Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. RNA Extraction and Sequencing
2.3. Transcriptome Assembly
2.4. Ortholog Functional Annotation
2.5. Differentially Expressed Transcripts
2.6. Enrichment Analysis
2.7. Network Analysis
2.8. NLR Genes Annotation
2.9. Response to Infection across White Pine Species
3. Results
3.1. Quantitative Resistance Response
3.2. Transcriptome Assembly and Annotation
3.3. Differential Expression Analyses
3.4. NBL Expression after Inoculation
3.5. Gene Interactions
3.6. Gene Family Analysis
3.7. Regulation of Multiple TF Families in the WPBR Pathosystem
3.8. Conservative Response among White Pine Species
4. Discussion
4.1. The Whitebark Pine Initial Defense Response at the RNA Level
4.2. Role of NLR Genes in Disease Response in Whitebark Pine
4.3. The Interaction between Ethylene and Chitinase Activity as Response to WPBR
4.4. Role of Secondary Metabolites in WPBR Defense: The Flavonoid Pathway
4.5. Comparisons across White Pine Species
4.6. Other Aspects to Consider When Studying WPBR Infection in Whitebark Pine
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ABA | Abscisic acid |
bZIP | Basic region/leucine zipper motif |
DE | Differentially expressed |
DGRC | Genetic Resource Center |
HR | Hypersensitive response |
PR | Pathogenesis-related protein |
PCD | Programmed cell death |
JA | Jasmonic acid |
LRR | Leucine-rich repeat |
MYB | Myeloblastosis transcription factor |
NLR | Nucleotide-binding domain leucine-rich repeat |
NBS | Nucleotide-binding site |
ROS | Reactive oxygen species |
SA | Salicylic acid |
TF | Transcription factor |
WPBR | White pine blister rust |
References
- Parker, I.M.; Gilbert, G.S. The Evolutionary Ecology of Novel Plant-Pathogen Interactions. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 675–700. [Google Scholar] [CrossRef]
- Ramsfield, T.D.; Bentz, B.J.; Faccoli, M.; Jactel, H.; Brockerhoff, E.G. Forest health in a changing world: Effects of globalization and climate change on forest insect and pathogen impacts. Forestry 2016, 89, 245–252. [Google Scholar] [CrossRef]
- Hudson, P.J. The Ecology of Wildlife Diseases; Oxford University Press: Oxford, UK, 2002. [Google Scholar]
- Desprez-Loustau, M.L.; Aguayo, J.; Dutech, C.; Hayden, K.J.; Husson, C.; Jakushkin, B.; Marçais, B.; Piou, D.; Robin, C.; Vacher, C. An evolutionary ecology perspective to address forest pathology challenges of today and tomorrow. Ann. Sci. 2016, 73, 45–67. [Google Scholar] [CrossRef]
- Olson, Å.; Aerts, A.; Asiegbu, F.; Belbahri, L.; Bouzid, O.; Broberg, A.; Canbäck, B.; Coutinho, P.M.; Cullen, D.; Dalman, K.; et al. Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen. New Phytol. 2012, 194, 1001–1013. [Google Scholar] [CrossRef] [PubMed]
- Langner, T.; Göhre, V. Fungal chitinases: Function, regulation, and potential roles in plant/pathogen interactions. Curr. Genet. 2016, 62, 243–254. [Google Scholar] [CrossRef] [PubMed]
- Balint-Kurti, P. The plant hypersensitive response: Concepts, control and consequences. Mol. Plant Pathol. 2019, 20, 1163–1178. [Google Scholar] [CrossRef] [PubMed]
- Kinloch, B.B.; Sniezko, R.A.; Dupper, G.E. Origin and distribution of Cr2, a gene for resistance to white pine blister rust in natural populations of Western white pine. Phytopathology 2003, 93, 691–694. [Google Scholar] [CrossRef] [PubMed]
- Kinloch, B.B.; Sniezko, R.A.; Dupper, G.E. Virulence gene distribution and dynamics of the white pine blister rust pathogen in Western north America. Phytopathology 2004, 94, 751–758. [Google Scholar] [CrossRef]
- Hoff, R.; Bingham, R.T.; McDonald, G.I. Relative blister rust resistance of white pines. Eur. J. For. Pathol. 1980, 10, 307–316. [Google Scholar] [CrossRef]
- Maloy, O.C. White pine blister rust control in North America: A case history. Annu. Rev. Phytopathol. 1997, 35, 87–109. [Google Scholar] [CrossRef]
- McDonald, G.I. Ecotypes of blister rust and management of sugar pine in California. In Sugar Pine Status, Values, and Roles in Ecosystems; Kinloch, B., Jr., Marosy, M., Huddleston, M.E., Eds.; University of California Agriculture and Natural Resources: Davis, CA, USA, 1996; Volume 3362, pp. 137–147. [Google Scholar]
- Brar, S.; Tsui, C.K.M.; Dhillon, B.; Bergeron, M.J.; Joly, D.L.; Zambino, P.J.; El-Kassaby, Y.A.; Hamelin, R.C. Colonization history, host distribution, anthropogenic influence and landscape features shape populations of white pine blister rust, an invasive alien tree pathogen. PLoS ONE 2015, 10, e0127916. [Google Scholar]
- Sniezko, R.A.; Liu, J.J. Genetic resistance to white pine blister rust, restoration options, and potential use of biotechnology. For. Ecol. Manag. 2022, 520, 120168. [Google Scholar] [CrossRef]
- Kinloch, B.B.; Sniezko, R.A.; Barnes, G.D.; Greathouse, T.E. A major gene for resistance to white pine blister rust in Western white pine from the Western cascade range. Phytopathology 1999, 89, 861–867. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Lobo, A.; De La Torre, A.R.; Martínez-García, P.J.; Vangestel, C.; Wegzryn, J.L.; Ćalić, I.; Burton, D.; Davis, D.; Kinloch, B.; Vogler, D.; et al. Finding loci associated to partial resistance to white pine blister rust in sugar pine (Pinus lambertiana Dougl.). Tree Genet. Genomes 2017, 13, 108. [Google Scholar] [CrossRef]
- Weiss, M.; Sniezko, R.A.; Puiu, D.; Crepeau, M.W.; Stevens, K.; Salzberg, S.L.; Langley, C.H.; Neale, D.B.; De La Torre, A.R. Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. Plant J. 2020, 104, 365–376. [Google Scholar] [CrossRef] [PubMed]
- Sniezko, R.A.; Liu, J.J. Prospects for developing durable resistance in populations of forest trees. New For. 2021, 54, 751–767. [Google Scholar] [CrossRef]
- Wright, J.W.; Stevens, K.A.; Hodgskiss, P.; Langley, C.H. SNPs in a large genomic scaffold are strongly associated with Cr1R, major gene for resistance to White Pine blister rust in range-wide samples of Sugar Pine (Pinus lambertiana). Plant Dis. 2022, 106, 1639–1644. [Google Scholar] [CrossRef] [PubMed]
- Sniezko, R.A.; Johnson, J.; Kegley, A.; Danchok, R. Disease resistance in whitebark pine and potential for restoration of a threatened specie. Plant People Planet 2024, 6, 341–361. [Google Scholar] [CrossRef]
- Richardson, B.A.; Brunsfeld, S.J.; Klopfenstein, N.B. DNA from bird-dispersed seed and wind disseminated pollen provides insights into postglacial colonization and population genetic structure of whitebark pine (Pinus albicaulis). Mol. Ecol. 2002, 11, 215–227. [Google Scholar] [CrossRef]
- Kendall, K.C.; Arno, S.A. Whitebark pine: An important but endangered wildlife resource. In Ecology and Management of a High-Mountain Resource; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 1990. [Google Scholar]
- Keane, R.E.; Morgan, P.; Menakis, J.P. Landscape Assessment of the Decline of Whitebark pine (Pinus albicaulis) in the Bob Marshal Wilderness Complex, Montana, USA. Northwest Sci. 1994, 68. Available online: https://rex.libraries.wsu.edu/esploro/fulltext/journalArticle/Landscape-Assessment-of-the-Decline-of/99900502379901842?repId=12332711570001842&mId=13333064290001842&institution=01ALLIANCE_WSU (accessed on 1 April 2024).
- Smith, C.M.; Wilson, B.; Rasheed, S.; Walker, R.C.; Carolin, T.; Shepherd, B. Whitebark pine and white pine blister rust in the Rocky Mountains of Canada and northern Montana. Can. J. For. Res. 2008, 38, 982–995. [Google Scholar] [CrossRef]
- Mahalovich, M.F.; Burr, K.E.; Foushee, D.L. Whitebark pine germination, rust resistance and cold hardiness among seed sources in the Inland Northwest: Planting Strategies for Restoration. In Proceedings of the National Proceedings: Forest and Conservation Nursery Association, Park City, UT, USA, 18–20 July 2005; Proceedings RMRS-P-43. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 91–101. [Google Scholar]
- Mahalovich, M.F. USA Inland Northwest Western White Pine Breeding and Restoration Program: History, Current and Future Directions. In Proceedings of the 3rd Western White Pine Management Conference, Vernon, BC, Canada, 17–18 June 2008; British Columbia Ministry of Forests: Kamloops, BC, Canada, 2010. [Google Scholar]
- Sniezko, R.A.; Smith, J.; Liu, J.J.; Hamelin, R.C. Genetic Resistance to Fusiform Rust in Southern Pines and White Pine Blister Rust in White Pines—A Contrasting Tale of Two Rust Pathosystems—Current Status and Future Prospects. Trees Livelihoods 2014, 5, 2050–2083. [Google Scholar] [CrossRef]
- Reid, I.R. Whitebark Pine (Pinus albicaulis) Resistance to White Pine Blister Rust: A Cost-Effective Approach to Progeny Testing for Restoration. Doctoral Dissertation, University of British Columbia, Vancouver, BC, Canada, 2020. [Google Scholar]
- Reid, I.R.; Cartwright, C.; Sniezko, R.A.; Hamelin, R.C.; Aitken, S.N. Field-testing whitebark pine resistance to white pine blister rust: A simple, effective approach to progeny testing for restoration. For. Ecol. Manag. 2024, 553, 121647. [Google Scholar] [CrossRef]
- Liu, J.J.; Sniezko, R.A. Molecular dissection of white pine genetic resistance to Cronartium ribicola. In The Future of High-Elevation, Proceedings of the Five-Needle White Pines in Western North America: Proceedings of the High Five Symposium, Missoula, MT, USA, 28–30 June 2010; Proceedings RMRS-P-63; Keane, R.E., Tomback, D.F., Murray, M.P., Smith, C.M., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010; Volume 63, p. 272. [Google Scholar]
- Chen, S.; Zhou, Y.; Chen, Y.; Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 2018, 34, i884–i890. [Google Scholar] [CrossRef]
- Wood, D.E.; Salzberg, S.L. Kraken: Ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014, 15, R46. [Google Scholar] [CrossRef]
- Wood, D.E.; Lu, J.; Langmead, B. Improved metagenomic analysis with Kraken 2. Genome Biol. 2019, 20, 257. [Google Scholar] [CrossRef]
- MacManes, M.D. The Oyster River Protocol: A multi-assembler and kmer approach for de novo transcriptome assembly. PeerJ 2018, 6, e5428. [Google Scholar] [CrossRef]
- Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.O.; Lieber, M.; et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 2013, 8, 1494–1512. [Google Scholar] [CrossRef]
- Bushmanova, E.; Antipov, D.; Lapidus, A.; Prjibelski, A.D. rnaSPAdes: A de novo transcriptome assembler and its application to RNA-Seq data. GigaScience 2019, 8, giz100. [Google Scholar] [CrossRef]
- Robertson, G.; Schein, J.; Chiu, R.; Corbett, R.; Field, M.; Jackman, S.D.; Mungall, K.; Lee, S.; Okada, H.M.; Qian, J.Q.; et al. De novo assembly and analysis of RNA-seq data. Nat. Methods 2010, 7, 909–912. [Google Scholar] [CrossRef]
- Waterhouse, R.M.; Seppey, M.; Simão, F.A.; Manni, M.; Ioannidis, P.; Klioutchnikov, G.; Kriventseva, E.V.; Zdobnov, E.M. BUSCO Applications from Quality Assessments to Gene Prediction and Phylogenomics. Mol. Biol. Evol. 2018, 35, 543–548. [Google Scholar] [CrossRef]
- Waterhouse, R.M.; Tegenfeldt, F.; Li, J.; Zdobnov, E.M.; Kriventseva, E.V. OrthoDB: A hierarchical catalog of animal, fungal and bacterial orthologs. Nucleic Acids Res. 2013, 41, D358–D365. [Google Scholar] [CrossRef]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Hart, A.J.; Ginzburg, S.; Xu, M.; Fisher, C.R.; Rahmatpour, N.; Mitton, J.B.; Paul, R.; Wegrzyn, J.L. EnTAP: Bringing faster and smarter functional annotation to non-model eukaryotic transcriptomes. Mol. Ecol. Resour. 2020, 20, 591–604. [Google Scholar] [CrossRef]
- Buchfink, B.; Reuter, K.; Drost, H.G. Sensitive protein alignments at tree-of-life scale using DIAMOND. Nat. Methods 2021, 18, 366–368. [Google Scholar] [CrossRef]
- Huerta-Cepas, J.; Szklarczyk, D.; Heller, D.; Hernández-Plaza, A.; Forslund, S.K.; Cook, H.; Mende, D.R.; Letunic, I.; Rattei, T.; Jensen, L.J.; et al. ggnog 5.0: A hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 2019, 47, D309–D314. [Google Scholar] [CrossRef]
- O’Leary, N.A.; Wright, M.W.; Brister, J.R.; Ciufo, S.; Haddad, D.; McVeigh, R.; Rajput, B.; Robbertse, B.; Smith-White, B.; Ako-Adjei, D.; et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 2016, 44, D733–D745. [Google Scholar] [CrossRef]
- Conesa, A.; Götz, S.; García-Gómez, J.M.; Terol, J.; Talón, M.; Robles, M. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 2005, 21, 3674–3676. [Google Scholar] [CrossRef]
- Jones, P.; Binns, D.; Chang, H.Y.; Fraser, M.; Li, W.; McAnulla, C.; McWilliam, H.; Maslen, J.; Mitchell, A.; Nuka, G.; et al. InterProScan 5: Genome-scale protein function classification. Bioinformatics 2014, 30, 1236–1240. [Google Scholar] [CrossRef]
- Mistry, J.; Chuguransky, S.; Williams, L.; Qureshi, M.; Salazar, G.A.; Sonnhammer, E.L.; Tosatto, S.C.; Paladin, L.; Raj, S.; Richardson, L.J.; et al. Pfam: The protein families database in 2021. Nucleic Acids Res. 2021, 8, D412–D419. [Google Scholar] [CrossRef]
- Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 2016, 34, 525–527. [Google Scholar] [CrossRef]
- Neale, D.B.; Zimin, A.V.; Meltzer, A.; Bhattarai, A.; Amee, M.; Figueroa Corona, L.; Allen, B.J.; Puiu, D.; Wright, J.; De La Torre, A.R.; et al. A Genome Sequence for the Threatened Whitebark Pine. G3 Genes Genomes Genet. 2024, 14, jkae061. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene ontology analysis for RNA-seq: Accounting for selection bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Wickham, H.; Chang, W.; Wickham, M.H. Package “ggplot2.” Create Elegant Data Visualizations Using the Grammar of Graphics; Version 2; Springer: Berlin, Germany, 2016; Volume 2, pp. 1–189. [Google Scholar]
- Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T.; et al. The GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids Res. 2010, 38, W214–W220. [Google Scholar] [CrossRef]
- Bindea, G.; Galon, J.; Mlecnik, B. CluePedia Cytoscape plugin: Pathway insights using integrated experimental and in silico data. Bioinformatics 2013, 29, 661–663. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016, 44, D457–D462. [Google Scholar] [CrossRef]
- Kanehisa, M.; Sato, Y.; Morishima, K. BlastKOALA and GhostKOALA: KEGG Tools for Functional Characterization of Genome and Metagenome Sequences. J. Mol. Biol. 2016, 428, 726–731. [Google Scholar] [CrossRef]
- Li, P.; Quan, X.; Jia, G.; Xiao, J.; Cloutier, S.; You, F.M. RGAugury: A pipeline for genome- wide prediction of resistance gene analogs (RGAs) in plants. BMC Genom. 2016, 17, 852. [Google Scholar] [CrossRef]
- Steuernagel, B.; Witek, K.; Krattinger, S.G.; Ramirez-Gonzalez, R.H.; Schoonbeek, H.J.; Yu, G.; Baggs, E.; Witek, A.I.; Yadav, I.; Krasileva, K.V.; et al. The NLR-Annotator Tool Enables Annotation of the Intracellular Immune Receptor Repertoire. Plant Physiol. 2020, 183, 468–482. [Google Scholar] [CrossRef] [PubMed]
- Emms, D.M.; Kelly, S. Orthofinder: Solving fundamental biases in whole genome comparisons dramatically improves ggnogidy inference accuracy. Genome Biol. 2015, 16, 157. [Google Scholar] [CrossRef]
- Liu, J.J.; Sniezko, R.A.; Zamany, A.; Williams, H.; Wang, N.; Kegley, A.; Savin, D.P.; Chen, H.; Sturrock, R.N. Saturated genic SNP mapping identified functional candidates and selection tools for the Pinus monticola Cr2 locus controlling resistance to white pine blister rust. Plant Biotechnol. J. 2017, 15, 1149–1162. [Google Scholar] [CrossRef] [PubMed]
- Murrell, B.; Moola, S.; Mabona, A.; Weighill, T.; Sheward, D.; Kosakovsky Pond, S.L.; Scheffler, K. FUBAR: A fast, unconstrained bayesian approximation for inferring selection. Mol. Biol. Evol. 2013, 30, 1196–1205. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.S.; Sniezko, R.A. Quantitative disease resistance to White Pine blister rust at southwestern White Pine’s (Pinus strobiformis) northern range. Front. For. Glob. Change 2021, 4, 765871. [Google Scholar] [CrossRef]
- KEGG. Kyoto Encyclopedia of Genes and Genomes Flavonoid Biosynthesis Pathway (map00941). 1990. Available online: https://www.genome.jp/kegg-bin/show_pathway?map00941 (accessed on 20 September 2022).
- Li, J.; Besseau, S.; Törönen, P.; Sipari, N.; Kollist, H.; Holm, L.; Palva, E.T. Defense-related transcription factors WRKY70 and WRKY54 modulate osmotic stress tolerance by regulating stomata aperture in Arabidopsis. New Phytol. 2013, 200, 457–472. [Google Scholar] [CrossRef] [PubMed]
- Wissenbach, M.; Uberlacker, B.; Vogt, F.; Becker, D.; Salamini, F.; Rohde, W. Myb genes from Hordeum vulgare: Tissue-specific expression of chimeric Myb promoter/Gus genes in transgenic tobacco. Plant J. 1993, 4, 411–422. [Google Scholar] [CrossRef] [PubMed]
- Qi, D.; Innes, R.W. Recent Advances in Plant NLR Structure, Function, Localization, and Signaling. Front. Immunol. 2013, 4, 348. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.J.; Ekramoddoullah, A.K.M.; Hawkins, B.; Shah, S. Overexpression of a western white pine PR10 protein enhances cold tolerance in transgenic Arabidopsis. Plant Cell Tissue Organ Cult. 2013, 114, 217–223. [Google Scholar] [CrossRef]
- Liu, H.Y.; Dai, J.R.; Feng, D.R.; Liu, B.; Wang, H.B.; Wang, J.F. Characterization of a novel plantain ASR gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and abiotic stresses. J. Integr. Plant Biol. 2010, 52, 315–323. [Google Scholar] [CrossRef]
- Liang, Y.; Jiang, Y.; Du, M.; Li, B.; Chen, L.; Chen, M.; Jin, D.; Wu, J. ZmASR3 from the Maize ASR Gene Family Positively Regulates Drought Tolerance in Transgenic Arabidopsis. Int. J. Mol. Sci. 2019, 20, 2278. [Google Scholar] [CrossRef]
- Li, H.; Guan, H.; Zhuo, Q.; Wang, Z.; Li, S.; Si, J.; Zhang, B.; Feng, B.; Kong, L.A.; Wang, F.; et al. Genome-wide characterization of the abscisic acid-, stress- and ripening- induced (ASR) gene family in wheat (Triticum aestivum L.). Biol. Res. 2020, 53, 23. [Google Scholar] [CrossRef] [PubMed]
- Sakeh, N.M.; Abdullah, S.N.A.; Bahari, M.N.A.; Azzeme, A.M.; Shaharuddin, N.A.; Idris, A.S. EgJUB1 and EgERF113 transcription factors as potential master regulators of defense response in Elaeis guineensis against the hemibiotrophic Ganoderma boninense. BMC Plant Biol. 2021, 21, 59. [Google Scholar] [CrossRef] [PubMed]
- Trudel, J.; Grenier, J.; Potvin, C.; Asselin, A. Several thaumatin-like proteins bind to β-1,3-glucans. Plant Physiol. 1998, 118, 1431–1438. [Google Scholar] [CrossRef] [PubMed]
- Osmond, R.I.W.; Hrmova, M.; Fontaine, F.; Imberty, A.; Fincher, G.B. Binding interactions between barley haumatin-like proteins and (1, 3)-β-D-glucans: Kinetics, specificity, structural analysis and biological implications. Eur. J. Biochem. 2001, 268, 4190–4199. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Tang, C.; Deng, L.; Cai, G.; Liu, X.; Liu, B.; Han, Q.; Buchenauer, H.; Wei, G.; Han, D.; et al. Characterization of a pathogenesis-related thaumatin-like protein gene TaPR5 from wheat induced by stripe rust fungus. Physiol. Plant. 2010, 139, 27–38. [Google Scholar] [CrossRef]
- Wilmanski, J.M.; Petnicki-Ocwieja, T.; Kobayashi, K.S. NLR proteins: Integral members of innate immunity and mediators of inflammatory diseases. J. Leukoc. Biol. 2008, 83, 13–30. [Google Scholar] [CrossRef]
- Van Ghelder, C.; Parent, G.J.; Rigault, P.; Prunier, J.; Giguère, I.; Caron, S.; Stival Sena, J.; Deslauriers, A.; Bousquet, J.; Esmenjaud, D.; et al. The large repertoire of conifer NLR resistance genes includes drought responsive and highly diversified RNLs. Sci. Rep. 2019, 9, 11614. [Google Scholar] [CrossRef] [PubMed]
- Lynn, D.G.; Chang, M. Phenolic Signals in Cohabitation: Implications for Plant Development. Annual Review of Plant Biology. 1990, 41, 497–526. [Google Scholar] [CrossRef]
- Liu, J.J.; Williams, H.; Li, X.R.; Schoettle, A.W.; Sniezko, R.A.; Murray, M.; Zamany, A.; Roke, G.; Chen, H. Profiling methyl jasmonate-responsive transcriptome for understanding induced systemic resistance in whitebark pine (Pinus albicaulis). Plant Mol. Biol. 2017, 95, 359–374. [Google Scholar] [CrossRef]
- Boller, T.; Gehri, A.; Mauch, F.; Vögeli, U. Chitinase in bean leaves: Induction by ethylene, purification, properties, and possible function. Planta 1983, 157, 22–31. [Google Scholar] [CrossRef] [PubMed]
- Punja, Z.K.; Zhang, Y.Y. Plant chitinases and their roles in resistance to fungal diseases. J. Nematol. 1993, 25, 526–540. [Google Scholar] [PubMed]
- Feuillet, C.; Travella, S.; Stein, N.; Albar, L.; Nublat, A.; Keller, B. Map-based isolation of the leaf rust disease resistance gene Lr10 from the ggnogidy wheat (Triticum aestivum L.) genome. Proc. Natl. Acad. Sci. USA 2003, 100, 15253–15258. [Google Scholar] [CrossRef] [PubMed]
- Schachermayr, G.; Feuillet, C.; Keller, B. Molecular markers for the detection of the wheat leaf rust resistance gene Lr10 in diverse genetic backgrounds. Mol. Breed. New Strateg. Plant Improv. 1997, 3, 65–74. [Google Scholar]
- Peery, R.M.; McAllister, C.H.; Cullingham, C.I.; Mahon, E.L.; Arango-Velez, A.; Cooke, J.E.K. Comparative genomics of the chitinase gene family in lodgepole and jack pines: Contrasting responses to biotic threats and landscape level investigation of genetic differentiation. Botany 2021, 99, 355–378. [Google Scholar] [CrossRef]
- Perdiguero, P.; Barbero, M.C.; Cervera, M.T.; Collada, C.; Soto, A. Molecular response to water stress in two contrasting Mediterranean pines (Pinus pinaster and Pinus pinea). Plant Physiol. Biochem. 2013, 67, 199–208. [Google Scholar] [CrossRef]
- Keefe, D.; Hinz, U.; Meins, F. The effect of ethylene on the cell-type-specific and intracellular localization of β-1,3-glucanase and chitinase in tobacco leaves. Planta 1990, 182, 43–51. [Google Scholar] [CrossRef]
- Mauch, F.; Meehl, J.B.; Staehelin, L.A. Ethylene-induced chitinase and β-1,3-glucanase accumulate specifically in the lower epidermis and along vascular strands of bean leaves. Planta 1992, 186, 367–375. [Google Scholar] [CrossRef]
- Delledonne, M.; Zeier, J.; Marocco, A.; Lamb, C. Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc. Natl. Acad. Sci. USA 2001, 98, 13454–13459. [Google Scholar] [CrossRef]
- Agati, G.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Pollastri, S.; Tattini, M. Functional roles of flavonoids in photoprotection: New evidence, lessons from the past. Plant Physiol. Biochem. 2013, 72, 35–45. [Google Scholar] [CrossRef]
- Tattini, M.; Galardi, C.; Pinelli, P.; Massai, R.; Remorini, D.; Agati, G. Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol. 2004, 163, 547–561. [Google Scholar] [CrossRef]
- Dubovskiy, I.M.; Whitten, M.M.; Yaroslavtseva, O.N.; Greig, C.; Kryukov, V.Y.; Grizanova, E.V.; Mukherjee, K.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Can insects develop resistance to insect pathogenic fungi? PLoS ONE 2013, 8, e60248. [Google Scholar] [CrossRef]
- Fogelman, E.; Oren-Shamir, M.; Hirschberg, J.; Mandolino, G.; Parisi, B.; Ovadia, R.; Tanami, Z.; Faigenboim, A.; Ginzberg, I. Nutritional value of potato (Solanum tuberosum) in hot climates: Anthocyanins, carotenoids, and steroidal glycoalkaloids. Planta 2019, 249, 1143–1155. [Google Scholar] [CrossRef]
- Kawahigashi, H.; Nonaka, E.; Mizuno, H.; Kasuga, S.; Okuizumi, H. Classification of genotypes of leaf phenotype (P/tan) and seed phenotype (Y1andTan1) in tan sorghum (Sorghum bicolor). Plant Breed. 2016, 135, 683–690. [Google Scholar] [CrossRef]
- Sniezko, R.A.; Mahalovich, M.F.; Schoettle, A.W.; Vogler, D. Past and Current Investigations of the Genetic Resistance to Cronartium ribicola in High-elevation. In The Future of High-Elevation, Five-Needle White Pines in Western North America, Proceedings of the High Five Symposium, Missoula, MT, USA, 28–30 June 2010; Proceedings RMR; Keane, R.E., Tomback, D.F., Murray, M.P., Smith, C.M., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011. [Google Scholar]
- Hernandez-Escribano, L.; Visser, E.A.; Iturritxa, E.; Raposo, R.; Naidoo, S. The transcriptome of Pinus pinaster under Fusarium circinatum challenge. BMC Genom. 2020, 21, 28. [Google Scholar] [CrossRef] [PubMed]
- Simões, R.; Pimentel, C.; Ferreira-Dias, S.; Miranda, I.; Pereira, H. Phytochemical characterization of phloem in maritime pine and stone pine in three sites in Portugal. Heliyon 2021, 7, e06718. [Google Scholar] [CrossRef] [PubMed]
- Fox, H.; Doron-Faigenboim, A.; Kelly, G.; Bourstein, R.; Attia, Z.; Zhou, J.; Moshe, Y.; Moshelion, M.; David-Schwartz, R. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 2018, 38, 423–441. [Google Scholar] [CrossRef]
- Mahalovich, M.F. Whitebark Pine Germination, Rust Resistance, and Cold Hardiness Among. In National Proceedings: Forest and Conservation Nursery Associations; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005. [Google Scholar]
- King, J.N.; David, A.; Noshad, D.; Smith, J. A review of genetic approaches to the management of blister rust in white pines. For. Pathol. 2010, 40, 292–313. [Google Scholar] [CrossRef]
- Shanahan, E.; Irvine, K.M.; Thoma, D.; Wilmoth, S.; Ray, A.; Legg, K.; Shovic, H. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability. Ecosphere 2016, 7, e01610. [Google Scholar] [CrossRef]
- Bair, Z.J. Candidate Genes Associated with Blister Rust Resistance in Whitebark Pine (Pinus albicaulis) Revealed through de novo Transcriptome Assembly and Differential Gene Expression Analysis. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 2017. [Google Scholar]
- Hoff, R.J. Inheritance of the Bark Reaction Resistance Mechanism in Pinus monticola Infected by Cronartium ribicola; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Fort Collins, CO, USA, 1986.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figueroa-Corona, L.; Baesen, K.; Bhattarai, A.; Kegley, A.; Sniezko, R.A.; Wegrzyn, J.; De La Torre, A.R. Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes 2024, 15, 602. https://doi.org/10.3390/genes15050602
Figueroa-Corona L, Baesen K, Bhattarai A, Kegley A, Sniezko RA, Wegrzyn J, De La Torre AR. Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes. 2024; 15(5):602. https://doi.org/10.3390/genes15050602
Chicago/Turabian StyleFigueroa-Corona, Laura, Kailey Baesen, Akriti Bhattarai, Angelia Kegley, Richard A. Sniezko, Jill Wegrzyn, and Amanda R. De La Torre. 2024. "Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine)" Genes 15, no. 5: 602. https://doi.org/10.3390/genes15050602
APA StyleFigueroa-Corona, L., Baesen, K., Bhattarai, A., Kegley, A., Sniezko, R. A., Wegrzyn, J., & De La Torre, A. R. (2024). Transcriptional Profiling of Early Defense Response to White Pine Blister Rust Infection in Pinus albicaulis (Whitebark Pine). Genes, 15(5), 602. https://doi.org/10.3390/genes15050602