Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren’s Patients Reveals Interferon Signature
Abstract
:1. Introduction
2. Materials and Methods
2.1. Patients
2.2. RNA Extraction and Sequencing
2.3. Data Analysis
2.4. Functional Enrichment Analysis
3. Results
Canonical Pathways
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gottenberg, J.E.; Seror, R.; Miceli-Richard, C.; Benessiano, J.; Devauchelle-Pensec, V.; Dieude, P.; Dubost, J.J.; Fauchais, A.L.; Goeb, V.; Hachulla, E.; et al. Serum levels of beta2-microglobulin and free light chains of immunoglobulins are associated with systemic disease activity in primary Sjogren’s syndrome. Data at enrollment in the prospective ASSESS cohort. PLoS ONE 2013, 8, e59868. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Pelkum, J.; Fritzler, M.; Mahler, M. Latest update on the Ro/SS-A autoantibody system. Autoimmun. Rev. 2009, 8, 632–637. [Google Scholar] [CrossRef] [PubMed]
- Song, J.S.; Do, J.H.; Lee, S.W. The prevalence and the clinical relevance of anti-Ro52 in Korean patients with primary Sjogren’s syndrome. Rheumatol. Int. 2012, 32, 491–495. [Google Scholar] [CrossRef]
- Salomonsson, S.; Jonsson, M.V.; Skarstein, K.; Brokstad, K.A.; Hjelmstrom, P.; Wahren-Herlenius, M.; Jonsson, R. Cellular basis of ectopic germinal center formation and autoantibody production in the target organ of patients with Sjogren’s syndrome. Arthritis Rheum. 2003, 48, 3187–3201. [Google Scholar] [CrossRef] [PubMed]
- Imgenberg-Kreuz, J.; Sandling, J.K.; Bjork, A.; Nordlund, J.; Kvarnstrom, M.; Eloranta, M.L.; Ronnblom, L.; Wahren-Herlenius, M.; Syvanen, A.C.; Nordmark, G. Transcription profiling of peripheral B cells in antibody-positive primary Sjogren’s syndrome reveals upregulated expression of CX3CR1 and a type I and type II interferon signature. Scand. J. Immunol. 2018, 87, e12662. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Lei, R.; Ding, S.W.; Zhu, S. Skewer: A fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 2014, 15, 182. [Google Scholar] [CrossRef] [PubMed]
- Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online: http://www.bioinformatics.babraham.ac.uk/projects/fastqc (accessed on 21 August 2018).
- Dobin, A.; Davis, C.A.; Schlesinger, F.; Drenkow, J.; Zaleski, C.; Jha, S.; Batut, P.; Chaisson, M.; Gingeras, T.R. STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 2013, 29, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Flicek, P.; Amode, M.R.; Barrell, D.; Beal, K.; Billis, K.; Brent, S.; Carvalho-Silva, D.; Clapham, P.; Coates, G.; Fitzgerald, S.; et al. Ensembl 2014. Nucleic Acids Res 2014, 42, D749–D755. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Smyth, G.K.; Shi, W. The Subread aligner: Fast, accurate and scalable read mapping by seed-and-vote. Nucleic Acids Res. 2013, 41, e108. [Google Scholar] [CrossRef]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef]
- Benjamini, Y.H.Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Royal Stat. Soc. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Hsu, C.H.; Yu, Y.L. The interconnected roles of TRIM21/Ro52 in systemic lupus erythematosus, primary Sjogren’s syndrome, cancers, and cancer metabolism. Cancer Cell Int. 2023, 23, 289. [Google Scholar] [CrossRef] [PubMed]
- Brauner, S.; Zhou, W.; Backlin, C.; Green, T.M.; Folkersen, L.; Ivanchenko, M.; Lofstrom, B.; Xu-Monette, Z.Y.; Young, K.H.; Moller Pedersen, L.; et al. Reduced expression of TRIM21/Ro52 predicts poor prognosis in diffuse large B-cell lymphoma patients with and without rheumatic disease. J. Intern. Med. 2015, 278, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Buvry, C.; Cassagnes, L.; Tekath, M.; Artigues, M.; Pereira, B.; Rieu, V.; Le Guenno, G.; Tournadre, A.; Ruivard, M.; Grobost, V. Anti-Ro52 antibodies are a risk factor for interstitial lung disease in primary Sjogren syndrome. Respir. Med. 2020, 163, 105895. [Google Scholar] [CrossRef]
- Li, H.; Ice, J.A.; Lessard, C.J.; Sivils, K.L. Interferons in Sjögren’s Syndrome: Genes, Mechanisms, and Effects. Front. Immunol. 2013, 4, 290. [Google Scholar] [CrossRef] [PubMed]
- Schneider, W.M.; Chevillotte, M.D.; Rice, C.M. Interferon-stimulated genes: A complex web of host defenses. Annu. Rev. Immunol. 2014, 32, 513–545. [Google Scholar] [CrossRef] [PubMed]
- Schoenborn, J.R.; Wilson, C.B. Regulation of interferon-γ during innate and adaptive immune responses. Adv. Immunol. 2007, 96, 41–101. [Google Scholar] [CrossRef]
- Ronnblom, L. The type I interferon system in the etiopathogenesis of autoimmune diseases. Ups. J. Med. Sci. 2011, 116, 227–237. [Google Scholar] [CrossRef] [PubMed]
- Nezos, A.; Gravani, F.; Tassidou, A.; Kapsogeorgou, E.K.; Voulgarelis, M.; Koutsilieris, M.; Crow, M.K.; Mavragani, C.P. Type I and II interferon signatures in Sjogren’s syndrome pathogenesis: Contributions in distinct clinical phenotypes and Sjogren’s related lymphomagenesis. J. Autoimmun. 2015, 63, 47–58. [Google Scholar] [CrossRef]
- Rengachari, S.; Groiss, S.; Devos, J.M.; Caron, E.; Grandvaux, N.; Panne, D. Structural basis of STAT2 recognition by IRF9 reveals molecular insights into ISGF3 function. Proc. Natl. Acad. Sci. USA 2018, 115, E601–E609. [Google Scholar] [CrossRef]
- Kessler, D.S.; Veals, S.A.; Fu, X.Y.; Levy, D.E. Interferon-α regulates nuclear translocation and DNA-binding affinity of ISGF3, a multimeric transcriptional activator. Genes Dev. 1990, 4, 1753–1765. [Google Scholar] [CrossRef] [PubMed]
- Cinoku, I.I.; Verrou, K.M.; Piperi, E.; Voulgarelis, M.; Moutsopoulos, H.M.; Mavragani, C.P. Interferon (IFN)-stimulated gene 15: A novel biomarker for lymphoma development in Sjogren’s syndrome. J. Autoimmun. 2021, 123, 102704. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.S.; Kim, B.; Oh, G.T.; Kim, Y.J. OASL1 inhibits translation of the type I interferon-regulating transcription factor IRF7. Nat. Immunol. 2013, 14, 346–355. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Li, Y.; Hu, J.; Wu, Y.; Yang, J.; Fan, H.; Li, L.; Luo, D.; Ye, Y.; Gao, Y.; et al. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjogren’s Syndrome. Front. Immunol. 2022, 13, 845209. [Google Scholar] [CrossRef] [PubMed]
- Klepinin, A.; Zhang, S.; Klepinina, L.; Rebane-Klemm, E.; Terzic, A.; Kaambre, T.; Dzeja, P. Adenylate Kinase and Metabolic Signaling in Cancer Cells. Front. Oncol. 2020, 10, 660. [Google Scholar] [CrossRef]
- Liu, X.; Wang, H.; Wang, X.; Jiang, X.; Jin, Y.; Han, Y.; Zhang, Z. Identification and verification of inflammatory biomarkers for primary Sjogren’s syndrome. Clin. Rheumatol. 2024, 43, 1335–1352. [Google Scholar] [CrossRef]
SjD Patients | Age at Onset | Age at B-Cells Sampling | +Abs | ESR mm/h | CRP mg/dL | IgG | SPEP | Cryoglobulin | ESSDAI | ESSPRI | Other Findings |
---|---|---|---|---|---|---|---|---|---|---|---|
SjD 1 | 20 | 26 | ANA, Ro52, Ro60, SSB, RF | 115 | 0.23 | 3142 | Monoclonal IgG Kappa | 0.1% | 44 | 5.6 | ILD/LIP, CNS, LAD, Low C4 |
SjD 2 | 29 | 33 | ANA, Ro52, Ro60, SSB, RF | 76 | 0.17 | 2480 | Polyclonal gammopathy | 0.0% | 9 | 6 | Fatigue, arthralgia, pLAD |
SjD 3 | 36 | 42 | ANA, Ro52, Ro60, SSB, RF | 27 | 0.07 | 1633 | Polyclonal gammopathy | 0.1% | 16 | 5.3 | Fatigue, arthralgia, pLAD, airway disease |
SjD 4 | 38 | 50 | ANA, Ro52, Ro60, SSB, RF | 41 | 0.21 | 1895 | Normal | 0.0% | 4 | 5.6 | Arthralgia, neutropenia, hypothyroidism |
SjD 5 | 47 | 56 | ANA, Ro52, Ro60, SSB, RF | 33 | 0.13 | 2433 | Polyclonal gammopathy | 0.0% | 16 | 25 | Arthritis, lymphopenia, erythema, molitiforme |
Discovery Dataset * | Imgenberg-Kreuz J. et al. [5] | ||||||||
---|---|---|---|---|---|---|---|---|---|
Upregulated | |||||||||
Gene ID | Gene Name | FPKM Cases | FPKM Control | Fold Change | q-Value ** | FPKM Cases | FPKM Control | Fold Change | q-Value ** |
IFI27 | Inferno α induced protein-27 | 3.96 | 0.10 | 36.81 | 1.22 × 10−2 | 8.20 | 0.10 | 88.24 | 3.75 × 10−4 |
IFI44 | interferon induced protein 44 | 41.4 | 9.03 | 4.59 | 1.43 × 10−2 | 64.50 | 5.60 | 11.59 | 3.75 × 10−4 |
IFI44L | Interferon-induced protein 44-like | 62.4 | 4.97 | 12.55 | 1.71 × 10−5 | 177.70 | 11.80 | 15.02 | 3.75 × 10−4 |
IFIT3 | Interferon-induced protein with tetratricopeptide repeats 3 | 121.7 | 19.22 | 6.33 | 1.05 × 10−3 | 31.70 | 2.40 | 13.24 | 3.75 × 10−4 |
IFIT1 | Interferon induced protein with tetratricopeptide repeats 1 | 42.59 | 7.75 | 5.50 | 4.46 × 10−2 | 21.20 | 0.90 | 23.39 | 3.75 × 10−4 |
MX1 | MX dynamin like GTPase 1 | 121.6 | 37.89 | 3.21 | 1.28 × 10−2 | 145.70 | 34.20 | 4.26 | 3.75 × 10−4 |
IFI35 | Interferon Induced Protein 35 | 49.81 | 31.57 | 1.58 | 4.71 × 10−2 | 27.70 | 9.60 | 2.89 | 3.75 × 10−4 |
STAT2 | Signal transducer and activator of transcription 2 | 90.74 | 62.19 | 1.46 | 7.94 × 10−2 | 66.30 | 29.80 | 2.22 | 3.75 × 10−4 |
USP18 | Ubiquitin specific peptidase 18 | 27.44 | 2.93 | 9.37 | 9.92 × 10−6 | 9.20 | 8.00 | 11.36 | 3.75 × 10−4 |
OAS1 | 2′-5′-oligoadenylate synthetase 1 | 132.9 | 54.63 | 2.43 | 4.71 × 10−2 | 67.30 | 10.20 | 6.57 | 3.75 × 10−4 |
OAS2 | 2′-5′-oligoadenylate synthetase 2 | 59.61 | 28.30 | 2.24 | 4.80 × 10−2 | 51.00 | 10.00 | 5.08 | 3.75 × 10−4 |
OAS3 | 2′-5′-oligoadenylate synthetase 2 | 16.98 | 3.86 | 4.39 | 6.22 × 10−2 | 14.20 | 3.70 | 3.85 | 3.75 × 10−4 |
OASL | 2′-5′-oligoadenylate synthetase like | 12.68 | 2.93 | 4.34 | 6.22 × 10−2 | 4.30 | 1.10 | 3.91 | 3.75 × 10−4 |
CMPK2 | Cytidine/uridine monophosphate kinase 2—mitochondrial Interferon stimulated gene | 8.23 | 0.59 | 13.85 | 1.37 × 10−10 | 23.30 | 2.20 | 10.62 | 3.75 × 10−4 |
LGALS3BP | Galectin 3 binding protein | 34.43 | 6.03 | 5.71 | 1.31 × 10−4 | 13.70 | 2.10 | 6.63 | 3.75 × 10−4 |
SPATS2L | Spermatogenesis associated serine rich 2 like | 0.73 | 0.07 | 9.81 | 2.33 × 10−3 | 3.70 | 1.30 | 2.81 | 3.75 × 10−4 |
XAF1 | XIAP associated factor 1 | 121.6 | 37.89 | 3.21 | 1.62 × 10−3 | 79.70 | 17.80 | 4.47 | 3.75 × 10−4 |
HERC6 | HECT and RLD domain containing E3 ubiquitin protein ligase family member 6 | 21.17 | 7.64 | 2.77 | 2.89 × 10−3 | 10.20 | 2.40 | 4.34 | 3.75 × 10−4 |
ASH2LP1 | ASH2L pseudogene 1 | 14.35 | 5.48 | 2.62 | 1.02 × 10−4 | 2.00 | 0.50 | 4.25 | 7.00 × 10−4 |
ISG15 | IFN-stimulated gene 15/ISG15 ubiquitin-like modifier | 155.5 | 56.68 | 2.74 | 4.01 × 10−3 | 74.60 | 18.90 | 3.94 | 3.75 × 10−4 |
EPSTI1 | Epithelial stromal interaction 1 | 52.02 | 17.97 | 2.89 | 2.89 × 10−2 | 70.20 | 22.80 | 3.08 | 3.75 × 10−4 |
PARP9 | Poly (ADP-ribose) polymerase family member 9 | 39.69 | 14.84 | 2.67 | 9.63 × 10−3 | 38.60 | 9.30 | 4.14 | 3.75 × 10−4 |
EIF2AK2 | Eukaryotic translation initiation factor 2 α kinase 2 | 22.54 | 9.65 | 2.34 | 1.51 × 10−3 | 31.70 | 14.10 | 2.24 | 3.75 × 10−4 |
PLSCR1 | Phospholipid scramblase 1 | 32.86 | 13.63 | 2.41 | 4.71 × 10−2 | 39.80 | 11.60 | 3.44 | 3.75 × 10−4 |
GBP4 | Guanylate binding protein 4 | 33.75 | 18.04 | 1.87 | 7.94 × 10−2 | 23.40 | 11.30 | 2.07 | 3.75 × 10−4 |
CD38 | CD38 molecule | 12.37 | 6.92 | 1.79 | 1.05 × 10−3 | 23.20 | 11.10 | 2.10 | 3.75 × 10−4 |
DTX3L | Deltex E3 ubiquitin ligase 3L | 21.93 | 12.27 | 1.79 | 3.43 × 10−2 | 31.20 | 12.50 | 2.50 | 3.75 × 10−4 |
RNF213 | Ring finger protein 213 | 9.49 | 5.82 | 1.63 | 1.28 × 10−2 | 92.10 | 53.50 | 1.72 | 3.75 × 10−4 |
IFITM1 | Interferon Induced Transmembrane Protein 1 | 154.4 | 45.93 | 3.36 | 4.52 × 10−3 | 229.90 | 68.60 | 3.35 | 3.75 × 10−4 |
Downregulated | |||||||||
PHYH | Phytanoyl-CoA 2-hydroxylase T cell differentiation and/or function of effector T cells. | 3.100 | 4.83 | 0.64 | 9.00 × 10−2 | 3.20 | 4.90 | 0.65 | 3.96 × 10−2 |
IGHE | Immunoglobulin heavy constant epsilon | 2.74 | 13.86 | 0.20 | 9.61 × 10−2 | 8.80 | 17.50 | 0.50 | 1.30 × 10−3 |
GALNTL6 | Polypeptide N-acetylgalactosaminyl transferase like 6 | 0.03 | 0.69 | 0.05 | 9.61 × 10−2 | 0.20 | 1.90 | 0.10 | 3.75 × 10−4 |
PTPRG | Protein tyrosine phosphatase, receptor type G | 0.01 | 0.13 | 0.09 | 4.10 × 10−3 | 0.50 | 2.00 | 0.23 | 3.75 × 10−4 |
Ingenuity Canonical Pathways | −log (p-Value) | Molecules |
---|---|---|
Interferon Signaling | 13.2 | IFIT3, IFIT1, OAS1, MX1, STAT2, IFI35, IFITM1, ISG15 |
Role of Pattern Recognition Receptors in Recognition of Bacteria and Viruses | 3.26 | OAS1, OAS2, EIF2AK2, OAS3 |
Pyrimidine Deoxyribonucleotides De Novo Biosynthesis I | 2.74 | CMPK2, AK8 |
Salvage Pathways of Pyrimidine Ribonucleotides | 2.62 | CMPK2, AK8, EIF2AK2 |
Pyrimidine Ribonucleotides Interconversion | 2.19 | CMPK2, AK8 |
Pyrimidine Ribonucleotides De Novo Biosynthesis | 2.15 | CMPK2, AK8 |
Activation of IRF by Cytosolic Pattern Recognition Receptors | 1.89 | STAT2, ISG15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maleki-Fischbach, M.; Anderson, K.; Fernández Pérez, E.R. Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren’s Patients Reveals Interferon Signature. Genes 2024, 15, 628. https://doi.org/10.3390/genes15050628
Maleki-Fischbach M, Anderson K, Fernández Pérez ER. Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren’s Patients Reveals Interferon Signature. Genes. 2024; 15(5):628. https://doi.org/10.3390/genes15050628
Chicago/Turabian StyleMaleki-Fischbach, Mehrnaz, Kelsey Anderson, and Evans R. Fernández Pérez. 2024. "Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren’s Patients Reveals Interferon Signature" Genes 15, no. 5: 628. https://doi.org/10.3390/genes15050628
APA StyleMaleki-Fischbach, M., Anderson, K., & Fernández Pérez, E. R. (2024). Transcriptomic Profiling of Peripheral B Cells in Antibody Positive Sjogren’s Patients Reveals Interferon Signature. Genes, 15(5), 628. https://doi.org/10.3390/genes15050628