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Abstract: Background: Malaria results in more than 550,000 deaths each year due to drug resistance
in the most lethal Plasmodium (P.) species P. falciparum. A full P. falciparum genome was published
in 2002, yet 44.6% of its genes have unknown functions. Improving the functional annotation of
genes is important for identifying drug targets and understanding the evolution of drug resistance.
Results: Genes function by interacting with one another. So, analyzing gene co-expression networks
can enhance functional annotations and prioritize genes for wet lab validation. Earlier efforts to build
gene co-expression networks in P. falciparum have been limited to a single network inference method
or gaining biological understanding for only a single gene and its interacting partners. Here, we
explore multiple inference methods and aim to systematically predict functional annotations for all
P. falciparum genes. We evaluate each inferred network based on how well it predicts existing gene–
Gene Ontology (GO) term annotations using network clustering and leave-one-out crossvalidation.
We assess overlaps of the different networks’ edges (gene co-expression relationships), as well as
predicted functional knowledge. The networks’ edges are overall complementary: 47–85% of all
edges are unique to each network. In terms of the accuracy of predicting gene functional annotations,
all networks yielded relatively high precision (as high as 87% for the network inferred using mutual
information), but the highest recall reached was below 15%. All networks having low recall means
that none of them capture a large amount of all existing gene–GO term annotations. In fact, their
annotation predictions are highly complementary, with the largest pairwise overlap of only 27%. We
provide ranked lists of inferred gene–gene interactions and predicted gene–GO term annotations for
future use and wet lab validation by the malaria community. Conclusions: The different networks
seem to capture different aspects of the P. falciparum biology in terms of both inferred interactions and
predicted gene functional annotations. Thus, relying on a single network inference method should be
avoided when possible. Supplementary data: Attached.

Keywords: malaria; P. falciparum; gene co-expression networks; network inference; gene function
prediction

1. Introduction
1.1. Motivation and Related Work

Malaria is a deadly disease caused by protozoan parasites of the genus Plasmodium
(P.) that are transmitted by the bite of female mosquitoes [1–3]. The most deadly malaria
species P. falciparum causes more than 0.5 million deaths annually, mostly among children
under five years old [4–7]. Sub-Saharan Africa accounts for 79.4% of malaria cases and
87.6% of deaths [5,8]. P. falciparum has evolved resistance to all antimalarial drugs, thus
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making treatment difficult in areas where multidrug resistant parasites are common [9–13].
The P. falciparum research community has developed tools to quickly identify mutations
that can be used as markers for drug resistance and genes that are under selection. For some
drugs, a causal gene that is the main driver of drug resistance has been identified [14].
However, understanding how mutations in that gene confer resistance is a more difficult
problem to solve. Unfortunately, 44.6% of the genes in the P. falciparum genome have
unknown functions. This lack of knowledge of gene function represents a key challenge
to a better understanding of how mutations confer drug resistance. In particular, Gene
Ontology (GO) annotations that are often used to describe the biology (e.g., biological
processes, molecular-level activities, or cellular structures and localization) of genes are
deficient for P. falciparum [15]. Deriving novel gene–GO term associations would be a
valuable contribution to P. falciparum gene annotations.

Biological functions that lead to key traits like drug resistance are controlled by many
interacting genes. Hence, studying them as complex networks of gene–gene (or protein–
protein) interactions presents promising analytical approaches to uncovering important
P. falciparum biology [16]. Despite pioneering efforts to obtain physical protein–protein
interaction (PPI) data for P. falciparum [17,18], high-quality data of this type are lacking [19].
This increases the urgency to understand other interaction/network types. Fortunately,
a wealth of gene expression data is available for P. falciparum [20], from which gene co-
expression networks can be constructed. Gene co-expression networks can be powerfully
applied because genes that are functionally related (i.e., that are annotated by the same GO
terms) are likely to be coexpressed [21]. Consequently, analyses of a gene co-expression
network, where nodes are genes and edges are co-expression relationships between genes
over different conditions (e.g., time points or drug treatments), provide a valuable tool for
identifying novel (i.e., currently unknown) gene–GO term annotations.

Earlier efforts to build gene co-expression networks in P. falciparum have been limited
to a single network inference method such as mutual information (MI) [22] or absolute
value of the Pearson Correlation Coefficient (absPCC) [23,24], thus leaving other poten-
tially powerful gene co-expression network inference approaches unexplored. Prominent
examples include a tree-based measure called Random Forest (RF) [25] and Adaptive
Lasso (AdaL) [26]. In fact, it was shown in different species (baker’s yeast, brewer’s
yeast, E. coli, and Staphylococcus aureus) that networks resulting from different gene co-
expression network inference methods may be able to give insights into different biological
questions [27] and capture different types of regulatory interactions [28]. In addition to
investigating P. falciparum biology utilizing a single network inference method to build
gene co-expression networks, previous efforts have asked limited biological questions
about the interacting partners or functions of particular genes [20,22,29–31]. However,
gene co-expression networks developed using multiple inference methods have not yet
been developed for P. falciparum. It is unknown whether different network inference meth-
ods capture different aspects of P. falciparum biology and whether they could inform the
important task of systematically predicting GO term annotations for all P. falciparum genes.

Here, we fill these gaps by constructing multiple co-expression networks using four
prominent network inference methods (MI, absPCC, RF, and AdaL), and by evaluating
the networks via systematic and comprehensive prediction of gene–GO term associations.
Furthermore, we assess the extent to which the networks are complementary or redundant
in terms of their edges (i.e., gene co-expression relationships), as well as predicted functional
knowledge. Finally, we apply our inferred networks to the study of endocytosis, which is
an essential biological process involved in P. falciparum drug resistance.

1.2. Our Study and Contributions

We analyzed gene expression data consisting of 247 samples corresponding to 247 com-
binations of drug treatments and time points [20] (Figure 1). We used this particular dataset
because we needed a large dataset with perturbations and preferably with drug pertur-
bations. While newer, RNA-seq data might be available, to the best of our knowledge,
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the datasets are mostly time course data, and there were no large drug perturbation datasets
available when we started our study. We applied four network inference methods to this
expression data to infer their respective co-expression networks. Each network inference
method mathematically assigns a weight representing the strength of a co-expression re-
lationship between a pair of genes. The highest-weighted gene (i.e., node) pairs are kept
as edges in the given network. To choose a weight threshold for distinguishing between
edges and nonedges in a network, we adopted a prominent network inference framework
called ARACNe [32].

Figure 1. Summary of our generalizable framework for gene co-expression network construction,
validation, and biological application. We use four network inference methods (MI, absPCC, RF,
and AdaL) to construct gene co-expression networks of P. falciparum; note that in the illustration,
nodes having the same color indicates that they are annotated by the same GO term. We also
generate a Consensus network by combining the four individual networks. We use two clustering
methods to identify gene clusters’ (hypothesized functional modules) in each network. Then, we
use crossvalidation to examine how well each network’s clusters correspond to existing GO terms.
In other words, GO term annotations are predicted for all genes whose clusters are statistically
significantly enriched in at least one GO term, and the predicted gene–GO term annotations are then
contrasted against a previously hidden portion of the existing ones. The Consensus network is used
to investigate the connectivity of a gene list/set; in our biological application, we investigate lists of
genes that interact with three proteins involved with the biological process of endocytosis.

We found that the co-expression networks resulting from the different inference
methods are overall highly complementary (i.e., nonredundant). Namely, the networks
constructed using MI, absPCC, and AdaL, share only 15–53% of the edges; that is, 47–85%
of the edges are unique to each of the networks. Only the network resulting from RF is
mostly redundant to the networks resulting from the other three inference methods. This
indicates that the different network inference methods largely capture unique features
of gene co-expression relationships. Given so many unique edges in almost each of the
networks, we considered an additional co-expression network that integrates the edges
from all of the individual networks; we refer to this network as Consensus.

Consequently, we used gene–GO term annotations (or associations) to assess each co-
expression network by leveraging data from GeneDB https://www.genedb.org/(accessed
on 26 March 2019) and PlasmoDB https://plasmodb.org/plasmo/app (accessed on 26
March 2019) databases. We hid a portion of the existing (i.e., ground truth) gene–GO

https://www.genedb.org/
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term annotations (or associations), used the remaining nonhidden associations, along
with the given network’s structure (or topology), to predict additional gene–GO term
annotations, and evaluated how well the predicted annotations matched the hidden ones,
all using crossvalidation. The better this match, the more functionally meaningful the given
network’s topology, i.e., the better the corresponding network inference method.

Specifically, we used a prominent paradigm for the unsupervised prediction of func-
tional annotations from a network called network clustering. A cluster is a group of genes in
a network that are densely connected to each other or have similar topological patterns [33].
A cluster is deemed functionally meaningful if a statistically significantly high number
of its genes are annotated by the same GO term. By extension, one can then predict the
other genes in this cluster to also be annotated by this GO term. For the comprehensiveness
of this analysis, we used two clustering methods (i.e., a cluster affiliation model for big
networks—BigCLAM or BC BC [34]—and Markov Clustering—referred to as MCL [35]),
as well as multiple parameter values for each clustering method. We used these clustering
methods because they are highly prominent [36–41], and also, MCL has been shown to
perform consistently well in different contexts [39–43].

We clustered each network and predicted gene–GO term annotations from each cluster
of the given network. We evaluated a network’s prediction accuracy over all of its clusters
via measures of precision and recall, which compare the predicted annotations with the
hidden portion of the existing gene–GO term annotations. Precision is the fraction of the
predicted annotations that are correct (i.e., that currently exist); recall is the fraction of the
existing annotations that are predicted. Generally, there is a trade-off between precision
and recall: higher precision typically means lower recall and vice versa. In biomedical
applications, precision is typically favored over recall [44–48] because confirmatory wet lab
experiments are time-consuming and expensive, and it is often preferred to follow up on a
few higher-quality predictions than many lower-quality ones.

In our own analysis, while some of the networks generated precision scores as high
as 87%, the highest recall reached was below 15%. The MI method generated the highest
precision, and the others also had reasonably high precision scores. All networks had
relatively low recall, thus indicating that none capture a large amount of all existing gene–
GO term annotations. In fact, we found the different networks’ predictions to be highly
complementary to each other (i.e., the maximum prediction overlap over all network pairs
was only 27%). Hence, the different networks seem to capture different aspects of the
P. falciparum biology, as was the case in baker’s yeast [27].

To supplement the limited functional annotation data in the P. falciparum genome, we
assigned a confidence score to each (existing, i.e., currently known, and novel, i.e., currently
unknown) predicted gene–GO term association based on how many networks supported
the given prediction. Similarly, we assigned confidence scores to the inferred gene–gene
interactions, i.e., co-expression relationships. We have provided the confidence score-
ranked lists of functional predictions and interactions for future community use. These
lists could be especially useful given the paucity of comprehensive functional annotations,
as well as high confidence PPI data for P. falciparum.

In addition to validating inferred networks via gene functional prediction, we investi-
gated the connectivity of genes hypothesized to function together in a biological process.
That is, we applied our network approach to recently generated lists of endocytosis-related
genes in P. falciparum [49]. Endocytosis is an essential biological process for trafficking
extracellular material to specific organelles in the cell. Extracellular material is first brought
into the cell by early endosomes that mature into late endosomes as they are directed to
lysosomes or through the trafficking pathways from the Golgi apparatus. The P. falciparum
proteins Kelch13 (K13) and EPS15 have been localized to the periphery of the cell and
suggested to participate in the machinery to generate early endosomes. The P. falciparum
protein clathrin functions in an atypical role, which is primarily through trafficking path-
ways of the Golgi apparatus in other apicomplexan organisms with similar functions
suggested in Plasmodium [50,51]. K13 is a molecular determinant of artemisinin resistance.
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EPS15 is a close interacting partner of K13, and it typically functions in canonical endo-
cytosis pathways [52]. Clathrin is also the main structural protein in clathrin-dependent
endocytosis. Recently, Birnbaum et al. [49] experimentally determined lists of genes that
interact via PPIs with K13, EPS15, and clathrin. Their K13 and ESP15 gene lists were de-
void of clathrin, thus suggesting that K13 functions in a clathrin-independent endocytosis
pathway. To explore these and other proposed interactions, we used our Consensus co-
expression network data for an independent systems-level view as a way to generate new
hypotheses about this cellular pathway and the mechanism of resistance for artemisinin.
For each of the K13, EPS15, and clathrin gene lists, we found that the genes in a given
list are statistically significantly and more densely interconnected with each other in the
Consensus network than can be expected by chance. This finding supports and extends the
claim that these genes are involved in the same biological process of endocytosis. We also
validated some additional hypotheses of Birnbaum et al. [49], which further validates our
inferred network data while also providing additional novel insights into the roles of K13,
EPS15, and clathrin in P. falciparum endocytosis pathways.

2. Results and Discussion
2.1. Description of Overlap between Inferred Networks

We considered four network inference methods to infer respective co-expression
networks from gene expression data GSE19468 containing 4374 genes (Section 4.2, also
Additional File S5). Each network was named based on its inference method, i.e., MI,
absPCC, RF, and AdaL. Among these, as presented in Table 1, all four networks have a
similar number of nodes ranging between 4082 and 4374. However, the number of edges
and thus network density (the percentage of edges that exist out of all possible edges)
varied drastically across the four networks. The one with the lowest network density was
AdaL (0.09%), followed by MI (0.77%), then RF (9.08%), and finally absPCC (10.19%).

A lower density indicates a more conservative network inference method, i.e., a
method that judges fewer co-expressions as strong enough. Two networks, absPCC and RF,
exhibited extremely higher densities than typically sparse real-world networks, including
PPI and other biological networks [53]. To handle these two methods being unusually
nonconservative, i.e., to highlight the most important gene co-expression relationships
within absPCC and RF, as is typically done [54], we examined whether we could remove
some proportion of the edges without disconnecting many of the nodes from the given
network, as such edges could be viewed as redundant. We did this systematically. Namely,
for each of the two networks, we kept 1–100% (in increments of 2% between 1% and 50%
and increments of 5% between 50% and 100%) most important (highest-weighted) edges
among all of the edges in a given network. Then, for each of these thresholds, we calculated
the percentage of nodes from the gene expression data that were in the largest connected
component of the resulting thresholded network.

We aimed to preserve at least 85% of the genes from the gene expression data in the
largest connected component. This corresponds to keeping at least 30% of the most impor-
tant edges in the absPCC network. So, we considered the threshold value of 30%, along
with two additional, arbitrarily chosen higher values, namely 40% and 50%, for further
systematic evaluation. We refer to these three absPCC-based subnetworks as absPCC-0.3,
absPCC-0.4, and absPCC-0.5, respectively. Also, from the systematic thresholding pro-
cedure described above, we found an interesting pattern with the RF network. Namely,
keeping as few as 3% of the most important edges already resulted in more than 95% of
the genes from the gene expression data being in the largest connected component. This is
why we selected this threshold value of 3%, along with two additional, arbitrarily chosen
higher values of 5% and 10%. We refer to these three RF-based subnetworks as RF-0.03,
RF-0.05, and RF-0.1, respectively. Supplementary Figure S1 further illustrates the rationale
for determining the number of edges kept. Therefore, up to this point, we have constructed
10 networks: one inferred using MI, four inferred using absPCC, four inferred using RF,
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and one inferred using AdaL (Table 1; note that this table contains an additional network,
Consensus, which is discussed below).

Table 1. The 11 considered co-expression networks, along with their size and density statistics.

Network Number of Nodes Number of Edges Density

MI 4373 73,474 0.77%

absPCC-0.3 3792 285,405 3.97%

absPCC-0.4 3993 380,539 4.77%

absPCC-0.5 4126 475,674 5.59%

absPCC 4322 951,347 10.19%

RF-0.03 4188 25,000 0.29%

RF-0.05 4323 43,406 0.46%

RF-0.1 4372 86,811 0.91%

RF 4374 868,105 9.08%

AdaL 4082 7708 0.09%

Consensus 4374 333,162 3.48%

Given the co-expression networks constructed using the four inference methods, we
examined their pairwise edge overlaps to ascertain their complementarity or redundancy.
Note that here we used the smallest subnetworks of absPCC and RF (i.e., absPCC-0.3 and
RF-0.03, respectively) to ensure that the networks included the fewest redundant edges.
As presented in Figure 2, 46–85% of the edges are unique to each of the MI, absPCC-0.3,
and AdaL networks. The fourth network, RF-0.03, is mostly redundant to the other three
networks, i.e., only 19.13% of its edges are unique to it. Yet, only 730 edges are common
to all four co-expression networks. Note that the 730 edges involve 1181 nodes, and they
form 454 connected components, the largest one of which has 13 nodes and 12 edges. Also,
only 2 of the 730 edges overlap with the PPIs by [17] (adjusted p value of 1).

Figure 2. The edge overlaps between the four networks. Each network’s name is colored in blue
and is followed by its corresponding number of edges. Within the Venn diagram, each red number
is the percentage of all edges in its corresponding network that are unique to the given network.
For example, out of all 7708 edges in AdaL, 4727 (i.e., 61.33% of the) edges are unique to AdaL. More
detailed information can be found in Supplementary Figure S2.
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These results indicate that the complementary co-expression networks may be largely
capturing different aspects of P. falciparum biology. This is exactly what we found in our
subsequent analyses discussed below, in which we show that the networks are predicting
complementary gene–GO term annotations. This observation is consistent with results
from previous related studies on other systems [27,28]. Given such high network comple-
mentarity and in the hope of more accurately capturing regulatory relationships between
genes, as is sometimes done [28], we constructed a Consensus network by integrating the
edges from the complementary co-expression networks. How to best integrate networks
is an important and nontrivial research question [55], but this is not the key aspect of our
study. So, here, we used a common sense approach of taking a weighted union of all
edges in all considered networks. Specifically, because the different network inference
methods have different conservativeness levels judging whether an edge is strong enough,
i.e., because they possibly weigh the same edge differently, we aligned these levels between
the four networks using min-max normalization. That is, for each network, we normalized
the edge weights in a given network to the (0, 1] range. Then, for each edge, we summed
its normalized edge weights over the four networks. As such, the resulting Consensus
network has edge weights in the (0, 4] range; the higher the weight of an edge, the more im-
portant the edge is or the more networks are supporting this edge (or both) (Section 4.2.3).
Therefore, in total, we considered 11 co-expression networks in this study (Table 1).

2.2. Selecting the Best Clustering Parameter Values for the Inferred Networks

We used two clustering methods (i.e., BigCLAM (BC) and MCL) to generate clusters
for predicting gene–GO term associations from each of the 11 co-expression networks.
For an unbiased and comprehensive evaluation of each network and a fair comparison of
the different networks, we tested multiple parameter values for each clustering method in
each network. We used three criteria to select (up to) three clustering parameter values:
(i) the parameter value that yields the highest precision in crossvalidation; (ii) the parameter
value for which the union of all clusters that are significantly enriched in one or more GO
terms contains the most of unique genes, i.e., has the largest gene coverage; and (iii) the
parameter value for which the union of all clusters that are significantly enriched in one or
more GO terms contains the most unique GO terms, i.e., has the largest GO term coverage.

Intuitively, for each combination of a network, clustering method, and clustering
parameter value, we obtained a set of clusters. We used leave-one-out crossvalidation to
predict gene–GO term associations from a given set of clusters. That is, given a gene g,
we hide its existing GO term annotations. Then, we examine whether each of the clusters
that gene g belongs to is statistically significantly enriched (with adjusted p value < 0.05)
in an existing GO term j using the hypergeometric test; we do this for each GO term under
consideration. If so, for such a cluster and GO term j, we predict gene g being annotated
by GO term j. We iterate the above process over all genes in the gene expression data and
calculate precision and recall, along with the gene coverage and GO term coverage (as de-
fined above) of the significantly enriched clusters. The former serves our criterion (i) above,
and the latter two serve our criteria (ii) and (iii) above, respectively. We carried out this
entire procedure for each cluster set, i.e., each combination of a network, clustering method,
and parameter value. Heuristically, these three criteria maximize the accuracy, as well
as coverage of the predicted gene–GO term annotations for each combination. Note that
the three criteria can share the same clustering parameter value (Section 4.4). We list the
selected parameter values and their resulting numbers of clusters in Table 2.

According to the selected parameter values, we found that the three criteria resulted
in quite different parameter values, which in turn resulted in different numbers of clusters
and different cluster sizes. This stresses the need to test multiple parameter values for a
given clustering method.
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Table 2. The best (i.e., selected) clustering parameter value for each of the three criteria, for each BC
and MCL clustering method, and for each co-expression network. The parameter of BC (whose values
ranged from 25 to 700) corresponds to the expected number of resulting clusters. The parameter of
MCL (that starts with an “I” and whose values ranged from 1.2 to 5) corresponds to the concept of
inflation in MCL. Intuitively, the higher the inflation value, the more clusters MCL is expected to
return, and hence, the smaller the expected average cluster size is. We list the resulting number of
clusters behind each MCL cluster parameter value.

Network
BC Parameter Values MCL Parameter Values

Criterion (i) Criterion (ii) Criterion (iii) Criterion (i) Criterion (ii) Criterion (iii)

MI 425 25 450 I2.4 (3775) I1.6 (133) I1.7 (571)

absPCC-0.3 350 100 450 I1.5 (138) I2.9 (908) I2 (335)

absPCC-0.4 650 125 500 I1.6 (160) I2.3 (522) I2 (338)

absPCC-0.5 650 275 475 I1.32 (53) I2.6 (724) I2.4 (565)

absPCC 650 225 225 I3.6 (1115) I2.5 (361) I3 (711)

RF-0.03 700 25 200 I2.8 (2315) I1.2 (31) I2 (1156)

RF-0.05 600 50 350 I3.2 (2985) I1.24 (19) I1.9 (830)

RF-0.1 700 50 450 I5 (3953) I1.28 (10) I2.1 (1129)

RF 475 50 75 I5 (3519) I1.7 (6) I2.5 (201)

AdaL 550 25 75 I1.24 (314) I1.2 (238) I1.7 (1105)

Consensus 275 275 200 I5 (3656) I1.36 (13) I1.7 (243)

2.3. Validating the Inferred Networks in the Task of Predicting Gene-GO Term Associations

For each of the 11 networks, given two clustering methods and three selected param-
eter values per clustering method, there are six combinations of a clustering method
and parameter value (Table 2). To further simplify the presentation of results, for a
given network, we discarded from further consideration any of its considered combi-
nations that had both lower precision and lower recall than another one of the consid-
ered combinations for the same network. That is, we continued considering only the
best combinations, i.e., those combinations that are superior to all other combinations
for the same network with respect to at least one of precision and recall. For details,
see Section 4.4 and Supplementary Figures S3–S7. This resulted in the following combi-
nations for further consideration: for the MI network: MCL-I1.6, BC-425, and MCL-I2.4
(Supplementary Figure S3); for the AdaL network: BC-550, MCL-I1.24, and MCL-I1.7 (Sup-
plementary Figure S6); for Consensus: MCL-I1.7 and MCL-I5 (Supplementary Figure S7);
over all four thresholded absPCC networks: absPCC-BC-650, abcPSS-0.5-BC-650, absPCC-
0.3-MCL-I2, absPCC-0.3-MCL-I1.5, and absPCC-0.5-MCL-I3.2 (Supplementary Figure S4);
over all thresholded RF networks: RF-0.1-MCL-I1.28, RF-0.05-BC-600, RF-0.03-BC-700,
RF-0.03-MCL-I2, and RF-0.03-MCL-I1.28 (Supplementary Figure S5).

Given these best combinations of a network, clustering method, and clustering pa-
rameter value, we present their precision and recall in Figure 3. We can observe that
combinations that yielded higher precision also yielded lower recall, and vice versa. This is
expected, as there is a trade-off between precision and recall. Precision is typically favored
over recall in biomedicine [44,45]. The recall values of all combinations (and thus of all
networks) were below 15%, but some of the networks yielded high precision (Figure 3).
In particular, the highest precision value over all combinations for MI was 86.7%, i.e., MI
yielded a precision of 86.7%. It is followed by absPCC-0.5, with a precision of 77.8%,
RF-0.03 with a precision of 74.3%, and AdaL with a precision of 56.2%. In other words,
with respect to precision, the four top-performing combinations of a network, cluster-
ing method, and parameter value span all four consideed network inference methods.
This means that all inference methods successfully capture meaningful biological signals,
i.e., existing gene–GO term annotations. On the other hand, the low recall values of all
combinations (specifically, recall values of 2.2%, 0.4%, 2.5%, and 1.8% corresponding to
the above four precision values of 86.7%, 77.8%, 74.3%, and 56.2%, respectively) indicate
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that none of the network inference methods, i.e., their resulting networks, capture a large
fraction of all existing gene–GO term annotations.

In theory, the low recall values could in part be due to “noise” in the existing gene–GO
term annotation data. Namely, existing gene–GO term annotations have been obtained in
many different ways (corresponding to different evidence codes), including experimentally,
phylogenetically, computationally (e.g., via sequence or structural similarities), from author
or curatorial statements (including “no biological data available” for the latter), or au-
tomatically. Some of the evidence codes, especially experimental ones, can be trusted
more than the others. So, the co-expression networks might capture some of the evidence
codes better than others. Unfortunately, according to the current statistics in the Gene
Ontology database, only 12.5% of all gene–GO term annotations in the database have
been obtained experimentally. Another possible reason for low recall values, i.e., why no
network captures all or even most of the existing functional (i.e., GO) knowledge, could
simply be that no computational method should be expected to work well in all biological
contexts, i.e., capture all possible functional slices of the cell. If the different networks
are predicting complementary gene–GO functional annotations, this could be evidence
towards this hypothesis; we examine overlaps between the different networks’ predictions
in several places later on in this section.

Going back to our results, each of the four network inference methods has a value
(because of high precision), but neither one of them is sufficient on its own (because of low
recall). This observation aligns with the motivation of inferring the Consensus network in
the hope to increase both the precision and recall values of the individual networks.

Figure 3. Accuracy of predicting gene–GO term associations using leave-one-out crossvalidation
in terms of precision and recall. Each point is a combination of a network, clustering method,
and parameter value. The sizes of the points correspond to the number of predictions produced
by a given combination. The color of a point corresponds to a network, and the shape of a point
corresponds to a clustering method. For example, all purple points correspond to AdaL, of which
circles correspond to BC, and triangles correspond to MCL. Note that we use one color (green)
for all absPCC networks corresponding to different edge thresholds (e.g., absPCC and absPCC-0.5
share the same color), and we use another color (red) for all RF networks corresponding to different
edge thresholds.

However, we found that the Consensus network did not perform the best (Figure 3).
In fact, it performed worse than all four top-performing combinations involving the four
individual networks that Concensus was constructed from. This could be because the four
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individual networks capture complementary edges, and simply combining their edges
(even via the edge weighing scheme that we use) into Consensus does not necessarily
mean producing more biologically meaningful clusters than in individual networks. This
might especially hold if the clusters formed by the edges in one individual network capture
different GO terms (i.e., different biological knowledge) than the clusters formed by the
edges in another individual network; we explore the potential complementarity of the
biological knowledge captured by the individual networks later on in this section. If this is
the case, integrating the edges from the different networks into the Consensus network and
then making functional predictions from this network might weaken the biological signal
that can be extracted from the individual networks. But using the individual networks
to first make their functional predictions, with each individual network resulting in high
precision but low recall and then integrating the predictions, should still result in a high
precision that is hopefully close to the precision values of the individual networks, but now
also with a higher recall than the recall values of the individual networks. Indeed, we
verified that this is what happened: when we integrated the functional predictions of
the four top-performing (in terms of precision in Figure 3) combinations of a network,
clustering method, and parameter value that cover all four network inference methods,
the resulting precision was 66% (compared to the individual precision values of 86.7%,
77.8%, 74.3%, and 56.2%), and the resulting recall was 5% (compared to the individual
recall values of 2.2%, 0.4%, 2.5%, and 1.8%). Importantly, even though in the task of
predicting gene–GO term annotations the Consensus network did not perform better than
the individual networks, the Consensus network did successfully capture drug resistance
“biology” relevant to endocytosis (Section 2.5).

Next, as mentioned above, we examined whether the four top-performing combina-
tions of a network, clustering method, and parameter value that cover all four network
inference methods, plus the Consensus network, yield redundant or complementary pre-
dicted gene–GO term associations. That is, here, we analyze the MI-MCL-I2.4, absPCC-0.5-
MCL-I1.32, RF-0.03-MCL-I2.8, AdaL-MCL-I1.7, and Consensus-I5 networks. For each pair
of these networks, we measured the overlaps of (1) predicted gene–GO term associations,
(2) unique genes that participate in the predicted associations, and (3) unique GO terms
that participate in the predicted associations. We did all of this with respect to (i) the
predicted existing associations, i.e., the true positives (associations that currently exist and
are predicted by the networks) (Figure 4), as well as (ii) the novel associations (associa-
tions predicted by the networks that do not currently exist) (Figure 5). We quantified the
size of an overlap using the Jaccard index, where a lower Jaccard index indicates a lower
redundancy, i.e., a higher complementarity.

For true positive predictions, in total, the five considered networks (i.e., combinations)
predicted 169 true positive gene–GO term associations, which involve 109 unique genes
and 14 unique GO terms. While most of the pairwise overlaps were statistically significant
(adjusted p values <0.05), all Jaccard indices were low. That is, the lowest and highest
Jaccard indices, respectively, were 3.3% and 27.2% for the predicted true positive gene–GO
term associations; 4.7% and 37.5% for the unique genes that participate in the predicted
associations; and 11.1% and 70% for the unique GO terms that participate in the predicted
associations (Figure 4). For novel predictions, in total, the five networks predicted 174 novel
gene–GO term associations, which involve 131 unique genes and 26 unique GO terms.
About half of the pairwise overlaps were statistically significant (adjusted p-values < 0.05),
but again, all Jaccard indices were low. That is, the lowest and highest Jaccard indices,
respectively, were 0% and 15.4% for the predicted novel gene–GO term associations; 0%
and 18.2% for the unique genes that participate in the predicted associations; and 4.5% and
40.9% for the unique GO terms that participate in the predicted associations (Figure 5).

The above results indicate that the predictions (with respect to both true positives and
novel predictions) are largely complementary to each other. This observation strengthens
our finding that the different network inference methods capture different biological sig-
nals. Importantly, despite the Consensus network not performing well compared to the
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individual networks in terms of precision, it did uncover gene–GO term annotations not
found by the other networks.

Figure 4. Pairwise overlaps between predictions made by the best combination for each of the
five networks with respect to predicted existing associations, i.e., true positives. Panel (a) shows
pairwise overlaps of gene–GO term associations. Panel (b) shows pairwise overlaps of unique genes
that participate in the predicted gene–GO term associations. Panel (c) shows pairwise overlaps of
unique GO terms that participate in the predicted gene–GO term associations. Within each panel,
the number in parentheses below each network name is the number of corresponding true positives.
Within each cell, there are three numbers; the first number is the Jaccard index, the second number is
the raw number of the predictions in the given overlap, and the third number is the adjusted p value
resulting from the hypergeometric test. The yellow boxes highlight the adjusted p values that are
statistically significant.

Figure 5. Pairwise overlaps between predictions made by the best combination for each of the five
networks with respect to predicted novel associations, i.e., novel predictions. Panel (a) shows
pairwise overlaps of gene–GO term associations. Panel (b) shows pairwise overlaps of unique genes
that participate in the predicted gene–GO term associations. Panel (c) shows pairwise overlaps
of unique GO terms that participate in the predicted gene–GO term associations. Within each
panel, the number in parentheses below each network name is the number of corresponding novel
predictions. Within each cell, there are three numbers; the first number is the Jaccard index, the second
number is the raw number of the predictions in the given overlap, and the third number is the adjusted
p value resulting from the hypergeometric test. The yellow boxes highlight the adjusted p values that
are statistically significant.

We conclude this section by qualitatively complementing the quantitative results
thus far on the overlap between gene-functional predictions of the different combinations
by breaking down the overlaps by biological processes. Here, for comprehensiveness,
we went back to all possible combinations. Namely, remember that we deal with the
11 constructed networks, two clustering methods, and up to three clustering parameter
values. For each of the 11 × 2 = 22 combinations of a network and clustering method, we
considered any gene–GO term association predicted by at least one of the three clustering
parameters. Then, we took the union of all such predictions over all combinations. Of all
of the predictions in this union, we focused on those that were in the ground truth data,
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i.e., we considered the true positives over all combinations. We did this because true
positives can be trusted more than novel predictions. Finally, we measured, for each of
the 22 combinations of a network and clustering method, the percentage of all of the true
positives from the union that a given combination predicts.

We show these results in Figure 6, which are broken down by individual GO terms
that are then grouped into biological process categories based on the GO terms’ semantic
similarities (see Section 4.4 for details). This analysis is intended to complement results
from Figure 4a on how much true positive predictions of the different combinations over-
lap by also providing insights into what biological process(es) the overlaps come from.
From Figure 6, we found that the overlaps between the different combinations of a network
and clustering method correspond mostly to pathogenesis-related GO terms, as well as to
some of the GO terms related to cell cycle and transcription/translation. However, for most
of the GO terms not related to pathogenesis, the different combinations of a network and
clustering method yielded at least somewhat complementary results. The fact that most of
the combinations capture the pathogenesis-related GO terms well is encouraging, as these
biological processes annotate genes known to be involved in P. falciparum infection and
immune response.

Figure 6. GO terms and biological process categories captured by the different combinations
of a network and clustering method. Columns correspond to the different combinations. Rows
correspond to GO terms that are captured by predicted gene–GO term associations, where the GO
terms are then grouped into biological process categories (shown on the left). We visualize the
number of gene–GO term associations predicted by a given combination divided by the total number
of true positives predicted over all combinations. That is, each cell shows, for a given GO term,
the proportion of true positives from the union of all combinations that are predicted by a given
combination. The darker blues represent higher proportion values.

When we “zoom into” the results for the pathogenesis-related GO terms in Figure 6
with an attempt to compare the four network inference methods to each other with respect
to these results, we find that the MI and RF overall capture more of the true positive
pathogenesis-related gene-GO term associations from the union of all combinations than
the absPCC and AdaL. In more detail, for the MI and RF for many of their combinations of
a network and clustering method, a given combination captures many (>70%) of all of the
true positives from the union, and it does so for the majority of all pathogenesis-related GO
terms. For the absPCC and AdaL, the combination(s) involving the BC clustering method
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capture many of all the true positives only for certain pathogenesis-related GO terms;
for the other pathogenesis-related GO terms or the MCL clustering method, the signal is
weaker, although still present.

2.4. Ranking Predicted Gene–GO Term Associations and Gene–Gene Interactions

Next, we aim to supplement the limited functional annotation data in the P. falciparum
genome. Again, here, we deal with the 22 combinations of a network and clustering
method, with up to three clustering parameter values for each combination. For each of the
22 combinations, for each gene–GO term association predicted by a given combination, and
given up to three adjusted p values for a given prediction (corresponding to up to three
clustering parameter values), we selected the lowest adjusted p value for the prediction.
Then, we assigned a confidence score to each gene–GO term prediction made by at least
one of the 22 combinations of a network and clustering method and provided the list
of all associations ranked by their confidence scores. Intuitively, the more combinations
that support a predicted gene–GO term association and the more strongly that a given
combination supports a prediction (i.e., the lower the corresponding selected adjusted
p value), the higher the confidence score of the prediction (see Section 4.6). We provide
two ranked gene–GO term association lists: one for the existing associations with 1062 such
associations (Additional File S1) and the other for the novel associations with 28,826 such
associations (Additional File S2). For the distribution of the confidence scores, see Figure 7.

Figure 7. The distribution of confidence scores for predicted gene–GO term associations. The left
panel shows the distribution for existing associations, i.e., true positives, and the right panel shows
the confidence score distribution for novel associations. The color shades represent the number
of combinations of a network and clustering method that support the corresponding association.
The darker color the color, the higher the support. Analogous results for gene–gene interactions are
shown in Supplementary Figure S8.

Similarly, to supplement the limited gene–gene interactions data in the P. falciparum
genome, we provide a ranked list of gene–gene interactions with their confidence scores
(Additional File S3). Intuitively, given all the statistically significantly enriched clusters
from the 22 combinations of a network and clustering method, we considered all genes from
the clusters along with their edges from the corresponding network. Then, we assigned
to each edge a confidence score; intuitively, the more clusters that contain a given edge
(i.e., one of its end nodes), and the more functionally meaningful a given cluster is (i.e., the
more GO terms it is enriched in and the lower the corresponding adjusted p values of the
enrichments), the higher the confidence score of the edge (see Section 4.6). The ranked list
includes 1,018,420 gene–gene interactions. We visualize the distribution of the interaction
confidence scores in Supplementary Figure S8.

2.5. Validating the Inferred Networks Using Endocytosis-Related Biological Signatures

Endocytosis is an essential biological process for trafficking extracellular material in
the cell to specific organelles. Extracellular material is first brought into the cell in early
endosomes that mature into late endosomes as they are directed to lysosomes or through
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trafficking pathways from the Golgi apparatus. K13 and EPS15 localize to the periphery of
the cell and are suggested to contribute to the generation of early endosomes. Clathrin has
been shown to function in Plasmodium and other apicomplexa in an atypical role, primarily
through trafficking pathways of the Golgi apparatus [50,51]. A recent study [49] identified
genes that interact via PPIs with each of the K13, ESP15, and clathrin proteins. The K13 and
EPS15 gene lists were devoid of clathrin, thus suggesting that K13 functions in a clathrin-
independent endocytosis pathway. Our co-expression networks may provide a systems-
level perspective on these recently published data, including new hypotheses for further
exploration into this cellular pathway and the mechanism of resistance for artemisinin.

For each of the K13, EPS15, and clathrin gene lists, we measured how densely the
genes in a given list are connected to each other, as well as to the genes in the other lists in
the Consensus network. Note that even though the Consensus network did not perform the
best in terms of precision in the task of predicting gene–GO term annotations, it does cover
complementary edges from the individual networks. As such, here we aimed to validate
the effectiveness of the Consensus network from the endocytosis perspective. We measured
the density of connections between the gene members of each list, between the genes that
are in the union of each pair of lists, and between the genes that are in the union or all
three lists. Note that if a gene belongs to more than one of the K13, EPS15, and clathrin lists,
we do not consider such a gene in this analysis.

We found that the genes in the K13 list are the most densely connected to each other,
followed by the genes in the union of the K13 and EPS15 lists (K13-EPS15), followed by the
genes in the union of the K13 and clathrin lists (K13-clathrin), and finally followed by the
genes in the union of all three lists (All-Endocytosis) (Figure 8). Genes within the K13 list
are expected to be densely connected to each other in the network, and so are genes in the
K13-EPS15 set, because the K13 and EPS15 gene lists together, while at the same time being
devoid of clathrin, contribute to the generation of early endosomes [49]. This means that
the Consensus network identifies expected pathways and their interacting proteins, which
validates the network. The dense interconnectivity between the genes in the K13-clathrin
set is a more interesting result because K13 does not directly interact with clathrin, and it
would not necessarily be expected that the K13- and clathrin-interacting genes share the
same network. The majority of the material imported by the K13-defined endocytosis
pathway is host cell hemoglobin, which is eventually transported to the food vacuole—a
lysosome-like structure where hemoglobin is degraded. It is plausible to hypothesize that
endosomes generated by K13 are integrated into the trafficking network coordinated by
clathrin and its interacting proteins through the Golgi, which is a result that would suggest
the separate gene functions in related biological pathways, even though they do not directly
interact with each other.

Furthermore, the results suggest that the three gene lists have a potential to operate to-
gether in the endolysosomal system to bring material into the cell and transport the material
to its destination farther in the cell. Our analysis provides deep, testable extensions of the
observed PPI data from [49] for how K13, EPS15, and clathrin are functioning as a system
beyond what can be learned from only considering directly interacting protein partners.

Interestingly, the genes in the EPS15 list alone, in the clathrin list alone, or in the
two lists combined were not statistically significantly interconnected to each other when
analyzed separately from the K13 gene list. This fits a scenario of EPS15 and clathrin
having pleiotropic functions and operating in multiple pathways. It is likely that the
global transcript data used for the networks does not capture the broad spectrum of
interacting partners that either protein has throughout the complex P. falciparum cell cycle.
Analyzing the gene lists together provides greater context to specific functions in the cell
cycle when K13 is essential for cell development. Co-expression networks for specific stages
of the Plasmodium cell cycle could further define the multiple functions that EPS15 and
clathrin preform in the cell. The endocytic mechanisms in P. falciparum have not been fully
elucidated and are an important area of research [56]. The Karczewski et al. [57] study is a
significant step in understanding how K13 functions inside the cell, and it suggests that K13
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and clathrin perform different functions inside the cell in separate pathways. Our results
suggest that the functional pathways for K13 and clathrin are more correlated than would
be expected by only the PPIs found in Karczewski et al. [57]. Further molecular experiments
will provide greater context for how the two functional pathways are coordinated and
influence artemisinin resistance.

Figure 8. The connectivity of genes in a given list/set (or simply group) compared to the genes’
connectivity expected by chance. The x axis shows the considered endocytosis-related gene groups.
The y axis corresponds to connectivity as measured by network density (for a gene group of size n,
where there exist e edges between the n genes, and the density is the ratio of e and (n

2), where the latter
is the total possible number of edges between n nodes). The boxplot for a given gene group represents
the density distribution of 1000 random runs for that group. In particular, if a given gene group has n
genes, the connectivity by chance is measured by calculating the density of a subnetwork consisting
of randomly selected n genes and their edges from the Consensus network. The green triangle in each
boxplot/for each group is the average density of the 1000 randomly selected subgraphs. The orange
line is the median of the 1000 random densities. The blue cross point is the actual (observed) density
of the given gene group, whose numerical value is also shown as the top purple number below
the given boxplot. The other (bottom) purple number below the given boxplot is the z score of the
observed density when contrasted against the random densities. The names of endocytosis-related
gene groups that are shown in pink ovals correspond to those groups that are significantly more
densely connected than at random).

3. Conclusions

In this study, we constructed gene co-expression networks for P. falciparum using four
prominent network inference methods. Then, we evaluated the inferred co-expression
networks in terms of their ability to predict existing functional knowledge (i.e., gene–GO
term associations) through network clustering and leave-one-out crossvalidation. Our
results show that the different networks capture complementary gene–gene co-expression
relationships (i.e., interactions) and also predict complementary gene–GO term associations.
We have provided ranked lists of inferred gene–gene interactions and predicted gene–GO
term annotations for potential future use by the malaria community.
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Our study indicates that there does not exist a gold standard co-expression network
that captures all aspects of the P. falciparum biology. We have shown this via an already
systematic and comprehensive analysis (e.g., considering multiple network inference
methods, as well as clustering methods and their parameter values) of a large (247-sample)
P. falciparum gene expression dataset. Yet, this dataset is older. It could be interesting
to perform as a subject of future work the same analysis on newer data obtained via
more modern biotechnologies or to further improve the analysis by, e.g., considering
alternative ways of integrating different networks into a Consensus network, additional
network clustering methods, supervised rather than unsupervised function prediction
(i.e., classification rather than clustering, although the sparsity of GO annotation data
might make the former problematic), accounting for the hierarchical structure of the GO by
considering hierarchical relationships between the considered GO terms, or considering
only wet lab experimental evidence codes rather than all codes when it comes to gene–GO
term association data (if there would be sufficient statistical power for function prediction
when considering only experimental evidence codes). Importantly, the result of our current
analysis (that there does not seem to exist a gold standard co-expression network that
captures all aspects of the P. falciparum biology) is further strengthened by the fact that it was
already shown in other species that gene co-expression networks resulting from different
inference methods may be able to give insights into different biological questions [27] and
capture different types of regulatory interactions [28].

Thus, relying on a single network inference method should be avoided when possible.
In fact, we have demonstrated that the Consensus network, which combines the interactions
from the complementary individual co-expression networks, agrees with the biology of
the endocytosis-related cellular pathways and could thus yield new hypotheses about the
mechanism of resistance for artemisinin.

4. Materials and Methods
4.1. Data
4.1.1. Gene Expression Data

We used gene expression data (GSE19468) to construct our co-expression networks
curated by Hu et al. [20] in 2009 as follows. Drug perturbations were conducted for
29 drugs across 10 experimental groups (each with a no drug control and two–four drugs);
see Table 3). Samples were collected at five–ten time points across the P. falciparum in-
traerythrocytic developmental cycle. This experiment resulted in P. falciparum transcription
profiles for 247 samples. Transcript abundance levels were obtained using a spotted
oligonucleotide microarray [58], with 10,416 probes representing the 5363 genes in the
PlasmoDB P. falciparum genome version 4.4. In this unprocessed dataset, probes are in rows,
and samples are in columns. There have been major revisions in subsequent PlasmoDB
P. falciparum genome versions. So, rather than using the processed transcription profiles
directly, we reprocessed the probe level data to better reflect genome updates and improved
normalization methods.

4.1.2. Processing Probe-Level Data

To reflect revisions to the P. falciparum genome since 2009, nucleotide sequences for the
10,416 probes on the spotted array were obtained from GEO (GPL7493) and were aligned
to the PlasmoDB P. falciparum genome version 36 using blast+ (v2.6.0) from NCBI. The
9870 probes that aligned the P. falciparum transcriptome (PlasmoDB v36) with a perfect
match (bit score ≥ 130) and no secondary alignments (secondary bit scores all < 60) were
retained in the dataset. These probes aligned to transcripts for 5075 genes. Probes aligned
to transcripts for the same gene were averaged, and genes with nonzero values in >80% of
samples were retained in the dataset. This data processing introduced missing values into
the dataset. After blast mapping, we end up with 4502 genes with gene names updated in
our gene expression data (Additional File S4—GSE19468_blasted.csv).
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Table 3. The information about drug treatments and time courses of GSE19468. For example,
group 1 has eight time courses for one control group and three drug treatments. That is, there
are 8 × 4 = 32 gene expression levels for a given gene obtained from group 1. By combining the
expression levels across all groups, in total, there are 8 × 4 + 5 × 4 + 7 × 5 + . . . + 10 × 3 = 247 gene
expression levels for each of the 5075 genes. Of that amount, 8+ 5+ 7+ . . .+ 10 = 64 gene expression
levels are from control treatments.

Group Time Points Treatments

1 8 Control, RoscovitineA, CyclosporineA, FK506

2 5 Control, Colchicine, Na3VO4, StaurosporineA

3 7 Control, ML7, W7, KN93, Staurosporine

4 6 Control, Artemisinin, Chloroquine, Febrifugine, Quinine

5 5 Control, E64, Leupeptine, PMSF, RetinolA

6 6 Control, Apicidin (troph 5 nM), Apicidine (troph IC90)

7 5 Control, Apicidin (schiz IC50), Apicidin (schiz IC90)

8 6 Control, TrichostatinA (IC50), TrichostatinA (IC90)

9 6 Control, Chloroquine (IC50), Chloroquine (IC90), Chloroquine (2 × IC90)

10 10 Control, EGTA (IC50), EGTA (IC90)

4.1.3. Imputing Missing Values in the Gene Expression Data

Some of the network inference methods utilized in this study cannot be used when the
underlying gene expression data contain missing data, e.g., absPCC; thus, it was necessary
to impute these missing values. We tested seven prominent imputation methods designed
for gene expression data. Then, we selected the method that performed the best in the
expression data used in this study. By “best”, we mean the method that yields the smallest

normalized root mean squared error (NRMSE). In particular, NRMSE =

√
mean[(ŷ−y)2]

std(y) ,
where ŷ represents the imputed values and y represents the actual values. The seven
prominent imputation methods are explained as follows:

• Multiple imputations by chained equations (MICE) [59] imputes a column (i.e., sample)
by modeling each sample with missing values as a function of other samples in a
round-robin fashion. That is, given a sample column of interest, namely, y, and all
other sample columns, namely X, a regressor is then fitted on X and y by learning a
regression model from known values in X and y to predict the missing values in y.

• SVDimpute [60] is a singular vector decomposition (SVD)-based imputation method.
Intuitively, a matrix can be recovered asymptotically by only using the significant
eigenvalues. That is, given a gene u, a regression model of gene u- and k-most-
significant eigenvalues (i.e., eigengenes) is fitted. Then, the learned coefficients of the
linear combination of the k eigengenes are used to impute the missing values of gene
u. The processes are repeated iteratively until all missing values are imputed.

• KNNimpute [60] imputes missing values as follows. First, given a gene u with a
missing value in sample j, k other genes without a missing value in sample j that are
most similar to gene u are selected. Then, the weighted average expression level of
the k selected genes in sample j is treated as an estimated expression level for gene u
in sample j, where the weight is the expression similarity (measured using Euclidean
distance) of a gene (i.e., among the k selected genes) to the gene u. We vary k from 1 to
24 with an increment of 2.

• Local least squares imputation (LLSimpute) [61] imputes missing values as follows.
First, k other genes that are most similar to (i.e., have the largest absolute Pearson
correlation coefficients with) gene u of interest are selected. It differs from KNNimpute
(i.e., k is predefined) in that the k value for LLSimpute is introduced automatically.
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• SoftImpute [62] imputes missing values by guessing values repeatedly. Specifically,
the missing values in the gene expression data are initially filled as zero. Then, a
guessed matrix is updated repeatedly by using the soft threshold SVD with different
regularization parameters. If the smallest of the guessed singular values is less than
the regularization parameter, then the desired guess is obtained. Please refer to [62]
for methodological detail.

• BiScaler [63] was proposed based on SoftImpute but using alternating minimization
algorithms. It introduced the quadratic regularization to shrink higher-order compo-
nents more than the lower-order components such that it offers a better convergence
compared to SoftImpute. Please refer to [63] for methodological detail.

• NuclearNormMinimization [64] imputes missing values by solving a simple convex
optimization problem. That is, for a matrix M based on a theory that the missing
values can be recovered if the number of missing values m obeys m ≥ cN1.2rlogN,
where N is the number of rows in matrix M, c is a positive numerical constant, and r
is the rank of M. This algorithm usually works well on smaller matrices.

We used the library “pcaMethods” (version 1.96.0) from Bioconductor R package [65]
to perform LLSimpute and the python library “fancyimpute” (version 0.0.5) to perform
the remaining six imputation methods. We evaluated the performance of each method
on our data as follows: (i) We took rows and columns without any missing values from
the expression data as our ground truth data. (ii) We randomly removed 3.14% of the
values from the ground truth data. We used 3.14% because it is the percentage of missing
values in our expression data. We repeated this process five times and obtained five testing
gene expression data. (iii) We applied an imputation method to each of the five testing
data and compared the imputed matrix with the ground truth matrix. (iv) We selected the
method that yielded the smallest average NRMSE across five runs. (v) Finally, we used the
selected “best” method to impute the missing values for our entire gene expression data. It
turns out that the MICE (with NRMSE = 0.204) was the best imputation method for our
expression data.

4.1.4. Accounting for Cyclical Stage Variation

P. falciparum has strong cyclical patterns of transcript expression across the intraery-
throcytic development cycle (IDC), and these changes in gene expression tend to swamp
other sources of transcriptional variation. To control for this strong cyclical variation, we
normalized each drug expression time point by its matched control time point. Since
these are already log2-normalized expression profiles, we subtracted the control treatment
from the experimental treatments for each time point. Specifically, for a given gene when
treated by a drug, the updated expression level at time point t is obtained by using its
original expression level minus the expression level at its control treatment at time point t.
The resulting processed gene expression data thus had 4374 genes and 183 (i.e., 247 − 64) ex-
pression levels (i.e., no control groups, as these are used to normalize for cyclical variation).
The corresponding data are attached as (Additional File S5—GSE19468_final.csv).

4.1.5. Ground Truth GO Term Annotation Data

We used GO term annotations as our ground truth data to evaluate whether a cluster
was statistically significantly enriched in a GO term. GO terms describe the knowledge
of the biological domain with respect to three aspects: (1) molecular function, (2) cellular
component, and (3) biological process. We focused on biological processes because these
terms group genes related to a single objective and are closest to defining gene products
involved in the same pathways. We obtained all GO terms that described biological
processes and their annotated genes from the two most commonly used databases for
P. falciparum genes, i.e., GeneDB https://www.genedb.org/ (accessed on 26 March 2019)
and PlasmoDB https://plasmodb.org/plasmo/app (accessed on 26 March 2019). Because
these two databases cover gene–GO term annotations that are complementary to each
other, we combined their annotations and removed duplicates. As such, we obtained

https://www.genedb.org/
https://plasmodb.org/plasmo/app
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4736 gene–GO term associations that encompass 793 unique GO terms and 2624 unique
genes. Note that we used gene–GO term associations obtained via any evidence code.
We would ideally restrict only to associations obtained via wet lab experimental evidence
codes, but even when considering all evidence codes, the gene–GO term association data
are already somewhat limited, especially when further filtering and using only the data
that are present in the networks, as discussed below. Also, note that we currently do not
explicitly account for relationships between the GO terms in the hierarchical structure of the
GO, i.e., we consider a GO term regardless of at what level in the GO hierarchy it resides.

We used the processed data of gene–GO term associations to validate our clusters.
Specifically, we treated each GO term as a ground truth cluster such that all genes annotated
by this GO term belonged to the same cluster. In general, a valid cluster should include
at least three genes. So, we further processed the ground truth data by only keeping
those GO terms that annotated at least three genes in the expression data. We denoted
such GO terms as relevant GO terms and those associations involved with relevant GO
terms as relevant gene–GO term associations. In our experiments, if we mention GO
terms, we mean relevant GO terms. We summarize the statistics of our ground truth data
in Table 4. The corresponding data are attached as (Additional File S6—gene-GO term
associations.txt).

Table 4. Statistics of relevant GO terms and gene–GO term associations.

# of Genes Number of Samples Number of Relevant
GO Terms Number of Relevant Gene-0GO Term Associations

4374 183 255 3232

4.1.6. Endocytosis Data

PPI data used for the investigation of endocytosis-related genes in the Consensus
network were generated recently by Birnbaum et al. [49] in 2020. The study used a BioQ-
ID method coupled with mass spectroscopy using asynchronous cultures to define PPIs
of three proteins either directly implicated in artemisinin resistance (K13) or as controls
(EPS15 and clathrin) to investigate the molecular function of resistance genes fully. Initially,
the PPIs of K13 (i.e., the molecular marker for artemisinin resistance) were identified, and a
subset was confirmed by cellular localization using immunofluorescence. The P. falciparum
homolog of EPS15 was identified and confirmed as an interacting partner of K13 [52].
As such, EPS15 was chosen as a positive control for the BioQ-ID experiment, and the genes
identified as the PPIs of EPS15 largely overlapped with genes of the K13 PPI list. This
added further evidence K13 was involved in endocytosis. Our study further defined a PPI
list for clathrin because it is the main structural protein for canonical endocytosis pathways.
The genes of the PPI list for clathrin did not overlap with genes of the K13 or EPS15 PPI
lists, thus leading to the conclusion that K13 functions in an endocytosis pathway devoid
of clathrin. Our analysis utilized the 173 endocytosis-related genes from [49]. The K13
contains 63 proteins, 60 of which were present in our gene expression data. The EPS15 PPI
list contains 49 proteins, 48 of which were in the gene expression data. The clathrin PPI list
contains 61 proteins, 58 of which were present in our gene expression data.

4.2. Inference of Gene Co-Expression Networks

Given the processed gene expression data (GSE19468), we applied four network
inference methods, i.e., mutual information (MI) [32], absolute Pearson Correlation Coeffi-
cient (absPCC) [27], Random Forest (RF) [25], and Adaptive Lasso (AdaL) [26]. Moreover,
we constructed a Consensus co-expression network by taking the union of networks
inferred using these four methods. In this section, we explain how we inferred these
co-expression networks.
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4.2.1. Network Construction Using ARACNe Framework

We used the ARACNe framework for three network inference methods: MI, absPCC,
and RF. Specifically, MI quantifies the mutual dependence (either linear or nonlinear) of
two random variables, and absPCC quantifies the linear correlation between two random
variables, see [27] for detail. RF [25] is a tree-based method aiming to recover a network
involving n genes into n subproblems such that each subproblem recovers the regulation
relationship of a given gene. We used the Python program “GENIE3” to find the edge
weight of each gene pair. For methodological detail, see the original publication [25].

Network construction processes of a network include weighting co-expression relation-
ships for each node pair and finding an appropriate threshold to distinguish between edge
and nonedge. However, finding an appropriate weight threshold for real-world networks
is challenging [27]. Different weight thresholds lead to different networks and, hence, dif-
ferent network topological structures [66]. Because our goal in this study is not to examine
the effect of various weight thresholds but to uncover novel functional knowledge about
P. falciparum using networks, we chose a well-established network construction framework
called ARACNe [32] to construct three networks based on the aforementioned three edge
weight strategies. ARACNe was originally proposed to infer gene regulatory networks and
has been successfully applied to infer gene co-expression networks [22,67–70]. ARACNe
first calculates an appropriate threshold I0 based on a null hypothesis that gene pairs are
independent of each other if their mutual information is below I0. Then, network construc-
tion by ARACNe was conducted by first generating 100 bootstraps from the expression
data. In each bootstrap, a certain number of microarray samples (i.e., in our case 183) for
all genes were randomly selected with replacement and were permuted. Then, a network
using mutual information was constructed and pruned using the precalculated threshold
I0 and data processing inequality (DPI). In particular, given a triangle subgraph (i.e., genes
g1, g2, and g3), DPI removes the edge with the smallest weight in the triangle. Intu-
itively, this is because, in this example, g1 and g3 are interacting with each other indirectly
(i.e., through g2) and hence should be removed. Finally, the final network was obtained by
keeping those edges that were detected across 100 bootstraps for a statistically significant
amount of times. In other words, only nonrandom gene pairs were kept (i.e., adjusted
p values < 0.05 using false discovery rate (FDR) correction). For methodological detail,
please refer to the original publication [32].

We directly applied the ARACNe-AP implemented by Lachmann et al. [71] to con-
struct our MI co-expression network. For absPCC, we set the I0 to 0.6 according to [72,73]
that two metabolites with Pearson Correlation Coefficients ≥ 0.6 are considered as associ-
ated. Then we followed the ARACNe framework to obtain our final absPCC network using
100 bootstraps and the DPI technique. For RF, because the tree-based method includes a
pruning step that functioned as a weight threshold, we did not set the threshold I0. Instead,
we directly adopted the GENIE3 implementation from the original publication [25] and the
DPI technique for each of the 100 bootstraps. Finally, we used the FDR correction from the
ARACNe framework to obtain the final RF co-expression network.

Because the resulting absPCC and RF networks were still very large, we further set
the threshold for these two networks by keeping k% most important edges out of all
edges in the network without disconnecting the network (i.e., losing too many nodes
in the largest connected component). We varied the k value from 1 to 100 and selected
three such thresholds for each of the absPCC and RF networks. Thus, from this process, we
obtained nine networks, i.e., four absPCC-based co-expression networks, four RF-based
co-expression networks, and a MI co-expression network.

4.2.2. Network Construction Using Adaptive Lasso

Graphical Gaussian Models (GGMs) are prominent methods for modeling gene as-
sociations based on microarray gene expression data [74–77]. GGMs are often used to
obtain an unbiased estimate of the partial correlation between gene i and gene j such
that the partial correlation coefficient is treated as the edge weight of gene i and gene
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j in the resulting network. GGMs suffer from two limitations: (i) they assume that the
number of microarray experiments is much larger than the number of genes to ensure
that the inversion of the covariance matrix in GGMs can be assessed statistically; and
(ii) they calculate partial correlation coefficients for all gene pairs in the expression data
without a threshold. However, (i) the real-world gene expression data usually come
with a larger number of nodes compared to the number of microarray experiments; and
(ii) only those gene pairs with strong correlations (i.e., correlations coefficient greater than a
certain threshold) are meaningful. To address such limitations of GGMs, Krämer et al. [26]
proposed AdaL, a GGMs-based method that uses Lasso penalty to shrink the small edge
weights (i.e., coefficients) to zero by using L1 norm regularization, i.e., Lasso. This way,
those edges that are not meaningful will be shrunk to zero, i.e., removed from the resulting
network. As such, those gene pairs with strong partial correlations are kept and hence form
a network. For methodological details of AdaL, please refer to the original publication [26].
Note that we did not apply ARACNe for AdaL, as it already uses the Lasso penalty to shrink
small edge weights to zero. Thus, from this process, we constructed another co-expression
network, i.e., AdaL.

We used the R package “parcor” (available from the R repository CRAN) [26] to
generate our AdaL network using our gene expression data. The input data are defined by
an m × n-dimensional matrix, where m is the number of microarray treatments (i.e., 183),
and n is the number of genes (i.e., 4374). The output is an n × n adjacency matrix of the
resulting network.

4.2.3. Construction of the Consensus Network

Co-expression networks that are inferred using different inference methods have com-
plementary edges (Section 2). So, we aimed to examine the properties of a network that
would be the union of the four aforementioned co-expression networks, namely the Con-
sensus co-expression network. We constructed the Consensus network using MI, smallest
absPCC (absPCC-0.3), smallest RF (RF-0.03), and AdaL through the following procedure:

1. Given that we have four networks with different numbers of edges, we derive the
following: network 1 has x1 edges, and network 2 has x2 edges, where x1 < x2. We
argue that the least important edge in network 1 (ranked as x1) should be equally
important as the edges that have rank x1 in network 2. This is because each network
is inferred via methods with a well-established thresholding strategy, and a network
with more edges intuitively has a loosened thresholding strategy compared to a
network with fewer edges.

2. We aim to make sure that the higher the rank value of an edge, the more important
the edge is. For example, in network 1, an edge with rank x1 means the edge is the
most important edge in network 1. So, we reverse the way we rank edges from step 1.

3. To ensure the above two steps are satisfied when we construct the Consensus network,
we first calculate the number of edges in all four networks (i.e., AdaL, MI, absPCC-
0.3, and RF-0.03). If network 4 is the largest network with x4 edges, we use x4
as our possible maximum rank such that the most important edge in each of the
four networks has the same rank, which is x4.

4. According to step 3, network 1 has edge ranks from x4 to x4 − x1, network 2 has edge
ranks from x4 to x4 − x2, network 3 has edge ranks from x4 to x4 − x3, and network
4 has ranks from x4 to 1.

5. After we obtain all raw ranks for the edges of each network, we use min-max nor-
malization to normalize the rank of each edge in each network. That is, we first find
the maximum (i.e., max also x4) and minimum (i.e., min also 1) edge rank across
the four networks. Then, for a given edge between gene i and j with weight wij,
the normalized rank is (wij − min)/(max − min). The resulting normalized rank of
edges across four networks spans from 0 to 1.

6. Finally, for a given edge, we sum the weights from the four networks. The collection
of all such edges forms the Consensus network. That is, an edge between gene i and j
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in the Consensus network has a weight of wij = sum(wijl) for l = 1, 2, 3, 4, where l
is the network ID. Consequently, the resulting Consensus network has a maximum
possible edge weight of 4 and a minimum possible edge weight of 0.

With the Consensus network, in total, we constructed and analyzed 11 co-expression
networks in this study.

4.3. Clustering Methods

Recall that we tested two prominent network clustering methods (i.e., cluster affili-
ation model for big networks (BigCLAM, referred to as BC) [34] and Markov Clustering
(MCL) [35]) to predict gene–GO term associations. BigCLAM is a soft clustering method
(i.e., a node can be assigned to multiple clusters), and MCL is a hard clustering method
(i.e., a node can only be assigned to one cluster). We selected one method for each type to
reduce the effect of clustering type towards prediction accuracy of gene–GO term associ-
ations as much as possible. Also, we tested multiple clustering parameters to give each
network the best case of advantage.

4.3.1. BigCLAM

BigCLAM (BC) is a non-negative matrix factorization-based algorithm that assumes
the overlaps between communities are densely connected. It also detects densely overlap-
ping and hierarchically nested communities. For methodological detail and implementation,
please refer tothe original publication [34]. We applied BigCLAM to each of the 11 networks
inferred in this study. Specifically, for a given network, we ran the BigCLAM with different
parameters, i.e., the number of resulting clusters. We varied it from 50 to 700 with an
increment of 25 from 50 to 500 and an increment of 50 from 500 to 700. Note that the
number of resulting clusters is a predefined number, thus meaning that the actual number
of clusters can be different from the parameter. Then, we tested the prediction performance
of each network_clustering_parameter combination and systematically selected up to three
combinations based on three predefined selection criteria; see Section 4.4 for details.

4.3.2. MCL

MCL is an efficient random walk-based algorithm that assumes nodes that are densely
connected to each other are similar to each other. MCL has been widely applied to detect the
modules in the networks [41,78,79]. It takes the adjacency matrix representation and uses
expansion and inflation stochastic processes to make the densely connected area denser
and the sparsely connected area sparser. We applied MCL to each of the 11 networks and
varied the inflation parameters within the range of 1.2 to 5.0 (i.e., as suggested from the user
manual https://micans.org/mcl/ (accessed on 1 June 2020)). A smaller inflation parameter
tends to result in a smaller number of clusters with bigger cluster sizes compared to a
larger inflation parameter. Specifically, we tested 33 inflation parameters with an increment
of 0.02 for inflation from 1.2 to 1.4, an increment of 0.1 from 1.4 to 3, an increment of 0.2
from 3 to 4, and an increment of 1 from 4 to 5 for each network. Then, we tested the
prediction performance of each combination of a network, a clustering method, and a
clustering parameter, and we systematically selected up to three combinations based on
three predefined selection criteria; see Section 4.4 for details.

4.4. Predicting and Evaluating Gene–GO Term Associations from Clusters

We established a systematic parameter selection and evaluation framework to evaluate
each of the combinations of a network, a clustering method, and a clustering parameter
value as follows:

1. For the given gene expression data, we test against relevant GO terms to predict
and evaluate the accuracy of predicted gene–GO term associations for each of
the combinations.

https://micans.org/mcl/
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2. For all clusters from a given combination, we use hypergeometric test (Section 4.4.1) to
compute the probability scores (i.e., p values) of the enrichment significance between
each pair of a given cluster and a GO term. If a cluster is statistically significantly
enriched in at least one GO term (i.e., p-value < 0.05), we mark this cluster as an
enriched cluster. We test all clusters and obtain the significantly enriched clusters.

3. In parallel, we make gene–GO term association predictions using significantly en-
riched clusters and GO terms via leave-one-out crossvalidation [80] as follows:

• First, we hide a gene i’s GO term knowledge at a time.
• Second, we test whether each of the clusters that gene i belongs to is significantly

enriched in any GO term. If such a cluster is statistically significantly enriched
by a GO term j, we predict gene i annotated by GO term j.

• Third, we repeat the above two steps for every gene that has at least one existing
GO term annotation. Then, we use precision and recall to evaluate prediction
accuracy. The precision is the percentage of correct predictions among all pre-
dictions we make. The recall is the percentage of correct predictions among all
existing gene–GO term associations. Because there is always a trade-off between
precision and recall, we use precision as our parameter selection criteria (3). We
do this because we believe that in biomedicine for wet lab validation of predic-
tions, it is more important to have a high precision if we can not have both high
precision and recall [44,45].

4. According to our three selection criteria, each combination has up to three clustering
parameter values. Different selection criteria could end up with the same clustering
parameter. This is why we have up to three selected clustering parameters for a given
combination of a network and a clustering method.

5. Because we also aim to compare prediction performance across different networks, we
first select the best clustering parameter based on their leave-one-out crossvalidation
precision and recall for each of the 11 networks. Specifically, for two clustering
parameters, if parameter 1 has a higher precision and a higher recall or a similar
recall compared to parameter 2, we select parameter 1. If parameter 1 has a higher
precision but a lower recall compared to parameter 2, we keep both. For those selected
“best” parameters of each network, we further compare them using the same selection
criteria to find the combinations that yield the best prediction accuracy in terms of
precision and recall.

6. We then qualitatively analyze our predicted gene–GO term associations using rel-
evant biological pathways. In particular, we visualize how effectively each of the
22 combinations predicts true gene–GO term associations as a heat map showing the
proportion of gene–GO term associations correctly predicted for each GO term (rows)
by a given combination (columns). GO terms were grouped using semantic similarity
using a web tool called REVIGO [81]. Default REVIGO parameters were used to
analyze the list of GO terms. The semantic similarity groupings and descriptions
from REVIGO were exported by utilizing the “Export to TSV” option under the TREE
MAP view.

7. Finally, we perform deep dive analysis for those selected combinations from step 5
using the Jaccard index and overlap coefficient. Both methods measure the overlaps
between two sets. In particular, given set A and set B, the Jaccard index is |A∩B|

|A∪B| ,

and the overlap coefficient is |A∩B|
min(|A|,|B|) . The Jaccard index results in more accurate

results when the sizes of sets A and B are close to each other, while the overlap
coefficient results in more accurate results for small data when the sizes of set A
and B are far away from each other. The number of predictions made by different
combinations can be very different or similar, which is why we use both indices to
quantitatively measure our deep-dive analysis.
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4.4.1. Hypergeometric Test

We performed hypergeometric test [82] for each pair of a cluster and a GO term
(e.g., cluster 1 and GO term 1). Formally, the background (i.e., population) is the number of
genes in the expression data of interest, which is represented as N. C is a cluster, G is a GO
term, and x is the overlap between the cluster C and the GO term G; thus, the p value is
computed as follows:

P(X ≥ |x|) = 1 −
|x|−1

∑
i=0

(
|N|

i

)(
|N| − |C|
|G| − i

)
(

|N|
|G|

) (1)

Because we performed multiple tests, we adjusted the p values using false discovery
rate (FDR) correction as follows:

• Within each network_cluster_parameter combination, we assume we have c1 clusters
and g1 GO terms. We adjust c1 × g1 p values (i.e., each corresponds to a cluster and a
GO term pair). We then use the adjusted p values to determine whether a GO term is
significantly enriched in a cluster.

• After we select up to six parameters per network based on our three systematic selec-
tion criteria, we recorrect up to 11× 6× c1× g1 p values (i.e., we have 11 networks) for
fair comparison between networks for the given gene expression data. By recorrect, we
mean we take the up to 11 × 6 × c1 × g1 p values and use FDR correction to obtain the
adjusted p values. We do not correct across all tested clustering parameters because
some of the parameters are tested to make sure that we are not missing some of the im-
portant clustering parameters. Therefore, adding p values from these parameters for
test correction can be too conservative and consequently remove lots of true positives.

4.5. Assigning Confidence Scores to the Predicted Gene–GO Term Associations

In addition to evaluating the prediction accuracy of different networks, another main
goal of this study was to predict and rank gene–GO term associations based on their
confidence score. In particular, for a given gene expression data, we provided two lists of
ranked gene–GO term associations: (1) existing associations, i.e., true positive predictions
(those that come from ground truth data), and (2) novel association predictions (those
that do not currently exist), along with their “confidence” scores. Intuitively, the more the
networks support an association, and the more significant the association is (i.e., the lower
the adjusted p value of the association), the more confident the association is. We ranked
the associations as follows:

• Recall that we have 11 co-expression networks and two clustering methods, which
totals to 22 combinations of a network and a clustering method (i.e., 22 adjusted
p values). Recall that we selected up to three clustering parameters per combination,
with each corresponding to an adjusted p value. We select the smallest adjusted
p value as the adjusted p value for the corresponding combination.

• We rank predictions based on the number of combinations that support this prediction
and their corresponding adjusted p values. Specifically, we first take the negative log
of the adjusted p values (transformed p values) such that the smaller the adjusted
p value a prediction has (i.e., the more important the prediction is), the larger the
transformed p value is. We then sum the 22 transformed p values and obtain one final
index for each prediction, i.e., the confidence score. We rank the predictions from high
to low based on their confidence scores.

4.6. Assigning Confidence Scores to the Predicted Gene–Gene Interactions

Similar to the prediction of gene–GO term associations, we also provided a reference
list of gene–gene interactions (GGIs) and their “confidence” scores. Intuitively, the in-
teractions that yield the most meaningful gene–GO term associations are supported by
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the highest amount of networks and/or are among the top-scoring interactions in their
respective network, which will be the most confident interactions. Specifically, the rank of
the GGIs can be defined as follows:

• For each of the 22 combinations, we first identify the statistically significantly enriched
clusters and obtain all genes in the clusters, along with their edges from the network.

• For each identified edge, we assign the negative log-transformed p value associated
with the cluster that the edge belongs to as its weight. If an edge belongs to multiple
clusters, (e.g., genes can be grouped into multiple clusters via BigCLAM), we select
the one with the smallest adjusted p value (i.e., the largest transformed p value).

• We sum up the 22 transformed p values (i.e., each corresponds to a combination) and
obtain a final confidence score for each GGI. We rank the GGIs from high to low based
on their confidence scores.

4.7. Examining the Connectivity of Endocytosis-Related Genes in the Consensus Network

We used the Consensus network to examine the hypotheses of the endocytosis process
from Birnbaum et al. [49]. Specifically, if a network shows that the K13-related genes
and EPS15-related genes are close to each other than at random in the network, it would
corroborate the initial finding of the Birnbaum et al. study by a complementary analysis on
independent data. We would also expect clathrin-related genes to be closer to each other
than random and distant from K13-related and EPS15-related genes with connectivity simi-
lar to random in the network. We evaluated the connectivity of each group of endocytosis
genes using their network connectivity, i.e., the density, as follows:

• Given a group of endocytosis genes and assuming m genes, we select the induced
subgraph (i.e., genes and their interactions) of the genes from a given network, and
we calculate the observed density of the subgraph. Network density measures how
close a network is to its complete version (i.e., all pairs of nodes are connected).

• We then randomly select m genes from the network and their induced subgraph. We
calculate the network density. We repeat this process a thousand times and calculate
the z score of the observed density compared to densities from the 1000 random runs.

• We use 2.0 as the z score threshold to determine whether the observed density is
significantly larger than the random densities. In particular, if the z score of a group
of endocytosis genes is greater than 2.0, then the group of endocytosis genes is more
densely connected than expected by chance.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/genes15060685/s1, Figure S1: he effect of edge weight thresholds on
the size of the largest connected component for a given network. It illustrates the percent of nodes
remained in the largest connected component out of all nodes in a given network when keeping k% of
highest weighted edges in the given network (i.e., MI, absPCC, RF). The x-axis represents the percent
of highest weighted edges kept (i.e., k%) out of all edges in a given network. The y-axis represents
the corresponding percent of nodes remained in the largest connected component out of all node in
the gene expression data when keeping k% highest weighted edges. k is varied from 1 to 100. The
magenta stars indicate the three thresholds we select for absPCC and RF, respectively. Note that
we include MI in the figure as a control visualization for absPCC and RF. Figure S2: Details about
pairwise edge overlap between the four networks, i.e., MI, absPCC, RF, and AdaL. The box on the
top left is the number of unique edges that are only present in exactly one network, where the x-axis
shows the networks. The box on the top right is the number of unique edges that are only present
in exactly two networks, where the x-axis shows the network pairs. The box on the left bottom is
the number of unique edges that are only present in exactly three networks, where the x-axis shows
the network triplets. The box on the right bottom is the number of unique edges that are present in
all four networks, where the x-axis shows the four networks. All y-axes show the edge counts. The
two numbers on top of each bar across the four boxes represent the number of edges and the number
of nodes these edges encompass. Figure S3: Accuracy of predicting gene-GO term associations in
the leave-one-out crossvalidation in terms of precision and recall via MI. The sizes of the points
correspond to the numbers of predictions produced by a given combination. The color of the points

https://www.mdpi.com/article/10.3390/genes15060685/s1
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corresponds to a clustering method. Figure S4: Accuracy of predicting gene-GO term associations
in the leave-one-out crossvalidation in terms of precision and recall via absPCC. Each point is a
combination of network, clustering method, and parameter value. The sizes of the points correspond
to the number of predictions produced by a given combination. The shape of a point corresponds to
a network, and the color shade of a point corresponds to a clustering method. For example, all circles
correspond to absPCC-0.3, of which, light blue corresponds to BC and dark blue corresponds to MCL.
Figure S5: Accuracy of predicting gene-GO term associations in the leave-one-out crossvalidation
in terms of precision and recall via RF. Each point is a combination of network, clustering method,
and parameter value. The sizes of the points correspond to the number of predictions produced
by a given combination. The shape of a point corresponds to a network, and the color shade of a
point corresponds to a clustering method. For example, all circles correspond to RF-0.03, of which,
light blue corresponds to BC and dark blue corresponds to MCL. Figure S6: Accuracy of predicting
gene-GO term associations in the leave-one-out crossvalidation in terms of precision and recall
via AdaL. The sizes of the points correspond to the number of predictions produced by a given
combination. The color of the points corresponds to a clustering method. Figure S7: Accuracy of
predicting gene-GO term associations in the leave-one-out crossvalidation in terms of precision and
recall via Consensus. The sizes of the points correspond to the number of predictions produced by
a given combination. The color of the points corresponds to a clustering method. Figure S8: The
distribution of confidence scores for predicted gene-gene interactions. The color shades represent
the number of combinations of a network and clustering method that support the corresponding
association. The darker color the color, the higher the support. Analogous results for gene-GO term
associations are shown in Figure 7 of the main paper.
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