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Abstract: Genomic prediction plays an increasingly important role in modern animal breeding, with
predictive accuracy being a crucial aspect. The classical linear mixed model is gradually unable to
accommodate the growing number of target traits and the increasingly intricate genetic regulatory
patterns. Hence, novel approaches are necessary for future genomic prediction. In this study, we used
an illumina 50K SNP chip to genotype 4190 egg-type female Rhode Island Red chickens. Machine
learning (ML) and classical bioinformatics methods were integrated to fit genotypes with 10 economic
traits in chickens. We evaluated the effectiveness of ML methods using Pearson correlation coefficients
and the RMSE between predicted and actual phenotypic values and compared them with rrBLUP
and BayesA. Our results indicated that ML algorithms exhibit significantly superior performance to
rrBLUP and BayesA in predicting body weight and eggshell strength traits. Conversely, rrBLUP and
BayesA demonstrated 2–58% higher predictive accuracy in predicting egg numbers. Additionally,
the incorporation of suggestively significant SNPs obtained through the GWAS into the ML models
resulted in an increase in the predictive accuracy of 0.1–27% across nearly all traits. These findings
suggest the potential of combining classical bioinformatics methods with ML techniques to improve
genomic prediction in the future.

Keywords: genomic prediction; machine learning; GWAS; poultry breeding

1. Introduction

Chickens (Gallus gallus) are a crucial source of food for humans and are currently the
most economically significant animals in the poultry industry. Breeders aim to enhance the
production of chicken eggs and meat to meet the increasing demand for high-quality and
cost-effective proteins. Over the past two decades, scientists have progressively integrated
genomic data into the best linear unbiased prediction (BLUP) model from genomic selection,
as well as refined and optimized BLUP models for diverse application scenarios [1–4]. The
intricacy of animal genomes presents challenges in handling genomic high-throughput
data (e.g., single nucleotide polymorphisms, SNPs), in contrast to the relative simplicity
and controllability of plant genomes [5]. Classical linear mixed models face challenges in
accommodating the complex relationships present in large, noisy, and redundant animal
genomic data while tackling the lack of adequate observational data and predictors [6,7].
Additionally, focusing solely on additive effects does not fulfill the requirements for accurate
phenotype prediction. Hence, there is a continual necessity to explore more suitable and
precise genomic selection and prediction algorithms.

Many researchers have recently proposed genomic selection and prediction models
based on machine learning (ML) algorithms that are suitable for various breeding scenar-
ios [8,9]. In studies of pigs, cattle, and broilers, researchers performed genomic predictions
on different economic traits through various ML methods [10–13]. However, a common
issue is that the feature engineering and parameter selection process almost completely
ignores classical bioinformatics methods, resulting in the poor interpretability of these
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models, particularly those based on neural networks [14,15]. Additionally, animal ge-
nomic data often comprises over 10K SNPs, leading to excessive model parameter fitting
in both ML and deep learning models, causing dimension explosion and gradient disap-
pearance [16]. Therefore, prior to utilizing ML algorithms for genomic selection, classical
bioinformatics methods can be employed to screen SNPs, thereby enhancing the reliability
and interpretability of ML models.

The primary objective of this study was to investigate the suitability and reliability
of different ML methods for developing genomic prediction models for various economic
traits in chickens. Additionally, we aimed to assess the impact of SNP sets selected using
distinct bioinformatics methods on the ultimate fitting outcomes. This study is anticipated
to generate novel insights and perspectives for genomic prediction in animal breeding, thus
assuming a pivotal role in chicken breeding.

2. Materials and Methods
2.1. Data Collection

The sample dataset was obtained from the Rhode Island Red pure line population of
Beijing Huadu Yukou Poultry Industry Co., Ltd. (Beijing, China), and they provided the
phenotype statistics and pedigree-based heritability. This line has undergone more than
10 generations of high-intensity artificial selection for egg production traits. We selected
4190 female chickens with phenotype records of 10 traits, including body weight (BW), egg
number (EN), egg weight (EW), eggshell color (ESCA, ESCB, ESCI, and ESCL), eggshell
strength (ESS), albumen height (AH), and egg glossiness (SINS) at different ages. Blood
samples of all chickens were collected from the wing and placed in an anticoagulant tube
containing EDTA. The integrity of the DNA was verified, and the genotypes were captured
using an illumina 50K SNP chip (Phoenix No. 1) [17]. The chip was established based on
the reference genome of Gallus_gallus-5.0, and all loci were converted to Gallus_gallus-
6.0 by Liftover (https://genome.ucsc.edu/cgi-bin/hgLiftOver, accessed on 15 February
2024) [18]. All animal experiments were approved by the Animal Care and Use Committee
of China Agricultural University (permit number SYXK 2007-0023). All animal experiments
were performed strictly according to the requirements of the Animal Ethics Procedures and
Guidelines of the People’s Republic of China.

2.2. Quality Control and Imputation

We used PLINK v1.90 [19] to perform quality control on genotype data, including
MAF, SNP call rate, and individual call rate. The criteria for all filtering methods were set
to 0.05 (--maf 0.05 --geno 0.05 --mind 0.05), and we ultimately obtained 36,985 high-quality
SNPs to participate in subsequent imputation via BEAGLE v5.2 [20].

2.3. Genome-Wide Association Study (GWAS)

We conducted genome-wide association studies (GWASs) on all traits, incorporating
all valid samples and SNPs, using a univariate linear mixed model (LMM) implemented
in GCTA v0.98.6 software [21]. To address population stratification, we employed the
genomic relationship matrix (GRM) and considered the first five dimensions of principal
components (PCs) as covariates. The statistical model employed in this investigation is
presented by the following equation:

y = Wα + xβ + µ + ε, (1)

Here, y represents the phenotype records of 4190 individuals. W is a matrix of covari-
ates (fixed effects: top five principal components), accounting for population structure,
with α being a vector of corresponding effects that form the intercept; x signifies the marker
genotypes; β refers to the associated marker effects; µ constitutes a vector of random poly-
genic effects with a covariance structure; and ε denotes a vector of random residuals. The
p value served as a benchmark to assess the significance of the association between SNPs
and the traits. The threshold for genome-wide significance was defined using a modified
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Bonferroni correction, applied using the R package simpleM [22]. A total of 1509 indepen-
dent SNPs were examined, and the thresholds for genome-wide significance and suggestive
significance were 3.31 × 10−5 (0.05/1509) and 6.63 × 10−4 (1/1509), respectively.

2.4. Functional Annotation

We employed the online website g:Profiler (https://biit.cs.ut.ee/gprofiler/gost,
accessed on 5 March 2024) [23] to retrieve enriched functional terms for these genes, includ-
ing Gene Ontology (GO) categories and KEGG pathways.

2.5. Feature Engineering

In the current study, we used each of the three methods provided by PLINK for feature
engineering. We utilized --pca n (n = 10, 30, 50, 100, 200, and 500) to achieve different
degrees of parameter dimension reduction. We employed --maf x (x = 0.1, 0.2, 0.3, 0.4) to
derive a parameter set with different minimum allele frequencies. We utilized --indep-
pairwise 25 5 r2 (r2 = 0.1, 0.2, 0.3, 0.4, 0.5) to identify various levels of linkage disequilibrium
SNPs and obtained the independent loci.

In addition to the three methods described above, we composed the significant and
suggestive significant loci for each trait obtained from the GWAS into a subset of SNPs for
the corresponding trait, which were used to fit the trait.

2.6. Model Building

Following genotyping and feature engineering, we used an automatic ML software
package, AutoGluon v1.0.0 [24], to construct multi common ML algorithms, including Ran-
dom Forest (RF), Extra Tree (ET), K-nearest neighbors (KNNs), CatBoost (CAT), LightGBM
(LGB), and neural networks (NNs), to fit different sets of SNPs and model 10 economic
traits of chickens for comparison with the accuracy and bias of prediction of the ridge
regression BLUP (rrBLUP) [25] and BayesA methods [26]. All models reduced overfitting
by 10-fold cross-validation.

The rrBLUP models for genomic prediction were developed using the R package
“rrBLUP” (version 4.6.2). This model employs ridge regression methods to estimate marker
effects and effectively addresses potential multicollinearity issues in the genetic correlation
matrices. We first converted the genotype file from the bed format to the raw format
using the --recodeA command in PLINK. The raw format files were imported into R and
divided into train and test sets. We then fitted input files using the mixed.solve() function
in rrBLUP. After obtaining the predicted values, the Pearson correlation coefficient and
the root-mean-square error (RMSE) between the predicted values and the raw phenotypes
were calculated using the cor() function and the rmse() function of the “Metrics” package,
respectively.

The BayesA models were developed using the R package “BGLR” (version 1.1.2).
After importing the genotype and phenotype into R, we employed the BGLR() function to
fit the input files with the parameters set as nIter = 50,000, burnIn = 5000, and thin = 10,
which specified the total number of iterations for the MCMC sampling, the number of
iterations to discard at the beginning of the MCMC sampling process, and the interval for
sampling, respectively.

We used the open-source AutoML toolkit AutoGluon v.1.0.0 to construct genomic
prediction models based on ML algorithms. ML models utilized in this study encompassed
RF, ET, CAT, KNN, LGB, NN, and stacking structures derived from these algorithms by
linear fitting and were named Weighted Ensemble (WE). All of these models have been
shown in some animal or plant datasets to potentially improve the accuracy of genomic
prediction [10,27–29]. The toolkit’s hyperparameter optimization function automatically
fine-tuned model parameters to select the best-performing model by the order TabularPre-
dictor().fit(presets = ‘best_quality’). Therefore, we chose the Pearson correlation coefficient
and the RMSE as the evaluation metrics for validation data by setting eval_metric = pear-
sonr or root_mean_squared_error and the default hyperparameters for each ML model
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mentioned above (Table 1). The 10-fold cross-validation was carried by the order num-bag-
folds = 10.

Table 1. Hyperparameter table for the AutoGluon and ML models.

Model Parameter Name Parameter

AutoGluon
eval_metric

root_mean_squared_error
pearsonr

presets best_quality
num-bag-folds 10

CatBoost (CAT)

iterations 500
learning_rate 0.009

depth 6
random_strength 1.0

max_leaves 31
rsm 1.0

sampling_frequency PerTreeLevel
bagging_temperature 1.0

grow_policy SymmetricTree

Extra Tree (ET)

n_estimators 500
max_depth None

min_samples_split 2
min_samples_leaf 1

max_features 1

K-Nearest Neighbors (KNNs) K 50

LightGBM (LGB)

num_boost_round 100
learning_rate 0.1
num_leaves 64

feature_fraction 0.9
bagging_fraction 0.9

max_depth 6
min_data_in_leaf 3

boosting gbdt

NNFastAi (NN)

y_scaler -
clipping -

layers 32
emb_drop 0.1

ps 0.1
bs 256

epochs 150

Random Forest (RF)

n_estimators 500
min_samples_split 2
min_samples_leaf 1

max_features 1
max_depth None

3. Results
3.1. Phenotype Statistics and Genome-Wide Association Study (GWAS)

Phenotype data were collected from a total of 4190 hens for 10 traits at multiple
age points, primarily including body weight (BW), egg number (EN), egg weight (EW),
eggshell color (ESCA, ESCB, ESCI, and ESCL), eggshell strength (ESS), albumen height
(AH), and egg glossiness (SINS). Descriptive statistical analysis revealed the number of
reliable samples and the mean, variation, range, and pedigree-based heritability of each
trait at different age points (Table 2). Our analysis of phenotype records indicated that the
mean BW of the population increased from 1.7 to 2.2 kg with hen aging, and EW increased
from 43 to 62 g. For the egg quality-related traits, AH and ESS, showed an increasing and
then decreasing trend throughout the laying period (Figure 1a). In addition, ESC (A, B, L, I)
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and SINS did not show a clear pattern of change. Furthermore, the coefficients of variation
(CVs) for most traits increased with age. Notably, the CV values for ESC, SINS, AH, and
ESS were the highest among the traits, indicating instability in ESC formation and egg
quality in this population. In addition, AH was a low heritability trait (0.157–0.258), and
the rest of the traits had medium to high heritability at most time points.

Table 2. Descriptive statistics of important economic traits of chickens along with the aging process.

Traits N Mean SD CV (%) Min Max h2

AH36 2178 6.87 1.27 18.54% 2.1 10.8 0.187
AH56 2245 7.10 1.05 14.77% 2.2 11 0.266
AH72 2367 6.02 1.29 21.37% 2.2 11.1 0.258
AH80 2207 5.85 1.47 25.17% 1 13.5 0.157
BW28 4186 1968 147.02 7.47% 1125 2649 0.442
BW36 4189 2043 171.40 8.39% 1575 2638 0.524
BW56 4014 2146 222.51 10.37% 1299 3119 0.328
BW72 3282 2178 224.35 10.30% 1271 2874 0.323
BW80 3705 2215 228.53 10.32% 1033 3088 0.387

BWAFE 4189 1782 113.12 6.35% 1030 2265 0.446
EN38 4190 123.3 7.70 6.24% 100 146 0.436
EN48 4190 188.2 9.51 5.06% 131 217 0.409
EN56 4190 238.1 12.97 5.45% 146 270 0.336
EN72 3833 339 22.63 6.67% 190 379 0.142

ESCA36 2469 17.42 1.35 7.76% 12.61 21.5 0.437
ESCA56 1445 16.94 1.72 10.17% 2.17 23.5 0.464
ESCA72 2493 17.02 2.05 12.04% 2.51 22.18 0.315
ESCA80 2886 16.54 1.89 11.44% 5.29 21.79 0.360
ESCB36 2469 28.79 1.40 4.85% 19.99 32.81 0.446
ESCB56 1445 28.68 1.69 5.88% 12.39 32.75 0.399
ESCB72 2493 28.74 1.97 6.86% 10.01 33.83 0.242
ESCB80 2886 28.12 1.86 6.63% 15.01 32.19 0.254
ESCI36 2469 12.86 4.39 34.13% −0.43 28.46 0.435
ESCI56 1445 16.71 5.51 32.95% 1.75 63.83 0.349
ESCI72 2510 15.47 6.87 44.44% 1.24 70.19 0.227
ESCI80 2886 16.05 6.47 40.32% −0.57 55.31 0.295
ESCL36 4149 59.15 3.02 5.11% 47.39 73 0.364
ESCL56 2614 62.42 3.43 5.50% 50.97 78.7 0.455
ESCL72 2992 61.72 3.67 5.95% 51.57 82.71 0.496
ESCL80 3336 60.87 3.83 6.29% 49.13 85.12 0.414
ESS36 3130 3.151 0.70 22.14% 1.049 5.401 0.317
ESS56 2858 3.203 0.74 23.04% 0.89 5.456 0.669
ESS72 2873 3.017 0.75 24.91% 0.803 5.224 0.552
ESS80 3304 2.752 0.71 25.69% 0.515 5.182 0.698
EW28 4158 56.97 3.51 6.16% 40 89.7 0.436
EW36 4172 58.41 3.77 6.45% 40 75 0.448
EW56 3905 60.44 4.47 7.39% 35 80.6 0.581
EW72 2855 61.51 4.69 7.62% 35 84.7 0.440
EW80 3155 61.86 4.75 7.68% 35 81.5 0.455

EWAFE 4173 43.06 5.88 13.65% 18.9 88 0.178
SINS36 856 3.167 0.59 18.60% 1.87 5.6 0.272
SINS56 685 2.45 0.48 19.69% 1.4 4.8 0.290
SINS72 1631 3.545 1.47 41.34% 1.3 11 0.301
SINS80 2037 2.494 0.57 22.84% 1.15 4.93 0.410

N, number of samples. Mean, average value. SD, standard deviation. CV (%), coefficient of variation. Min, mini-
mum value. Max, maximum value. h2, heritability. AH, albumen height (mm); BW, body weight (g); AFE, age
at first egg; EN, egg number; ESC: eggshell color; ESS, eggshell strength; EW, egg weight (g); HU, Haugh unit;
SINS, eggshell gloss. The number following the trait indicates the age of week.

For the genetic analysis, we set the quality control criterion as an MAF greater than
0.05, and the MAF values of all filtered SNPs were evenly distributed between 0.1 and 0.5
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(Figure 1b). Following quality control, a GWAS was conducted for each trait, and in total,
we identified 953 significant and 3133 suggestively significant SNPs (Figure 1c, Table S1).
Significant SNPs associated with BW were concentrated on GGA1, 2, 4, 5, 7, 9, 17, and 24,
those associated with EN and EW were concentrated on GGA2, ESS on GGA8, and AH
on GGA3, 12, 13, 18, and 24, and those associated with ESC and SINS were more widely
distributed on the whole genome. These SNPs were mapped to 1457 genes (Table S2)
and 26 reported QTLs corresponding to traits (Table S1). Specifically, 190 genes were
associated with BW, 61 with EN, 249 with EW, 421 with ESC, 111 with AH, 98 with ESS,
and 78 with SINS. Functional enrichment analysis of the genes related to each trait revealed
pathways that correlated well with the observed traits, highlighting a link between these
loci and traits (Table 3). Most of the pathways were associated with the regulation of gene
expression, intercellular interactions, signal transduction, metabolic regulation, and growth
and development. Specifically, the genes related to BW were enriched by the regulation
of transcription and expression (RNA polymerase II transcription regulatory region sequence-
specific DNA binding), mineral uptake and metabolism (inorganic cation transmembrane
transport), and cellular uptake and metabolism of substances (regulation of receptor-mediated
endocytosis). Genes related to EN were enriched in intracellular homeostasis (cellular
response to salt) and histone modification (MOZ/MORF histone acetyltransferase complex).
Genes related to EW were enriched in affecting cell growth and differentiation (frizzled
binding), the regulation of metabolic activity (response to oxygen-containing compounds), the
post-translational modification of proteins (peptidyl–threonine modification), and glucose
metabolism and lipid synthesis (cellular response to insulin stimulus). Genes related to ESS
were enriched in calcium channel activity (voltage-gated calcium channel activity involved in
cardiac muscle cell action potential) and signal transduction (membrane depolarization during
cardiac muscle cell action potential and cell–cell signaling involved in cardiac conduction).
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Figure 1. Phenotype statistics and genome-wide association studies. (a) Box plots of all the candidate
traits. (b). Histogram of the MAF of all SNPs passing the quality control. (c). Manhattan plots for
associations of suggestive significant SNPs with all candidate traits. The threshold for genome-wide
suggestive significance was 3.18 (p value = 6.63 × 10−4). The horizontal black line indicates the
genome-wide significance thresholds (p values = 3.31 × 10−5, threshold = 4.48). Different colors
represent different traits.
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Table 3. Functional annotation of genes associated with suggestive significant SNPs from the GWAS.

Traits Source Term Name Term ID p Value

AH

GO:MF molecular function GO:0003674 9.62 × 10−13

GO:MF heparin binding GO:0008201 1.42 × 10−2

GO:BP biological process GO:0008150 6.33 × 10−11

GO:CC cellular anatomical entity GO:0110165 9.98 × 10−15

BW

GO:MF molecular function GO:0003674 7.48 × 10−29

GO:MF RNA polymerase II transcription regulatory region sequence-specific
DNA binding GO:0000977 1.15 × 10−2

GO:BP biological process GO:0008150 1.09 × 10−20

GO:BP cell–cell junction organization GO:0045216 5.50 × 10−5

GO:BP inorganic cation transmembrane transport GO:0098662 5.78 × 10−3

GO:BP regulation of receptor-mediated endocytosis GO:0048259 4.96 × 10−2

GO:CC cellular component GO:0005575 3.08 × 10−22

EN

GO:MF molecular function GO:0003674 9.64 × 10−9

GO:BP cellular process GO:0009987 8.63 × 10−10

GO:BP cellular response to salt GO:1902075 3.00 × 10−2

GO:CC cellular anatomical entity GO:0110165 2.66 × 10−8

GO:CC MOZ/MORF histone acetyltransferase complex GO:0070776 1.12 × 10−2

ESC

GO:MF molecular function GO:0003674 2.24 × 10−64

GO:MF monoatomic cation channel activity GO:0005261 8.11 × 10−3

GO:MF adenylate cyclase regulator activity GO:0010854 1.17 × 10−2

GO:MF tubulin binding GO:0015631 2.41 × 10−2

GO:MF metal ion transmembrane transporter activity GO:0046873 2.80 × 10−2

GO:BP biological process GO:0008150 3.04 × 10−58

GO:BP inorganic ion homeostasis GO:0098771 2.09 × 10−3

GO:BP negative regulation of cytoskeleton organization GO:0051494 8.00 × 10−3

GO:CC cellular anatomical entity GO:0110165 4.66 × 10−47

ESS

GO:MF binding GO:0005488 1.94 × 10−11

GO:MF voltage-gated calcium channel activity involved in cardiac muscle cell
action potential GO:0086007 2.98 × 10−5

GO:MF sequence-specific double-stranded DNA binding GO:1990837 2.75 × 10−3

GO:MF histone reader activity GO:0140566 2.76 × 10−2

GO:BP biological process GO:0008150 1.11 × 10−12

GO:BP myeloid cell differentiation GO:0030099 1.23 × 10−3

GO:BP membrane depolarization during cardiac muscle cell action potential GO:0086012 2.49 × 10−3

GO:BP cell–cell signaling involved in cardiac conduction GO:0086019 1.98 × 10−2

GO:CC cellular anatomical entity GO:0110165 8.57 × 10−17

GO:CC clathrin-coated pit GO:0005905 3.80 × 10−2

GO:CC monoatomic ion channel complex GO:0034702 4.13 × 10−2

EW

GO:MF binding GO:0005488 2.73 × 10−30

GO:MF transcription coactivator activity GO:0003713 1.68 × 10−4

GO:MF frizzled binding GO:0005109 1.94 × 10−2

GO:BP biological process GO:0008150 9.56 × 10−31

GO:BP response to oxygen-containing compound GO:1901700 5.21 × 10−3

GO:BP peptidyl–threonine modification GO:0018210 4.36 × 10−2

GO:BP cellular response to insulin stimulus GO:0032869 4.43 × 10−2

GO:CC cellular anatomical entity GO:0110165 1.23 × 10−38

SINS

GO:MF molecular function GO:0003674 1.19 × 10−16

GO:MF dipeptidyl–peptidase activity GO:0008239 1.86 × 10−2

GO:BP biological process GO:0008150 2.87 × 10−15

GO:BP intracellular signal transduction GO:0035556 8.65 × 10−3

GO:BP gene expression GO:0010467 1.18 × 10−2

GO:CC cellular component GO:0005575 6.02 × 10−12

GO:CC lamellipodium membrane GO:0031258 3.73 × 10−2
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3.2. Machine Learning Methods for Chicken Genomic Prediction

We utilized AutoGluon to establish individual ML models for each trait using the
genotype information from all 36,985 loci. Subsequently, we employed rrBLUP and BayesA
as references to assess the Pearson correlation coefficients and the RMSE between the
predicted values from each method and raw phenotypes. Our preliminary results revealed
that when using all loci, the predictive accuracy of all ML methods was notably low, but the
prediction biases were relatively high (Figures S1 and S2). Consequently, we conducted PCA
to reduce the dimensionality of the genotype data and used the first 100 eigenvalues of the
samples as parameters to fit each trait with ML methods. In addition, rrBLUP and BayesA
methods performed better when using all loci in predictive accuracy compared to using
eigenvalues from PCA, with no significant difference in prediction biases. Therefore, in the
latter section of the current study, our focus was on the comparison between the rrBLUP
and BayesA methods, which used all loci, and ML methods, which used eigenvalues.

Overall, in all 10 traits and 44 phenotype records, the ML model outperformed rrBLUP
and BayesA in 25 phenotypes in predictive accuracy, including all-period ESS, and BW,
AH, ESC (A, B, I), EW, and SINS for partial periods (Figure 2). However, the ML model
performed significantly worse than rrBLUP and BayesA for all periods of EN and ESCL.
Specifically, with the exception of the NN algorithm based on neural networks, the re-
maining ML algorithms showed a 7~180% higher predictive accuracy in the ESS model
compared to the other two methods. In contrast, the predictive accuracies of rrBLUP and
BayesA for EN were 17~108% higher than that of the ML algorithms. Among the various
ML algorithms, the WE model performed the best in sixteen phenotypes and outperformed
rrBLUP and BayesA in twenty phenotypes, and CAT and KNN performed the best in nine
and eight phenotypes, respectively (Table 4).
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has an advantage over the methods.
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Table 4. Predictive accuracy and biases of all candidate traits.

Traits CAT ET KNN LGB NN RF WE rrBLUP BayesA

AH36 0.32 (1.21) 0.24 (1.24) 0.25 (1.31) 0.17 (1.21) 0.17 (1.27) 0.32 (1.21) 0.33 (1.21) 0.23 (0.73) 0.22 (0.76)
AH56 0.3 (0.87) 0.35 (0.86) 0.16 (0.98) 0.24 (0.87) 0.38 (0.85) 0.32 (0.87) 0.35 (0.86) 0.32 (0.79) 0.32 (0.8)
AH72 0.09 (1.29) 0.06 (1.29) −0.02

(1.46) 0.03 (1.29) 0.09 (1.28) 0.19 (1.27) 0.07 (1.28) 0.22 (0.67) 0.22 (0.69)
AH80 0.30 (1.39) 0.38 (1.36) 0.24 (1.49) 0.2 (1.38) 0.24 (1.42) 0.37 (1.35) 0.38 (1.36) 0.26 (0.65) 0.25 (0.69)
BW28 0.32

(138.03)
0.24

(141.35)
0.27

(147.12)
0.27

(141.21)
0.24

(141.33)
0.26

(140.55)
0.33

(137.41)
0.25

(201.87)
0.27

(203.69)
BW36 0.42

(151.99)
0.45

(149.78)
0.36

(164.36)
0.45

(149.95) 0.32 (156.9) 0.44
(150.77)

0.44
(152.23) 0.3 (224.72) 0.27

(238.91)
BW56 0.25 (216.9) 0.19

(220.08)
0.19

(233.42)
0.22

(218.92)
0.17

(224.95)
0.22

(218.65)
0.26

(216.58)
0.16

(228.27)
0.27

(236.08)
BW72 0.16 (221.8) 0.18

(221.41)
0.07

(246.96) 0.17 (221.5) 0.17
(221.56)

0.22
(219.31)

0.18
(220.76)

0.14
(236.28)

0.28
(252.72)

BW80 0.18
(210.63)

0.15
(211.38)

0.28
(217.12)

0.18
(213.07)

0.16
(211.72) 0.16 (211.3) 0.27

(205.85)
0.15

(237.68)
0.22

(247.77)
BWAFE 0.26

(109.82)
0.29

(109.71)
0.28

(112.45)
0.24

(109.34)
0.24

(110.89)
0.33

(108.35)
0.35

(107.11)
0.34

(180.89)
0.34

(180.55)
EN38 0.04 (8.15) 0.05 (8.43) 0.19 (9.09) 0.12 (8.39) 0 (7.8) 0.17 (7.98) 0.12 (7.98) 0.27 (12.31) 0.3 (12.51)
EN48 0 (10.32) 0.09 (10.32) 0.2 (10.92) 0.05 (10.56) −0.01

(9.86) 0.09 (10.31) 0.17 (9.96) 0.25 (18.8) 0.28 (18.99)
EN56 0.03 (12.64) 0.07 (12.89) 0.16 (14.77) 0.15 (13.53) 0.04 (12.22) 0.09 (13.18) 0.11 (12.28) 0.19 (23.75) 0.21 (23.99)
EN72 0.05 (23.63) 0 (24.64) 0.07 (28.15) 0 (24.59) −0.01

(22.95) 0.06 (23.55) 0.06 (22.96) 0.16 (33.51) 0.15 (33.57)
ESCA36 0.35 (1.19) 0.31 (1.23) 0.38 (1.2) 0.36 (1.18) 0.24 (1.24) 0.39 (1.17) 0.42 (1.17) 0.24 (1.76) 0.22 (1.77)
ESCA56 0.29 (1.59) 0.3 (1.58) 0.27 (1.67) 0.33 (1.59) 0.05 (1.66) 0.28 (1.61) 0.24 (1.62) 0.24 (1.74) 0.24 (1.74)
ESCA72 0.28 (1.88) 0.29 (1.88) 0.29 (1.97) 0.21 (1.88) 0.22 (1.96) 0.3 (1.87) 0.31 (1.87) 0.36 (1.76) 0.36 (1.76)
ESCA80 0.3 (1.75) 0.36 (1.72) 0.19 (1.91) 0.33 (1.73) 0.3 (1.76) 0.33 (1.74) 0.32 (1.75) 0.37 (1.72) 0.36 (1.73)
ESCB36 0.32 (1.24) 0.34 (1.23) 0.33 (1.3) 0.29 (1.25) 0.24 (1.27) 0.33 (1.24) 0.35 (1.23) 0.24 (2.91) 0.24 (2.92)
ESCB56 0.24 (1.51) 0.11 (1.56) 0.26 (1.56) 0.08 (1.53) 0.07 (1.56) 0.21 (1.56) 0.2 (1.52) 0.19 (2.89) 0.17 (2.9)
ESCB72 0.03 (1.85) 0.13 (1.85) 0.19 (1.94) 0.04 (1.85) 0.06 (1.94) 0.11 (1.87) 0.1 (1.88) 0.22 (2.9) 0.22 (2.9)
ESCB80 0.11 (1.85) 0.18 (1.83) 0.07 (1.98) 0.02 (1.86) 0.15 (1.87) 0.09 (1.87) 0.14 (1.85) 0.23 (2.87) 0.23 (2.89)
ESCI36 0.27 (3.91) 0.26 (3.95) 0.29 (4.03) 0.08 (3.91) 0.22 (3.91) 0.32 (3.89) 0.33 (3.85) 0.26 (1.27) 0.25 (1.27)
ESCI56 0.1 (5.45) −0.09

(5.64) 0.11 (5.81) 0.23 (5.45) 0.01 (5.73) 0 (5.59) 0.11 (5.64) 0.2 (1.67) 0.19 (1.66)
ESCI72 0.26 (6.4) 0.28 (6.37) 0.26 (6.73) 0.24 (6.35) 0.14 (6.68) 0.23 (6.51) 0.24 (6.42) 0.32 (1.56) 0.33 (1.69)
ESCI80 0.34 (5.75) 0.4 (5.67) 0.16 (6.41) 0.34 (5.76) 0.3 (5.82) 0.37 (5.7) 0.38 (5.73) 0.37 (1.53) 0.36 (1.59)
ESCL36 0.37 (2.84) 0.27 (2.93) 0.26 (3.07) 0.14 (2.85) 0.24 (2.93) 0.35 (2.86) 0.33 (2.86) 0.38 (5.89) 0.37 (5.91)
ESCL56 0.2 (3.46) 0.23 (3.45) 0.22 (3.6) 0.19 (3.48) 0.22 (3.51) 0.19 (3.47) 0.26 (3.4) 0.36 (6.23) 0.35 (6.28)
ESCL72 0.34 (3.59) 0.33 (3.58) 0.23 (3.86) 0.34 (3.58) 0.3 (3.64) 0.33 (3.58) 0.36 (3.55) 0.44 (6.06) 0.45 (6.13)
ESCL80 0.34 (3.69) 0.38 (3.66) 0.26 (3.98) 0.27 (3.71) 0.21 (3.88) 0.34 (3.69) 0.36 (3.66) 0.42 (6.02) 0.43 (6.08)
ESS36 0.52 (0.56) 0.54 (0.55) 0.48 (0.59) 0.42 (0.56) 0.39 (0.6) 0.52 (0.56) 0.54 (0.55) 0.39 (0.33) 0.39 (0.33)
ESS56 0.42 (0.7) 0.43 (0.69) 0.39 (0.72) 0.37 (0.69) 0.24 (0.77) 0.43 (0.69) 0.44 (0.69) 0.22 (0.32) 0.23 (0.31)
ESS72 0.41 (0.69) 0.49 (0.66) 0.4 (0.71) 0.39 (0.67) 0.28 (0.73) 0.48 (0.67) 0.44 (0.68) 0.29 (0.3) 0.27 (0.29)
ESS80 0.49 (0.67) 0.51 (0.65) 0.45 (0.68) 0.44 (0.65) 0.2 (0.76) 0.5 (0.66) 0.51 (0.65) 0.24 (0.29) 0.24 (0.28)
EW28 0.3 (3.3) 0.26 (3.32) 0.19 (3.57) 0.15 (3.3) 0.21 (3.39) 0.19 (3.43) 0.29 (3.3) 0.33 (5.76) 0.34 (5.76)
EW36 0.3 (3.84) 0.32 (3.84) 0.25 (4.07) 0.31 (3.83) 0.3 (3.95) 0.3 (3.85) 0.34 (3.82) 0.33 (5.91) 0.33 (5.93)
EW56 0.37 (4.31) 0.37 (4.3) 0.31 (4.57) 0.35 (4.34) 0.24 (4.48) 0.36 (4.32) 0.38 (4.3) 0.36 (6.1) 0.36 (6.12)
EW72 0.24 (4.53) 0.29 (4.47) 0.33 (4.61) 0.27 (4.46) 0.29 (4.47) 0.25 (4.51) 0.35 (4.39) 0.25 (6.14) 0.25 (6.16)
EW80 0.23 (4.56) 0.28 (4.49) 0.27 (4.79) 0.31 (4.42) 0.19 (4.64) 0.29 (4.48) 0.26 (4.51) 0.27 (6.19) 0.27 (6.21)

EWAFE 0.09 (6.36) 0.01 (6.43) 0.04 (6.9) 0.08 (6.34) −0.01
(6.42)

−0.01
(6.56) 0.02 (6.38) 0.17 (4.3) 0.17 (4.25)

SINS36 0.06 (0.53) −0.03
(0.55)

−0.14
(0.63) 0.09 (0.53) 0.03 (0.54) 0.02 (0.55) −0.04

(0.55) 0.05 (0.32) 0.02 (0.33)

SINS56 −0.03
(0.57)

−0.14
(0.57) 0.1 (0.59) −0.02

(0.56) 0.05 (0.57) −0.09
(0.58) 0.04 (0.56) 0.06 (0.25) 0.05 (0.25)

SINS72 0.71 (0.96) 0.71 (0.96) 0.65 (1.07) 0.69 (0.98) 0.62 (1.06) 0.72 (0.95) 0.71 (0.95) 0.49 (0.36) 0.61 (0.53)
SINS80 0.16 (0.59) 0.21 (0.59) 0.29 (0.61) 0.22 (0.58) 0.25 (0.59) 0.25 (0.58) 0.29 (0.58) 0.33 (0.27) 0.32 (0.28)

Numbers outside the parentheses are the Pearson correlation coefficient, and the ones on the inside are the RMSE.

However, the results of prediction biases, on the other hand, varied considerably. In
all phenotypes, the ML model outperformed rrBLUP and BayesA in 26 phenotypes in the
RMSE, including all-period BW, EN, ESCB and ESCL, and EW for partial periods, while they
performed worse for AH and ESS. Among all ML algorithms, the WE model performed the
best in 17 phenotypes and outperformed rrBLUP and BayesA in 25 phenotypes. It is worth
noting that the WE model performed best both in predictive accuracy and biases for the
pre-body weight (BW28) and mid-term egg weight (EW36, EW56, and EW72).

In addition, we investigated the association between sample size, heritability, and
the predictive accuracy of the WE, rrBLUP, and BayesA models (Figure 3). Our findings
revealed an absence of a distinct relationship between the sample size and predictive
accuracy of all models. Relatively, there was a more pronounced linear relationship between
the predictive accuracy and heritability obtained from the WE model compared to rrBLUP
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and BayesA. This finding was consistent with our expectations, indicating that ML models
could capture genetic information for various traits.
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Figure 3. Correlation of heritability and sample size with the predictive accuracy of WE, rrBLUP, and
BayesA. Scatter plots of heritability and sample size versus the predictive accuracy of 44 phenotypes.

3.3. Comparison of Different Feature Engineering Methods

In order to investigate the impact of commonly used methods of locus screening on the
predictive accuracy of models, we set the gradients on PCA, MAF, and LD pruning to obtain
different subsets of SNPs and used these subsets to fit each trait. First, we manipulated
the number of principal components (PCs = 10, 50, 100, 200, 300, 400, and 500), and found
a consistent pattern where the predictive accuracy of most trait models demonstrated an
initial rise followed by a decline as the number of PCs increased, and each trait exhibited
distinct peaks at varying PC values (Figure S3). Furthermore, we also applied gradients for
MAF (0.1, 0.2, 0.3, 0.4) and LD pruning (r2 = 0.1, 0.2, 0.3, 0.4, 0.5). In general, the models for
most traits did not respond significantly to changes in MAF or LD pruning (Figure S4).

We also utilized the genotypes of suggestively significant SNPs obtained from the
GWAS to fit the traits. Interestingly, our analysis revealed that directly using the genotype of
these suggestive significant SNPs could lead to an increase in predictive accuracy for almost
all phenotypes compared to using the 100 eigenvalues from PCA (Figure 4). Specifically,
the predictive accuracy based on the ML methods improved for all but five phenotypes
(AH56, AH80, EN48, EN56, and ESS72), with enhancements ranging from 0.69% to 277%.
Twenty-nine phenotypes achieved more than 10% improvement, and eighteen achieved
more than 20% improvement. In the prediction of pre-intermediate SINS (SINS36, SINS56),
training the model with suggestive significant SNPs identified by the GWAS improved the
predictive accuracy by 188% and 277%, respectively. In addition, twenty-one phenotypes
yielded the same optimal ML model during training on the two parameter sets, with
thirteen phenotypes achieving more than 10% improvement. With the exception of the
all-period EN, AH56, and ESCB80, the predictive accuracies of the ML methods surpassed
those of rrBLUP and BayesA (2~466%), including ESCL, which has not been performed
well before. Notably, the WE model sustained its superior performance and remained at
the forefront among the 23 phenotypes, particularly in predicting BW, EW, and ESS. On
the other hand, there were similar decreases in prediction biases with the ML methods
(Figure 5), excluding five phenotypes (EN48, EN56, ESS72, AH80, and ESCB80). But, these
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decreases were not significant and did not produce qualitative changes for the comparison
with the rrBLUP and BayesA methods.
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4. Discussion

Our research initially highlighted the performance of ten traits in the Rhode Island
Red chicken population across multiple time points. As age increased, both BW and EW
showed a gradual upward trend; AH and ESS, indicators of egg quality and shell quality,
respectively, demonstrated patterns of increase and then decrease. Genetic heritability
for all traits, except AH, which was low, ranged from medium to high, aligned with our
expectations and previous research findings [30–33].

Through the GWAS, we identified thousands of significant or suggestive significant
SNPs associated with these traits, along with the genes and reported QTLs in which these
loci were located. We found that some significant SNPs associated with traits such as BW,
EN, AH, and ESC are located in the corresponding reported QTLs. Functional enrichment
analyses revealed the biological pathways involved these genes. We found that these
genes were commonly associated with pathways, such as the regulation of gene expression,
signal transduction, calcium channels, and growth and development, displaying a good
correlation between pathways and traits [34–37]. Both results of the QTL and functional
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enrichment analyses demonstrated the potential association of the SNPs and genes we
found with these traits, providing a foundation for subsequent feature engineering.

This study focused on comparing the accuracy and bias of different genomic prediction
methods. Initially employing the genotype of all SNPs to predict phenotypes, we observed
that nearly all ML methods yielded poor predictive accuracy and prediction biases. It
was hypothesized that this was due to the excessive number of parameters leading to
dimensionality explosion, as well as interference by redundant information during model
training [38,39]. Consequently, the latter part of this study focuses on how to effectively
filter and preprocess SNPs with classical bioinformatics methods to enhance the predictive
accuracy and reduce the prediction biases of the ML models.

We attempted to reduce the dimensionality through PCA. PCA is a widely used and
efficient dimensionality reduction method in the fields of bioinformatics and machine learn-
ing. After training the ML model using the top 100 PCs from the samples, we observed a
significant improvement in the results. Of the 44 phenotypes, the ML models outperformed
rrBLUP and BayesA more than half of the phenotypes in predictive accuracy, particu-
larly for BW and ESS. However, the models performed poorly in fitting EN and ESCL.
Interestingly, the performance of the ML models on the prediction bias of EN and ESS is
completely switched around. In predicting EN, the prediction biases of the ML models were
significantly smaller than rrBLUP and BayesA, while ESS obtained exactly the opposite
result. Most machine learning models outperform linear models in feature extraction and
processing. Therefore, the direct reason for the difference in the predictive accuracy of traits
is that after dimensionality reduction, the PCs in the population’s genomic information
were more strongly related to ESS and showed no significant correlation with EN, making
it difficult for the ML models to extract information relevant to EN from the parameters.
This might imply that the genetic structure of EN was relatively more linear, while the
genetic structure of ESS contained more nonlinear relationships, which contributed to the
difference in the performance of ML in the two traits. Since EN is controlled by multiple loci
with small effects, even after aggregating the PCs, it may still be impossible to capture the
influencing factors related to EN [34,40,41]. On the other hand, the ML models were able
to capture the key eigenvalues affecting BW and ESS more effectively. Another possible
explanation is that when predicting ESS, ML models were overly sensitive to the noise in
the training data, resulting in higher accuracy of its predictions but increased bias in the
predicted values, which manifested as overfitting. In contrast, the genetic structure of EN
contained less noise, which, in turn, led to better predictive accuracy in linear models. ML
models might not have a significant advantage when dealing with cleaner data, but they
were able to reduce prediction bias by learning patterns.

Among the ML models used, the WE model performed best. The WE model combined
the prediction results from other methods employed in AutoGluon and used linear fitting to
generate new predicted values. This modeling framework, known as stacking in ML, places
the predictions of multiple first-level models as parameters into a second-level model for
re-fitting, making it a widely employed approach for enhancing model predictive accuracy.
The CAT and KNN demonstrated good performances. CatBoost is an ML algorithm that
excels in processing categorical data, employing a gradient boosting approach, making it
well suited for the characteristics of SNP genotype data [42–44]. The KNN, on the other
hand, is an algorithm based on the principle that “similar entities share attributes” [45].
Considering that researchers of genomic selection and prediction often assume that the
same genotypes will have the same effects in a population [1,10,46], the KNN algorithm
fits this application scenario well. This could explain its relative success with certain traits,
particularly with regard to EN. Compared with other ML algorithms, the KNN has a more
obvious advantage in predicting EN. In summary, there is no one model that is superior
to others in terms of predictive accuracy across all traits, and there does not seem to be a
clear pattern to the variations in predictive accuracy among methods. In linear models,
different assumptions about marker effects and their variances are made, and models
whose assumptions are closer to the true genetic structure of a particular trait often have
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higher predictive accuracy [47]. Although ML does not require distributional assumptions
on the variables chosen, this situation is also found in ML models, where the predictive
performance largely depends on the congruence between model assumptions and the true
structure of the data [48]. Therefore, examining the genetic structure of traits through the
predictive accuracy of ML models may become a viable method in the future.

Subsequently, we examined the impact of several locus filtering methods on the
accuracy of the predictive models. PCA with different dimensions had a relatively clear
effect on the predictive accuracy. Interestingly, this effect seemed to follow the “elbow rule”,
implying that there is a specific dimension value at which the dimensionality-reduced
model can achieve the best predictive performance [49,50]. However, the “elbow” positions
for different traits were inconsistent and exhibited no clear pattern. On the other hand,
surprisingly, both locus filtering based on MAF and LD pruning appeared to have no
significant effect on predictive accuracy. Within our study population, MAF was used as a
preliminary criterion for judging whether loci were affected by artificial selection, although
this was not precise [51,52]. It is generally considered that loci under strong artificial
selection would show reduced polymorphism, reflected in lower MAF values [53,54]. We
speculate that the reason for this phenomenon might be that the breeding purposes of this
population were primarily concentrated on EN traits, with less selection for other traits.
Therefore, the MAF values of loci related to these traits were almost uniformly distributed
between 0.1 and 0.5 and thus did not have a definitive effect on model accuracy.

The GWAS identified SNPs that were significantly associated with various traits
across the entire genome. Applying these suggestive significant SNPs to ML models
improved the predictive accuracy and reduced the prediction biases for nearly all the traits,
which is consistent with our expectations. In our results, direct genomic prediction using
genotypes of these SNPs reaped better performance in most phenotypes compared to
using eigenvalues from PCA. In SINS and ESCL, the improvements in predictive accuracy
were striking, even approaching three times that of the previous method (188~277%). This
result indicates that the GWAS can serve as a feature-engineering method, playing a role
in genomic prediction models. However, it is worth noting that these values are not exact
values of predictive accuracy for traits but rather the magnitude of improvement compared
to previous methods. Considering that typical GWASs use linear mixed models and control
for population structure and false-positive correction in SNPs, the identified significant
and suggestive significant loci have a clear statistical association with traits. This not only
helps ML models to reduce the need to process redundant information but also focuses on
feature extraction, thereby obtaining more accurate predictive results.

5. Conclusions

Our study revealed that ML algorithms outperformed the traditional rrBLUP and
BayesA in predicting economic traits using genotype data in a Rhode Island Red female
chicken population. We found that ML performed better at predicting most traits using
eigenvalues from PCA. It also outperformed rrBLUP and BayesA in more than half the
phenotypes, especially BW and EW. In addition, the application of suggestive significant
SNPs obtained from the GWAS to genomic prediction substantially improved the effect
of prediction, suggesting that the GWAS could be involved in genomic prediction as a
feature extraction method. In conclusion, this study strengthens our understanding of ML
algorithms and feature engineering in animal genome prediction and provides valuable
insights for future research in this area.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes15060690/s1. Figure S1: Predictive accuracy of ML models
for 56-week traits using all SNPs; Figure S2: Prediction biases of ML models for 56-week traits using
all SNPs; Figure S3: Predictive accuracy of the WE model for traits at 56 weeks using different PCA
methods; Figure S4: Predictive accuracy of the WE model for traits at 56 weeks using different MAF
and LD pruning methods; Table S1: Significant and suggestive significant SNPs identified by GWAS
for all phenotypes; Table S2: Genes in which significant loci were located.
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