for Toll-like receptor 2 is associated with systemic sclerosis phenotype and increases the production of inflammatory mediators. Arthritis Rheum. 2012, 64, 264–271. [Google Scholar] [CrossRef]
- Lawrence, T. The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb. Perspect. Biol. 2009, 1, a001651. [Google Scholar] [CrossRef]
- Sutterwala, F.S.; Haasken, S.; Cassel, S.L. Mechanism of NLRP3 inflammasome activation. Ann. N. Y. Acad. Sci. 2014, 1319, 82–95. [Google Scholar] [CrossRef]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.-C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Lis-Święty, A.; Gola, J.; Mazurek, U.; Brzezińska-Wcisło, L. Transcriptional activity of nuclear factor κB family genes in patients with systemic sclerosis. Ann. Clin. Lab. Sci. 2017, 47, 306–309. [Google Scholar]
- López-Isac, E.; Acosta-Herrera, M.; Kerick, M.; Assassi, S.; Satpathy, A.T.; Granja, J.; Mumbach, M.R.; Beretta, L.; Simeón, C.P.; Carreira, P.; et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 2019, 10, 4955. [Google Scholar] [CrossRef]
- González-Serna, D.; López-Isac, E.; Yilmaz, N.; Gharibdoost, F.; Jamshidi, A.; Kavosi, H.; Poursani, S.; Farsad, F.; Direskeneli, H.; Saruhan-Direskeneli, G.; et al. Analysis of the genetic component of systemic sclerosis in Iranian and Turkish populations through a genome-wide association study. Rheumatology 2019, 58, 289–298. [Google Scholar] [CrossRef]
- Liu, C.; Yan, S.; Chen, H.; Wu, Z.; Li, L.; Cheng, L.; Li, H.; Li, Y. Association of GTF2I, NFKB1, and TYK2 Regional Polymorphisms with Systemic Sclerosis in a Chinese Han Population. Front. Immunol. 2021, 12, 640083. [Google Scholar] [CrossRef] [PubMed]
- Dieude, P.; Guedj, M.; Wipff, J.; Ruiz, B.; Riemekasten, G.; Matucci-Cerinic, M.; Melchers, I.; Hachulla, E.; Airo, P.; Diot, E. Association of the TNFAIP3 rs5029939 variant with systemic sclerosis in the European Caucasian population. Ann. Rheum. Dis. 2010, 69, 1958–1964. [Google Scholar] [CrossRef] [PubMed]
- Wei, P.; Yang, Y.; Guo, X.; Hei, N.; Lai, S.; Assassi, S.; Liu, M.; Tan, F.; Zhou, X. Identification of an association of TNFAIP3 polymorphisms with matrix metalloproteinase expression in fibroblasts in an integrative study of systemic sclerosis–associated genetic and environmental factors. Arthritis Rheumatol. 2016, 68, 749–760. [Google Scholar] [CrossRef]
- Bhattacharyya, S.; Wang, W.; Graham, L.V.; Varga, J. A20 suppresses canonical Smad-dependent fibroblast activation: Novel function for an endogenous inflammatory modulator. Arthritis Res. Ther. 2016, 18, 216. [Google Scholar] [CrossRef]
- Shamilov, R.; Aneskievich, B.J. TNIP1 in Autoimmune Diseases: Regulation of Toll-like Receptor Signaling. J. Immunol. Res. 2018, 2018, 3491269. [Google Scholar] [CrossRef]
- Allanore, Y.; Saad, M.; Dieudé, P.; Avouac, J.; Distler, J.H.; Amouyel, P.; Matucci-Cerinic, M.; Riemekasten, G.; Airo, P.; Melchers, I.; et al. Genome-wide scan identifies TNIP1, PSORS1C1, and RHOB as novel risk loci for systemic sclerosis. PLoS Genet. 2011, 7, e1002091. [Google Scholar] [CrossRef] [PubMed]
- Sumaiya, K.; Langford, D.; Natarajaseenivasan, K.; Shanmughapriya, S. Macrophage migration inhibitory factor (MIF): A multifaceted cytokine regulated by genetic and physiological strategies. Pharmacol. Ther. 2022, 233, 108024. [Google Scholar] [CrossRef] [PubMed]
- Selvi, E.; Tripodi, S.A.; Catenaccio, M.; Lorenzini, S.; Chindamo, D.; Manganelli, S.; Romagnoli, R.; Ietta, F.; Paulesu, L.; Miracco, C.; et al. Expression of macrophage migration inhibitory factor in diffuse systemic sclerosis. Ann. Rheum. Dis. 2003, 62, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Vincent, F.B.; Lin, E.; Sahhar, J.; Ngian, G.S.; Kandane-Rathnayake, R.; Mende, R.; Hoi, A.Y.; Morand, E.F.; Lang, T.; Harris, J. Analysis of serum macrophage migration inhibitory factor and D-dopachrome tautomerase in systemic sclerosis. Clin. Transl. Immunol. 2018, 7, e1042. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.-P.; Leng, L.; Feng, Z.; Liu, N.; Zhao, H.; McDonald, C.; Lee, A.; Arnett, F.C.; Gregersen, P.K.; Mayes, M.D.; et al. Macrophage migration inhibitory factor promoter polymorphisms and the clinical expression of scleroderma. Arthritis Rheum. 2006, 54, 3661–3669. [Google Scholar] [CrossRef] [PubMed]
- Bossini-Castillo, L.; Campillo-Davó, D.; López-Isac, E.; Carmona, F.D.; Simeon, C.P.; Carreira, P.; Callejas-Rubio, J.L.; Castellví, I.; Fernández-Nebro, A.; Rodríguez-Rodríguez, L.; et al. An MIF Promoter Polymorphism Is Associated with Susceptibility to Pulmonary Arterial Hypertension in Diffuse Cutaneous Systemic Sclerosis. J. Rheumatol. 2017, 44, 1453–1457. [Google Scholar] [CrossRef]
- Bossini-Castillo, L.; Simeon, C.P.; Beretta, L.; Vonk, M.C.; Callejas-Rubio, J.L.; Espinosa, G.; Carreira, P.; Camps, M.T.; Rodríguez-Rodríguez, L.; Rodríguez-Carballeira, M.; et al. Confirmation of association of the macrophage migration inhibitory factor gene with systemic sclerosis in a large European population. Rheumatology 2011, 50, 1976–1981. [Google Scholar] [CrossRef]
- Cutolo, M.; Soldano, S.; Smith, V. Pathophysiology of systemic sclerosis: Current understanding and new insights. Expert Rev. Clin. Immunol. 2019, 15, 753–764. [Google Scholar] [CrossRef] [PubMed]
- Su, L.-C.; Xu, W.-D.; Huang, A.-F. IRAK family in inflammatory autoimmune diseases. Autoimmun. Rev. 2020, 19, 102461. [Google Scholar] [CrossRef]
- Invernizzi, P.; Pasini, S.; Selmi, C.; Gershwin, M.E.; Podda, M. Female predominance and X chromosome defects in autoimmune diseases. J. Autoimmun. 2009, 33, 12–16. [Google Scholar] [CrossRef]
- Dieudé, P.; Bouaziz, M.; Guedj, M.; Riemekasten, G.; Airò, P.; Müller, M.; Cusi, D.; Matucci-Cerinic, M.; Melchers, I.; Koenig, W.; et al. Evidence of the contribution of the X chromosome to systemic sclerosis susceptibility: Association with the functional IRAK1 196Phe/532Ser haplotype. Arthritis Rheum. 2011, 63, 3979–3987. [Google Scholar] [CrossRef] [PubMed]
- Bonilla, F.A.; Oettgen, H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010, 125, S33–S40. [Google Scholar] [CrossRef] [PubMed]
- Smith-Garvin, J.E.; Koretzky, G.A.; Jordan, M.S. T cell activation. Annu. Rev. Immunol. 2009, 27, 591–619. [Google Scholar] [CrossRef] [PubMed]
- Shah, K.; Al-Haidari, A.; Sun, J.; Kazi, J.U. T cell receptor (TCR) signaling in health and disease. Signal Transduct. Target. Ther. 2021, 6, 412. [Google Scholar] [CrossRef] [PubMed]
- Dexiu, C.; Xianying, L.; Yingchun, H.; Jiafu, L. Advances in CD247. Scand. J. Immunol. 2022, 96, e13170. [Google Scholar] [CrossRef] [PubMed]
- Martins, M.; Williams, A.H.; Comeau, M.; Marion, M.; Ziegler, J.T.; Freedman, B.I.; Merrill, J.T.; Glenn, S.B.; Kelly, J.A.; Sivils, K.M.; et al. Genetic association of CD247 (CD3ζ) with SLE in a large-scale multiethnic study. Genes Immun. 2015, 16, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, T.; Suzuki, K. CD247 variants and single-nucleotide polymorphisms observed in systemic lupus erythematosus patients. Rheumatology 2013, 52, 1551–1555. [Google Scholar] [CrossRef] [PubMed]
- Teruel, M.; McKinney, C.; Balsa, A.; Pascual-Salcedo, D.; Rodriguez-Rodriguez, L.; Ortiz, A.M.; Gómez-Vaquero, C.; González-Gay, M.A.; Smith, M.; Witte, T.; et al. Association of CD247 polymorphisms with rheumatoid arthritis: A replication study and a meta-analysis. PLoS ONE 2013, 8, e68295. [Google Scholar] [CrossRef] [PubMed]
- Vanaki, N.; Kavosi, H.; Aslani, S.; Mostafaei, S.; Riahi, P.; Gharibdoost, F.; Mahmoudi, M. Association between CD247 gene rs2056626 polymorphism and the risk of systemic sclerosis: Evidence from a systematic review and Bayesian hierarchical meta-analysis. Meta Gene 2019, 22, 100613. [Google Scholar] [CrossRef]
- Abbasi, F.; Mansouri, R.; Gharibdoost, F.; Aslani, S.; Mostafaei, S.; Kavosi, H.; Poursani, S.; Sobhani, S.; Mahmoudi, M. Association Study of CD226 and CD247 Genes Single Nucleotide Polymorphisms in Iranian Patients with Systemic Sclerosis. Iran. J. Allergy Asthma Immunol. 2017, 16, 471–479. [Google Scholar]
- Wang, J.; Yi, L.; Guo, X.; He, D.; Li, H.; Guo, G.; Wang, Y.; Zou, H.; Gu, Y.; Tu, W.; et al. Lack of Association of the CD247 SNP rs2056626 with Systemic Sclerosis in Han Chinese. Open Rheumatol. J. 2014, 8, 43–45. [Google Scholar] [CrossRef] [PubMed]
- Dieudé, P.; Boileau, C.; Guedj, M.; Avouac, J.; Ruiz, B.; Hachulla, E.; Diot, E.; Cracowski, J.L.; Tiev, K.; Sibilia, J. Independent replication establishes the CD247 gene as a genetic systemic sclerosis susceptibility factor. Ann. Rheum. Dis. 2011, 70, 1695–1696. [Google Scholar] [CrossRef] [PubMed]
- González-Serna, D.; Shi, C.; Kerick, M.; Hankinson, J.; Ding, J.; McGovern, A.; Tutino, M.; Villanueva-Martin, G.; Ortego-Centeno, N.; Callejas, J.L.; et al. Identification of Mechanisms by Which Genetic Susceptibility Loci Influence Systemic Sclerosis Risk Using Functional Genomics in Primary T Cells and Monocytes. Arthritis Rheumatol. 2023, 75, 1007–1020. [Google Scholar] [CrossRef] [PubMed]
- Gee, K.; Guzzo, C.; Che Mat, F.N.; Ma, W.; Kumar, A. The IL-12 Family of Cytokines in Infection, Inflammation and Autoimmune Disorders. Inflamm. Allergy—Drug Targets (Discontin.) 2009, 8, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Asano, Y.; Sato, S. Vasculopathy in scleroderma. Semin. Immunopathol. 2015, 37, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Sato, S.; Hanakawa, H.; Hasegawa, M.; Nagaoka, T.; Hamaguchi, Y.; Nishijima, C.; Komatsu, K.; Hirata, A.; Takehara, K. Levels of interleukin 12, a cytokine of type 1 helper T cells, are elevated in sera from patients with systemic sclerosis. J. Rheumatol. 2000, 27, 2838–2842. [Google Scholar] [PubMed]
- Matsushita, T.; Hasegawa, M.; Hamaguchi, Y.; Takehara, K.; Sato, S. Longitudinal analysis of serum cytokine concentrations in systemic sclerosis: Association of interleukin 12 elevation with spontaneous regression of skin sclerosis. J. Rheumatol. 2006, 33, 275–284. [Google Scholar] [PubMed]
- Mayes, M.D.; Bossini-Castillo, L.; Gorlova, O.; Martin, J.E.; Zhou, X.; Chen, W.V.; Assassi, S.; Ying, J.; Tan, F.K.; Arnett, F.C.; et al. Immunochip Analysis Identifies Multiple Susceptibility Loci for Systemic Sclerosis. Am. J. Hum. Genet. 2014, 94, 47–61. [Google Scholar] [CrossRef] [PubMed]
- López-Isac, E.; Bossini-Castillo, L.; Guerra, S.G.; Denton, C.; Fonseca, C.; Assassi, S.; Zhou, X.; Mayes, M.D.; Simeón, C.P.; Ortego-Centeno, N.; et al. Identification of IL12RB1 as a Novel Systemic Sclerosis Susceptibility Locus. Arthritis Rheumatol. 2014, 66, 3521–3523. [Google Scholar] [CrossRef]
- Li, T.; Ortiz, L.; Andrés-León, E.; Ciudad, L.; Javierre, B.M.; López-Isac, E.; Guillén-Del-Castillo, A.; Simeón-Aznar, C.P.; Ballestar, E.; Martin, J. Epigenomics and Transcriptomics of Systemic Sclerosis CD4+ T cells reveal Long Range Dysregulation of Key Inflammatory Pathways mediated by disease-associated Susceptibility Loci. Genome Med. 2020, 12, 81. [Google Scholar] [CrossRef]
- Bossini-Castillo, L.; Martin, J.-E.; Broen, J.; Gorlova, O.; Simeón, C.P.; Beretta, L.; Vonk, M.C.; Luis Callejas, J.; Castellví, I.; Carreira, P. A GWAS follow-up study reveals the association of the IL12RB2 gene with systemic sclerosis in Caucasian populations. Hum. Mol. Genet. 2012, 21, 926–933. [Google Scholar] [CrossRef]
- Goronzy, J.J.; Weyand, C.M. T-cell co-stimulatory pathways in autoimmunity. Arthritis Res. Ther. 2008, 10, S3. [Google Scholar] [CrossRef] [PubMed]
- Croft, M.; So, T.; Duan, W.; Soroosh, P. The significance of OX40 and OX40L to T-cell biology and immune disease. Immunol. Rev. 2009, 229, 173–191. [Google Scholar] [CrossRef]
- Bossini-Castillo, L.; Broen, J.C.A.; Simeon, C.P.; Beretta, L.; Vonk, M.C.; Ortego-Centeno, N.; Espinosa, G.; Carreira, P.; Camps, M.T.; Navarrete, N.; et al. A replication study confirms the association of TNFSF4 (OX40L) polymorphisms with systemic sclerosis in a large European cohort. Ann. Rheum. Dis. 2011, 70, 638–641. [Google Scholar] [CrossRef]
- Gourh, P.; Arnett, F.C.; Tan, F.K.; Assassi, S.; Divecha, D.; Paz, G.; McNearney, T.; Draeger, H.; Reveille, J.D.; Mayes, M.D.; et al. Association of TNFSF4 (OX40L) polymorphisms with susceptibility to systemic sclerosis. Ann. Rheum. Dis. 2010, 69, 550–555. [Google Scholar] [CrossRef] [PubMed]
- Coustet, B.; Bouaziz, M.; Dieudé, P.; Guedj, M.; Bossini-Castillo, L.; Agarwal, S.; Radstake, T.; Martin, J.; Gourh, P.; Elhai, M.; et al. Independent replication and meta analysis of association studies establish TNFSF4 as a susceptibility gene preferentially associated with the subset of anticentromere-positive patients with systemic sclerosis. J. Rheumatol. 2012, 39, 997–1003. [Google Scholar] [CrossRef]
- Kosałka-Węgiel, J.; Lichołai, S.; Dziedzina, S.; Milewski, M.; Kuszmiersz, P.; Rams, A.; Gąsior, J.; Matyja-Bednarczyk, A.; Kwiatkowska, H.; Korkosz, M.; et al. Genetic Association between TNFA Polymorphisms (rs1799964 and rs361525) and Susceptibility to Cancer in Systemic Sclerosis. Life 2022, 12, 698. [Google Scholar] [CrossRef]
- Barnes, T.C.; Anderson, M.E.; Moots, R.J. The many faces of interleukin-6: The role of IL-6 in inflammation, vasculopathy, and fibrosis in systemic sclerosis. Int. J. Rheumatol. 2011, 2011, 721608. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y. Contribution of Interleukin-6 to the Pathogenesis of Systemic Sclerosis. J. Scleroderma Relat. Disord. 2017, 2, S6–S12. [Google Scholar] [CrossRef]
- Barnes, T.C.; Spiller, D.G.; Anderson, M.E.; Edwards, S.W.; Moots, R.J. Endothelial activation and apoptosis mediated by neutrophil-dependent interleukin 6 trans-signalling: A novel target for systemic sclerosis? Ann. Rheum. Dis. 2011, 70, 366–372. [Google Scholar] [CrossRef]
- Henderson, J.; Bhattacharyya, S.; Varga, J.; O’Reilly, S. Targeting TLRs and the inflammasome in systemic sclerosis. Pharmacol. Ther. 2018, 192, 163–169. [Google Scholar] [CrossRef] [PubMed]
- Rajkumar, V.S.; Howell, K.; Csiszar, K.; Denton, C.P.; Black, C.M.; Abraham, D.J. Shared expression of phenotypic markers in systemic sclerosis indicates a convergence of pericytes and fibroblasts to a myofibroblast lineage in fibrosis. Arthritis Res Ther 2005, 7, R1113. [Google Scholar] [CrossRef] [PubMed]
- Fishman, D.; Faulds, G.; Jeffery, R.; Mohamed-Ali, V.; Yudkin, J.S.; Humphries, S.; Woo, P. The effect of novel polymorphisms in the interleukin-6 (IL-6) gene on IL-6 transcription and plasma IL-6 levels, and an association with systemic-onset juvenile chronic arthritis. J Clin. Investig. 1998, 102, 1369–1376. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Hays, R.D.; Maranian, P.; Seibold, J.R.; Impens, A.; Mayes, M.D.; Clements, P.J.; Getzug, T.; Fathi, N.; Bechtel, A.; et al. Reliability and validity of the University of California, Los Angeles Scleroderma Clinical Trial Consortium Gastrointestinal Tract Instrument. Arthritis Rheum. 2009, 61, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- Sfrent-Cornateanu, R.; Mihai, C.; Ionescu, R.; Stoica, V.; Bara, C. The IL-6 promoter polymorphism is associated with severity and disability in systemic sclerosis. Ann. Rheum. Dis. 2006, 65, 522. [Google Scholar]
- Beretta, L.; Cappiello, F.; Moore, J.H.; Barili, M.; Greene, C.S.; Scorza, R. Ability of epistatic interactions of cytokine single-nucleotide polymorphisms to predict susceptibility to disease subsets in systemic sclerosis patients. Arthritis Rheum. 2008, 59, 974–983. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gumkowska-Sroka, O.; Kotyla, K.; Kotyla, P. Immunogenetics of Systemic Sclerosis. Genes 2024, 15, 586. https://doi.org/10.3390/genes15050586
Gumkowska-Sroka O, Kotyla K, Kotyla P. Immunogenetics of Systemic Sclerosis. Genes. 2024; 15(5):586. https://doi.org/10.3390/genes15050586
Chicago/Turabian StyleGumkowska-Sroka, Olga, Kacper Kotyla, and Przemysław Kotyla. 2024. "Immunogenetics of Systemic Sclerosis" Genes 15, no. 5: 586. https://doi.org/10.3390/genes15050586
APA StyleGumkowska-Sroka, O., Kotyla, K., & Kotyla, P. (2024). Immunogenetics of Systemic Sclerosis. Genes, 15(5), 586. https://doi.org/10.3390/genes15050586