Through the Cat-Map Gateway: A Brief History of Cataract Genetics
Abstract
:1. Introduction
2. Lens-Signature Genes for Inherited and Age-Related Cataract
2.1. Genes for Lens Crystallins
2.2. Genes for Lens Transmembrane and Beaded Filament Proteins
2.3. Genes for Eye and/or Lens Transcription Factors
3. Widely Expressed Genes for Inherited and Age-Related Cataract
4. GWAS Continue to Expand the List of Widely Expressed Genes for Age-Related Cataract
5. Orphan Loci and Genes for Cataract
6. Gene-Based Therapeutics for Cataract
7. Summary and Outlook
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iribarren, R. Crystalline lens and refractive development. Prog. Retin. Eye Res. 2015, 47, 86–106. [Google Scholar] [CrossRef] [PubMed]
- Danysh, B.P.; Duncan, M.K. The lens capsule. Exp. Eye Res. 2009, 88, 151–164. [Google Scholar] [CrossRef] [PubMed]
- Cvekl, A.; Ashery-Padan, R. The cellular and molecular mechanisms of vertebrate lens development. Development 2014, 141, 4432–4447. [Google Scholar] [CrossRef] [PubMed]
- Cvekl, A.; Zhang, X. Signaling and Gene Regulatory Networks in Mammalian Lens Development. Trends Genet. 2017, 33, 677–702. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S. Zinn’s zonule. Prog. Retin. Eye Res. 2021, 82, 100902. [Google Scholar] [CrossRef] [PubMed]
- Kuszak, J.R.; Zoltoski, R.K.; Tiedemann, C.E. Development of lens sutures. Int. J. Dev. Biol. 2004, 48, 889–902. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S.; Shi, Y.; Vrensen, G.F. Biological glass: Structural determinants of eye lens transparency. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011, 366, 1250–1264. [Google Scholar] [CrossRef] [PubMed]
- Bassnett, S.; Sikic, H. The lens growth process. Prog. Retin. Eye Res. 2017, 60, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Donaldson, P.J.; Grey, A.C.; Maceo Heilman, B.; Lim, J.C.; Vaghefi, E. The physiological optics of the lens. Prog. Retin. Eye Res. 2017, 56, e1–e24. [Google Scholar] [CrossRef]
- Morishita, H.; Eguchi, T.; Tsukamoto, S.; Sakamaki, Y.; Takahashi, S.; Saito, C.; Koyama-Honda, I.; Mizushima, N. Organelle degradation in the lens by PLAAT phospholipases. Nature 2021, 592, 634–638. [Google Scholar] [CrossRef]
- Augusteyn, R.C. On the growth and internal structure of the human lens. Exp. Eye Res. 2010, 90, 643–654. [Google Scholar] [CrossRef] [PubMed]
- Quinlan, R.A.; Clark, J.I. Insights into the biochemical and biophysical mechanisms mediating the longevity of the transparent optics of the eye lens. J. Biol. Chem. 2022, 298, 102537. [Google Scholar] [CrossRef]
- Schmid, P.W.N.; Lim, N.C.H.; Peters, C.; Back, K.C.; Bourgeois, B.; Pirolt, F.; Richter, B.; Peschek, J.; Puk, O.; Amarie, O.V.; et al. Imbalances in the eye lens proteome are linked to cataract formation. Nat. Struct. Mol. Biol. 2021, 28, 143–151. [Google Scholar] [CrossRef]
- Leffler, C.T.; Klebanov, A.; Samara, W.A.; Grzybowski, A. The history of cataract surgery: From couching to phacoemulsification. Ann. Transl. Med. 2020, 8, 1551. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Blindness and Vision Impairment Collaborators; Vision Loss Expert Group of the Global Burden of Disease Study. Causes of blindness and vision impairment in 2020 and trends over 30 years, and prevalence of avoidable blindness in relation to VISION 2020: The Right to Sight: An analysis for the Global Burden of Disease Study. Lancet Glob. Health 2021, 9, e144–e160. [Google Scholar] [CrossRef]
- Asbell, P.A.; Dualan, I.; Mindel, J.; Brocks, D.; Ahmad, M.; Epstein, S. Age-related cataract. Lancet 2005, 365, 599–609. [Google Scholar] [CrossRef]
- Sparrow, J.M.; Bron, A.J.; Brown, N.A.; Ayliffe, W.; Hill, A.R. The Oxford clinical cataract classification and grading system. Int. Ophthalmol. 1986, 9, 207–225. [Google Scholar] [CrossRef] [PubMed]
- Chylack, L.T., Jr.; Wolfe, J.K.; Singer, D.M.; Leske, M.C.; Bullimore, M.A.; Bailey, I.L.; Friend, J.; McCarthy, D.; Wu, S.Y. The Lens Opacities Classification System III. The Longitudinal Study of Cataract Study Group. Arch. Ophthalmol. 1993, 111, 831–836. [Google Scholar] [CrossRef]
- Hejtmancik, J.F. Congenital cataracts and their molecular genetics. Semin. Cell Dev. Biol. 2008, 19, 134–149. [Google Scholar] [CrossRef]
- Shiels, A.; Hejtmancik, J.F. Biology of inherited ctaracts and opportunities for treatment. Annu. Rev. Vis. Sci. 2019, 5, 123–149. [Google Scholar] [CrossRef]
- Shiels, A.; Hejtmancik, J.F. Inherited cataracts: Genetic mechanisms and pathways new and old. Exp. Eye Res. 2021, 209, 108662. [Google Scholar] [CrossRef] [PubMed]
- Feingold, J.; Raoul, O.; See, G.; Delthil, S.; Crouzet, J.; Demailly, M.L.; Morel, J. Congenital cataract linked to the Y chromosom. J. Genet. Hum. 1979, 27, 67–69. [Google Scholar] [PubMed]
- Roshan, M.; Kabekkodu, S.P.; Vijaya, P.H.; Manjunath, K.; Graw, J.; Gopinath, P.M.; Satyamoorthy, K. Analysis of mitochondrial DNA variations in Indian patients with congenital cataract. Mol. Vis. 2012, 18, 181–193. [Google Scholar] [PubMed]
- Miller, B.; Torres, M.; Jiang, X.; McKean-Cowdin, R.; Nousome, D.; Kim, S.J.; Mehta, H.H.; Yen, K.; Cohen, P.; Varma, R. A Mitochondrial Genome-Wide Association Study of Cataract in a Latino Population. Transl. Vis. Sci. Technol. 2020, 9, 25. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Long, E.; Lin, H.; Liu, Y. Prevalence and epidemiological characteristics of congenital cataract: A systematic review and meta-analysis. Sci. Rep. 2016, 6, 28564. [Google Scholar] [CrossRef] [PubMed]
- Thayalan, K.; Kothari, A.; Khanna, Y.; Kothari, A. Congenital cataracts—Clinical considerations in ultrasound diagnosis and management. Australas. J. Ultrasound Med. 2020, 23, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Fawcett, S.L.; Wang, Y.Z.; Birch, E.E. The critical period for susceptibility of human stereopsis. Investig. Ophthalmol. Vis. Sci. 2005, 46, 521–525. [Google Scholar] [CrossRef]
- Birch, E.E.; Wang, J.; Felius, J.; Stager, D.R., Jr.; Hertle, R.W. Fixation control and eye alignment in children treated for dense congenital or developmental cataracts. J. AAPOS 2012, 16, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Bothun, E.D.; Repka, M.X.; Kraker, R.T.; Wu, R.; Leske, D.A.; Hatt, S.R.; Li, Z.; Freedman, S.F.; Astle, W.F.; Cotter, S.A.; et al. Pediatric Eye Disease Investigator Group, Incidence of glaucoma-related adverse events in the first 5 years after pediatric lensectomy. JAMA Ophthalmol. 2023, 141, 324–331. [Google Scholar] [CrossRef]
- Crouch, E. Glaucoma considerations in pediatric cataract surgery. JAMA Ophthalmol. 2023, 141, 331–332. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, R.; Lin, H.; Liu, Y. Lens regeneration in humans: Using regenerative potential for tissue repairing. Ann. Transl. Med. 2020, 8, 1544. [Google Scholar] [CrossRef]
- Liu, Z.; Huang, S.; Zheng, Y.; Zhou, T.; Hu, L.; Xiong, L.; Li, D.W.; Liu, Y. The lens epithelium as a major determinant in the development, maintenance, and regeneration of the crystalline lens. Prog. Retin. Eye Res. 2023, 92, 101112. [Google Scholar] [CrossRef]
- Solebo, A.L.; Hammond, C.J.; Rahi, J.S. Improving outcomes in congenital cataract. Nature 2018, 556, E1–E2. [Google Scholar] [CrossRef]
- Vavvas, D.G.; Dryja, T.P.; Wilson, M.E.; Olsen, T.W.; Shah, A.; Jurkunas, U.; Pineda, R.; Poulaki, V.; Palioura, S.; Veldman, P.; et al. Lens regeneration in children. Nature 2018, 556, E2–E3. [Google Scholar] [CrossRef]
- Liu, Y.; Granet, D.; Lin, H.; Baxter, S.; Ouyang, H.; Zhu, J.; Huang, S.; Liu, Z.; Wu, X.; Yan, F.; et al. Liu et al. reply. Nature 2018, 556, E3–E4. [Google Scholar] [CrossRef]
- Amaya, L.; Taylor, D.; Russell-Eggitt, I.; Nischal, K.K.; Lengyel, D. The morphology and natural history of childhood cataracts. Surv. Ophthalmol. 2003, 48, 125–144. [Google Scholar] [CrossRef]
- Reddy, M.A.; Francis, P.J.; Berry, V.; Bhattacharya, S.S.; Moore, A.T. Molecular genetic basis of inherited cataract and associated phenotypes. Surv. Ophthalmol. 2004, 49, 300–315. [Google Scholar] [CrossRef]
- Merin, S.; Crawford, J.S. The etiology of congenital cataracts. A survey of 386 cases. Can. J. Ophthalmol. 1971, 6, 178–182. [Google Scholar]
- Lin, H.; Lin, D.; Liu, Z.; Long, E.; Wu, X.; Cao, Q.; Chen, J.; Lin, Z.; Li, X.; Zhang, L.; et al. A novel congenital cataract category system based on lens opacity locations and relevant anterior segment characteristics. Invest. Ophthalmol. Vis. Sci. 2016, 57, 6389–6395. [Google Scholar] [CrossRef]
- Cassidy, L.; Taylor, D. Congenital cataract and multisystem disorders. Eye 1999, 13, 464–473. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Kaiser-Kupfer, M.I.; Piatigorsky, J. Molecular biology and inherited disorders of the eye lens. Metab. Mol. Basis Inherit. Dis. 2001, 8, 6033–6062. [Google Scholar]
- Bell, S.J.; Oluonye, N.; Harding, P.; Moosajee, M. Congenital cataract: A guide to genetic and clinical management. Ther. Adv. Rare Dis. 2020, 1, 2633004020938061. [Google Scholar] [CrossRef]
- Ang, M.J.; Afshari, N.A. Cataract and systemic disease: A review. Clin. Exp. Ophthalmol. 2021, 49, 118–127. [Google Scholar] [CrossRef]
- Waardenburg, P.J.; Franceschetti, A.; Klein, D. Genetics and Ophthalmology; Charles C. Thomas Publisher: Springfield, IL, USA; Royal Van Gorcum, Publisher: Assen, The Netherlands; Blackwell Scientific Publications Ltd.: Oxford, UK, 1961; pp. 859–861. [Google Scholar]
- Renwick, J.H. Eyes on chromosomes. J. Med. Genet. 1970, 7, 239–243. [Google Scholar] [CrossRef]
- Lubsen, N.H.; Renwick, J.H.; Tsui, L.C.; Breitman, M.L.; Schoenmakers, J.G. A locus for a human hereditary cataract is closely linked to the γ-crystallin gene family. Proc. Natl. Acad. Sci. USA 1987, 84, 489–492. [Google Scholar] [CrossRef]
- Hejtmancik, J.F.; Kantorow, M. Molecular genetics of age-related cataract. Exp. Eye Res. 2004, 79, 3–9. [Google Scholar] [CrossRef]
- Shiels, A.; Hejtmancik, J.F. Mutations and mechanisms in congenital and age-related cataracts. Exp. Eye Res. 2017, 156, 95–102. [Google Scholar] [CrossRef]
- Sanfilippo, P.G.; Hewitt, A.W.; Hammond, C.J.; Mackey, D.A. The heritability of ocular traits. Surv. Ophthalmol. 2010, 55, 561–583. [Google Scholar] [CrossRef]
- Iyengar, S.K.; Klein, B.E.; Klein, R.; Jun, G.; Schick, J.H.; Millard, C.; Liptak, R.; Russo, K.; Lee, K.E.; Elston, R.C. Identification of a major locus for age-related cortical cataract on chromosome 6p12-q12 in the Beaver Dam Eye Study. Proc. Natl. Acad. Sci. USA 2004, 101, 14485–14490. [Google Scholar] [CrossRef]
- Lin, H.J.; Huang, Y.C.; Lin, J.M.; Liao, W.L.; Wu, J.Y.; Chen, C.H.; Chou, Y.C.; Chen, L.A.; Lin, C.J.; Tsai, F.J. Novel susceptibility genes associated with diabetic cataract in a Taiwanese population. Ophthalmic Genet. 2013, 34, 35–42. [Google Scholar] [CrossRef]
- Liao, J.; Su, X.; Chen, P.; Wang, X.; Xu, L.; Li, X.; Thean, L.; Tan, C.; Tan, A.G.; Tay, W.T.; et al. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum. Mol. Genet. 2014, 23, 6119–6128. [Google Scholar] [CrossRef]
- Boutin, T.S.; Charteris, D.G.; Chandra, A.; Campbell, S.; Hayward, C.; Campbell, A.; UK Biobank Eye & Vision Consortium; Nandakumar, P.; Hinds, D.; 23andMe Research Team; et al. Insights into the genetic basis of retinal detachment. Hum. Mol. Genet. 2020, 29, 689–702. [Google Scholar] [CrossRef]
- Yonova-Doing, E.; Zhao, W.; Igo, R.P., Jr.; Wang, C.; Sundaresan, P.; Lee, K.E.; Jun, G.R.; Alves, A.C.; Chai, X.; Chan, A.S.Y.; et al. Common variants in SOX-2 and congenital cataract genes contribute to age-related nuclear cataract. Commun. Biol. 2020, 3, 755. [Google Scholar] [CrossRef]
- Choquet, H.; Melles, R.B.; Anand, D.; Yin, J.; Cuellar-Partida, G.; Wang, W.; 23andMe Research Team; Hoffmann, T.J.; Nair, K.S.; Hysi, P.G.; et al. A large multiethnic GWAS meta-analysis of cataract identifies new risk loci and sex-specific effects. Nat. Commun. 2021, 12, 3595. [Google Scholar] [CrossRef]
- Hicks, P.M.; Au, E.; Self, W.; Haaland, B.; Feehan, M.; Owen, L.A.; Siedlecki, A.; Nuttall, E.; Harrison, D.; Reynolds, A.L.; et al. Pseudoexfoliation and cataract syndrome associated with genetic and epidemiological factors in a Mayan cohort of Guatemala. Int. J. Environ. Res. Public. Health 2021, 18, 7231. [Google Scholar] [CrossRef]
- Heyne, H.O.; Karjalainen, J.; Karczewski, K.J.; Lemmela, S.M.; Zhou, W.; FinnGen; Havulinna, A.S.; Kurki, M.; Rehm, H.L.; Palotie, A.; et al. Mono- and biallelic variant effects on disease at biobank scale. Nature 2023, 613, 519–525. [Google Scholar] [CrossRef]
- Jiang, C.; Melles, R.B.; Sangani, P.; Hoffmann, T.J.; Hysi, P.G.; Glymour, M.M.; Jorgenson, E.; Lachke, S.A.; Choquet, H. Association of behavioral and clinical risk factors with Cataract: A two-sample Mendelian randomization study. Invest. Ophthalmol. Vis. Sci. 2023, 64, 19. [Google Scholar] [CrossRef]
- Wang, Q.; Dhindsa, R.S.; Carss, K.; Harper, A.R.; Nag, A.; Tachmazidou, I.; Vitsios, D.; Deevi, S.V.V.; Mackay, A.; Muthas, D.; et al. Rare variant contribution to human disease in 281,104 UK Biobank exomes. Nature 2021, 597, 527–532. [Google Scholar] [CrossRef]
- Shiels, A.; Bennett, T.M.; Hejtmancik, J.F. Cat-Map: Putting cataract on the map. Mol. Vis. 2010, 16, 2007–2015. [Google Scholar]
- den Dunnen, J.T.; Antonarakis, S.E. Mutation nomenclature extensions and suggestions to describe complex mutations: A discussion. Hum. Mutat. 2000, 15, 7–12. [Google Scholar] [CrossRef]
- Chambers, C.; Russell, P. Deletion mutation in an eye lens β-crystallin. An animal model for inherited cataracts. J. Biol. Chem. 1991, 266, 6742–6746. [Google Scholar] [CrossRef]
- Cartier, M.; Breitman, M.L.; Tsui, L.C. A frameshift mutation in the γ E-crystallin gene of the Elo mouse. Nat. Genet. 1992, 2, 42–45. [Google Scholar] [CrossRef]
- Brakenhoff, R.H.; Henskens, H.A.; van Rossum, M.W.; Lubsen, N.H.; Schoenmakers, J.G. Activation of the γ E-crystallin pseudogene in the human hereditary Coppock-like cataract. Hum. Mol. Genet. 1994, 3, 279–283. [Google Scholar] [CrossRef]
- Litt, M.; Carrero-Valenzuela, R.; LaMorticella, D.M.; Schultz, D.W.; Mitchell, T.N.; Kramer, P.; Maumenee, I.H. Autosomal dominant cerulean cataract is associated with a chain termination mutation in the human β-crystallin gene CRYBB2. Hum. Mol. Genet. 1997, 6, 665–668. [Google Scholar] [CrossRef]
- Litt, M.; Kramer, P.; LaMorticella, D.M.; Murphey, W.; Lovrien, E.W.; Weleber, R.G. Autosomal dominant congenital cataract associated with a missense mutation in the human α crystallin gene CRYAA. Hum. Mol. Genet. 1998, 7, 471–474. [Google Scholar] [CrossRef]
- Kannabiran, C.; Rogan, P.K.; Olmos, L.; Basti, S.; Rao, G.N.; Kaiser-Kupfer, M.; Hejtmancik, J.F. Autosomal dominant zonular cataract with sutural opacities is associated with a splice mutation in the betaA3/A1-crystallin gene. Mol. Vis. 1998, 4, 21. [Google Scholar]
- Vicart, P.; Caron, A.; Guicheney, P.; Li, Z.; Prevost, M.C.; Faure, A.; Chateau, D.; Chapon, F.; Tome, F.; Dupret, J.M.; et al. A missense mutation in the alphaB-crystallin chaperone gene causes a desmin-related myopathy. Nat. Genet. 1998, 20, 92–95. [Google Scholar] [CrossRef]
- Stephan, D.A.; Gillanders, E.; Vanderveen, D.; Freas-Lutz, D.; Wistow, G.; Baxevanis, A.D.; Robbins, C.M.; VanAuken, A.; Quesenberry, M.I.; Bailey-Wilson, J.; et al. Progressive juvenile-onset punctate cataracts caused by mutation of the gammaD-crystallin gene. Proc. Natl. Acad. Sci. USA 1999, 96, 1008–1012. [Google Scholar] [CrossRef]
- Heon, E.; Priston, M.; Schorderet, D.F.; Billingsley, G.D.; Girard, P.O.; Lubsen, N.; Munier, F.L. The γ-crystallins and human cataracts: A puzzle made clearer. Am. J. Hum. Genet. 1999, 65, 1261–1267. [Google Scholar] [CrossRef]
- Shiels, A.; Mackay, D.; Ionides, A.; Berry, V.; Moore, A.; Bhattacharya, S. A missense mutation in the human connexin50 gene (GJA8) underlies autosomal dominant “zonular pulverulent” cataract, on chromosome 1q. Am. J. Hum. Genet. 1998, 62, 526–532. [Google Scholar] [CrossRef]
- Steele, E.C., Jr.; Lyon, M.F.; Favor, J.; Guillot, P.V.; Boyd, Y.; Church, R.L. A mutation in the connexin 50 (Cx50) gene is a candidate for the No2 mouse cataract. Curr. Eye Res. 1998, 17, 883–889. [Google Scholar] [CrossRef]
- Mackay, D.; Ionides, A.; Kibar, Z.; Rouleau, G.; Berry, V.; Moore, A.; Shiels, A.; Bhattacharya, S. Connexin46 mutations in autosomal dominant congenital cataract. Am. J. Hum. Genet. 1999, 64, 1357–1364. [Google Scholar] [CrossRef]
- Giannone, A.A.; Li, L.; Sellitto, C.; White, T.W. Physiological Mechanisms Regulating Lens Transport. Front. Physiol. 2021, 12, 818649. [Google Scholar] [CrossRef]
- Zafar, S.; Khurram, H.; Kamran, M.; Fatima, M.; Parvaiz, A.; Shaikh, R.S. Potential of GJA8 gene variants in predicting age-related cataract: A comparison of supervised machine learning methods. PLoS ONE 2023, 18, e0286243. [Google Scholar] [CrossRef]
- Shiels, A.; Bassnett, S. Mutations in the founder of the MIP gene family underlie cataract development in the mouse. Nat. Genet. 1996, 12, 212–215. [Google Scholar] [CrossRef]
- Berry, V.; Francis, P.; Kaushal, S.; Moore, A.; Bhattacharya, S. Missense mutations in MIP underlie autosomal dominant ‘polymorphic’ and lamellar cataracts linked to 12q. Nat. Genet. 2000, 25, 15–17. [Google Scholar] [CrossRef]
- Steele, E.C., Jr.; Kerscher, S.; Lyon, M.F.; Glenister, P.H.; Favor, J.; Wang, J.; Church, R.L. Identification of a mutation in the MP19 gene, Lim2, in the cataractous mouse mutant To3. Mol. Vis. 1997, 3, 5. [Google Scholar]
- Steele, E.C., Jr.; Wang, J.H.; Lo, W.K.; Saperstein, D.A.; Li, X.; Church, R.L. Lim2(To3) transgenic mice establish a causative relationship between the mutation identified in the lim2 gene and cataractogenesis in the To3 mouse mutant. Mol. Vis. 2000, 6, 85–94. [Google Scholar]
- Pras, E.; Levy-Nissenbaum, E.; Bakhan, T.; Lahat, H.; Assia, E.; Geffen-Carmi, N.; Frydman, M.; Goldman, B.; Pras, E. A missense mutation in the LIM2 gene is associated with autosomal recessive presenile cataract in an inbred Iraqi Jewish family. Am. J. Hum. Genet. 2002, 70, 1363–1367. [Google Scholar] [CrossRef]
- Schey, K.L.; Gletten, R.B.; O’Neale, C.V.T.; Wang, Z.; Petrova, R.S.; Donaldson, P.J. Lens Aquaporins in Health and Disease: Location is Everything! Front. Physiol. 2022, 13, 882550. [Google Scholar] [CrossRef]
- Shiels, A.; King, J.M.; Mackay, D.S.; Bassnett, S. Refractive defects and cataracts in mice lacking lens intrinsic membrane protein 2. Invest. Ophthalmol. Vis. Sci. 2007, 48, 500–508. [Google Scholar] [CrossRef]
- Shi, Y.; Barton, K.; De Maria, A.; Petrash, J.M.; Shiels, A.; Bassnett, S. The stratified syncytium of the vertebrate lens. J. Cell Sci. 2009, 122 Pt 10, 1607–1615. [Google Scholar] [CrossRef] [PubMed]
- Jakobs, P.M.; Hess, J.F.; FitzGerald, P.G.; Kramer, P.; Weleber, R.G.; Litt, M. Autosomal-dominant congenital cataract associated with a deletion mutation in the human beaded filament protein gene BFSP2. Am. J. Hum. Genet. 2000, 66, 1432–1436. [Google Scholar] [CrossRef]
- Conley, Y.P.; Erturk, D.; Keverline, A.; Mah, T.S.; Keravala, A.; Barnes, L.R.; Bruchis, A.; Hess, J.F.; FitzGerald, P.G.; Weeks, D.E.; et al. A juvenile-onset, progressive cataract locus on chromosome 3q21-q22 is associated with a missense mutation in the beaded filament structural protein-2. Am. J. Hum. Genet. 2000, 66, 1426–1431. [Google Scholar] [CrossRef]
- Ramachandran, R.D.; Perumalsamy, V.; Hejtmancik, J.F. Autosomal recessive juvenile onset cataract associated with mutation in BFSP1. Hum. Genet. 2007, 121, 475–482. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Landsbury, A.; Dahm, R.; Liu, Y.; Zhang, Q.; Quinlan, R.A. Functions of the intermediate filament cytoskeleton in the eye lens. J. Clin. Investig. 2009, 119, 1837–1848. [Google Scholar] [CrossRef]
- Hill, R.E.; Favor, J.; Hogan, B.L.; Ton, C.C.; Saunders, G.F.; Hanson, I.M.; Prosser, J.; Jordan, T.; Hastie, N.D.; van Heyningen, V. Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 1991, 354, 522–525. [Google Scholar] [CrossRef]
- Glaser, T.; Walton, D.S.; Maas, R.L. Genomic structure, evolutionary conservation and aniridia mutations in the human PAX6 gene. Nat. Genet. 1992, 2, 232–239. [Google Scholar] [CrossRef] [PubMed]
- Glaser, T.; Jepeal, L.; Edwards, J.G.; Young, S.R.; Favor, J.; Maas, R.L. PAX6 gene dosage effect in a family with congenital cataracts, aniridia, anophthalmia and central nervous system defects. Nat. Genet. 1994, 7, 463–471. [Google Scholar] [CrossRef]
- Halder, G.; Callaerts, P.; Gehring, W.J. Induction of ectopic eyes by targeted expression of the eyeless gene in Drosophila. Science 1995, 267, 1788–1792. [Google Scholar] [CrossRef]
- Chow, R.L.; Altmann, C.R.; Lang, R.A.; Hemmati-Brivanlou, A. Pax6 induces ectopic eyes in a vertebrate. Development 1999, 126, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Semina, E.V.; Ferrell, R.E.; Mintz-Hittner, H.A.; Bitoun, P.; Alward, W.L.; Reiter, R.S.; Funkhauser, C.; Daack-Hirsch, S.; Murray, J.C. A novel homeobox gene PITX3 is mutated in families with autosomal-dominant cataracts and ASMD. Nat. Genet. 1998, 19, 167–170. [Google Scholar] [CrossRef] [PubMed]
- Semina, E.V.; Murray, J.C.; Reiter, R.; Hrstka, R.F.; Graw, J. Deletion in the promoter region and altered expression of Pitx3 homeobox gene in aphakia mice. Hum. Mol. Genet. 2000, 9, 1575–1585. [Google Scholar] [CrossRef] [PubMed]
- Blixt, A.; Mahlapuu, M.; Aitola, M.; Pelto-Huikko, M.; Enerback, S.; Carlsson, P. A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes. Dev. 2000, 14, 245–254. [Google Scholar] [CrossRef]
- Brownell, I.; Dirksen, M.; Jamrich, M. Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis 2000, 27, 81–93. [Google Scholar] [CrossRef]
- Semina, E.V.; Brownell, I.; Mintz-Hittner, H.A.; Murray, J.C.; Jamrich, M. Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet. 2001, 10, 231–236. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.V.; Perveen, R.; Kerr, B.; Carette, M.; Yardley, J.; Heon, E.; Wirth, M.G.; van Heyningen, V.; Donnai, D.; Munier, F.; et al. Domain disruption and mutation of the bZIP transcription factor, MAF, associated with cataract, ocular anterior segment dysgenesis and coloboma. Hum. Mol. Genet. 2002, 11, 33–42. [Google Scholar] [CrossRef]
- Lyon, M.F.; Jamieson, R.V.; Perveen, R.; Glenister, P.H.; Griffiths, R.; Boyd, Y.; Glimcher, L.H.; Favor, J.; Munier, F.L.; Black, G.C. A dominant mutation within the DNA-binding domain of the bZIP transcription factor Maf causes murine cataract and results in selective alteration in DNA binding. Hum. Mol. Genet. 2003, 12, 585–594. [Google Scholar] [CrossRef]
- Niceta, M.; Stellacci, E.; Gripp, K.W.; Zampino, G.; Kousi, M.; Anselmi, M.; Traversa, A.; Ciolfi, A.; Stabley, D.; Bruselles, A.; et al. Mutations Impairing GSK3-mediated MAF phosphorylation cause cataract, deafness, intellectual disability, seizures, and a down syndrome-like facies. Am. J. Hum. Genet. 2015, 96, 816–825. [Google Scholar] [CrossRef]
- Bu, L.; Jin, Y.; Shi, Y.; Chu, R.; Ban, A.; Eiberg, H.; Andres, L.; Jiang, H.; Zheng, G.; Qian, M.; et al. Mutant DNA-binding domain of HSF4 is associated with autosomal dominant lamellar and Marner cataract. Nat. Genet. 2002, 31, 276–278. [Google Scholar] [CrossRef]
- Talamas, E.; Jackson, L.; Koeberl, M.; Jackson, T.; McElwee, J.L.; Hawes, N.L.; Chang, B.; Jablonski, M.M.; Sidjanin, D.J. Early transposable element insertion in intron 9 of the Hsf4 gene results in autosomal recessive cataracts in lop11 and ldis1 mice. Genomics 2006, 88, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Fantes, J.; Ragge, N.K.; Lynch, S.A.; McGill, N.I.; Collin, J.R.; Howard-Peebles, P.N.; Hayward, C.; Vivian, A.J.; Williamson, K.; van Heyningen, V.; et al. Mutations in SOX2 cause anophthalmia. Nat. Genet. 2003, 33, 461–463. [Google Scholar] [CrossRef]
- Stambolian, D.; Ai, Y.; Sidjanin, D.; Nesburn, K.; Sathe, G.; Rosenberg, M.; Bergsma, D.J. Cloning of the galactokinase cDNA and identification of mutations in two families with cataracts. Nat. Genet. 1995, 10, 307–312. [Google Scholar] [CrossRef]
- Okano, Y.; Asada, M.; Fujimoto, A.; Ohtake, A.; Murayama, K.; Hsiao, K.J.; Choeh, K.; Yang, Y.; Cao, Q.; Reichardt, J.K.; et al. A genetic factor for age-related cataract: Identification and characterization of a novel galactokinase variant, “Osaka”, in Asians. Am. J. Hum. Genet. 2001, 68, 1036–1042. [Google Scholar] [CrossRef] [PubMed]
- Maraini, G.; Hejtmancik, J.F.; Shiels, A.; Mackay, D.S.; Aldigeri, R.; Jiao, X.D.; Williams, S.L.; Sperduto, R.D.; Reed, G. Galactokinase gene mutations and age-related cataract. Lack of association in an Italian population. Mol. Vis. 2003, 9, 397–400. [Google Scholar] [PubMed]
- Beaumont, C.; Leneuve, P.; Devaux, I.; Scoazec, J.Y.; Berthier, M.; Loiseau, M.N.; Grandchamp, B.; Bonneau, D. Mutation in the iron responsive element of the L ferritin mRNA in a family with dominant hyperferritinaemia and cataract. Nat. Genet. 1995, 11, 444–446. [Google Scholar] [CrossRef] [PubMed]
- Girelli, D.; Corrocher, R.; Bisceglia, L.; Olivieri, O.; De Franceschi, L.; Zelante, L.; Gasparini, P. Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: A mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”). Blood 1995, 86, 4050–4053. [Google Scholar] [CrossRef] [PubMed]
- Mumford, A.D.; Cree, I.A.; Arnold, J.D.; Hagan, M.C.; Rixon, K.C.; Harding, J.J. The lens in hereditary hyperferritinaemia cataract syndrome contains crystalline deposits of L-ferritin. Br. J. Ophthalmol. 2000, 84, 697–700. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.C.; Twu, Y.C.; Chang, C.Y.; Lin, M. Molecular basis of the adult i phenotype and the gene responsible for the expression of the human blood group I antigen. Blood 2001, 98, 3840–3845. [Google Scholar] [CrossRef]
- Yu, L.C.; Twu, Y.C.; Chou, M.L.; Reid, M.E.; Gray, A.R.; Moulds, J.M.; Chang, C.Y.; Lin, M. The molecular genetics of the human I locus and molecular background explain the partial association of the adult i phenotype with congenital cataracts. Blood 2003, 101, 2081–2088. [Google Scholar] [CrossRef]
- Burdon, K.P.; McKay, J.D.; Sale, M.M.; Russell-Eggitt, I.M.; Mackey, D.A.; Wirth, M.G.; Elder, J.E.; Nicoll, A.; Clarke, M.P.; FitzGerald, L.M.; et al. Mutations in a novel gene, NHS, cause the pleiotropic effects of Nance-Horan syndrome, including severe congenital cataract, dental anomalies, and mental retardation. Am. J. Hum. Genet. 2003, 73, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, R.V.; Farrar, N.; Stewart, K.; Perveen, R.; Mihelec, M.; Carette, M.; Grigg, J.R.; McAvoy, J.W.; Lovicu, F.J.; Tam, P.P.; et al. Characterization of a familial t(16;22) balanced translocation associated with congenital cataract leads to identification of a novel gene, TMEM114, expressed in the lens and disrupted by the translocation. Hum. Mutat. 2007, 28, 968–977. [Google Scholar] [CrossRef] [PubMed]
- Maher, G.J.; Hilton, E.N.; Davidson, A.E.; Spencer, H.L.; Black, G.C.; Manson, F.D. The cataract-associated protein TMEM114, and TMEM235, are glycosylated transmembrane proteins that are distinct from claudin family members. FEBS Lett. 2011, 585, 2187–2192. [Google Scholar] [CrossRef]
- Shiels, A.; Bennett, T.M.; Knopf, H.L.; Yamada, K.; Yoshiura, K.; Niikawa, N.; Shim, S.; Hanson, P.I. CHMP4B, a novel gene for autosomal dominant cataracts linked to chromosome 20q. Am. J. Hum. Genet. 2007, 81, 596–606. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bennett, T.M.; White, T.W.; Shiels, A. Charged multivesicular body protein 4b forms complexes with gap junction proteins during lens fiber cell differentiation. FASEB J. 2023, 37, e22801. [Google Scholar] [CrossRef] [PubMed]
- Shiels, A.; Bennett, T.M.; Knopf, H.L.; Maraini, G.; Li, A.; Jiao, X.; Hejtmancik, J.F. The EPHA2 gene is associated with cataracts linked to chromosome 1p. Mol. Vis. 2008, 14, 2042–2055. [Google Scholar] [PubMed]
- Zhang, T.; Hua, R.; Xiao, W.; Burdon, K.P.; Bhattacharya, S.S.; Craig, J.E.; Shang, D.; Zhao, X.; Mackey, D.A.; Moore, A.T.; et al. Mutations of the EPHA2 receptor tyrosine kinase gene cause autosomal dominant congenital cataract. Hum. Mutat. 2009, 30, E603–E611. [Google Scholar] [CrossRef]
- Jun, G.; Guo, H.; Klein, B.E.; Klein, R.; Wang, J.J.; Mitchell, P.; Miao, H.; Lee, K.E.; Joshi, T.; Buck, M.; et al. EPHA2 is associated with age-related cortical cataract in mice and humans. PLoS Genet. 2009, 5, e1000584. [Google Scholar] [CrossRef]
- Bennett, T.M.; M‘Hamdi, O.; Hejtmancik, J.F.; Shiels, A. Germline and somatic EPHA2 coding variants in lens aging and cataract. PLoS ONE 2017, 12, e0189881. [Google Scholar] [CrossRef]
- Lin, Q.; Zhou, N.; Zhang, N.; Qi, Y. Mutational screening of EFNA5 in Chinese age-related cataract patients. Ophthalmic Res. 2014, 52, 124–129. [Google Scholar] [CrossRef]
- Zhou, Y.; Bennett, T.M.; Ruzycki, P.A.; Shiels, A. Mutation of the EPHA2 tyrosine-kinase domain dysregulates cell pattern formation and cytoskeletal gene expression in the lens. Cells 2021, 10, 2606. [Google Scholar] [CrossRef] [PubMed]
- Kloeckener-Gruissem, B.; Vandekerckhove, K.; Nurnberg, G.; Neidhardt, J.; Zeitz, C.; Nurnberg, P.; Schipper, I.; Berger, W. Mutation of solute carrier SLC16A12 associates with a syndrome combining juvenile cataract with microcornea and renal glucosuria. Am. J. Hum. Genet. 2008, 82, 772–779. [Google Scholar] [CrossRef] [PubMed]
- Zuercher, J.; Neidhardt, J.; Magyar, I.; Labs, S.; Moore, A.T.; Tanner, F.C.; Waseem, N.; Schorderet, D.F.; Munier, F.L.; Bhattacharya, S.; et al. Alterations of the 5‘-untranslated region of SLC16A12 lead to age-related cataract. Invest. Ophthalmol. Vis. Sci. 2010, 51, 3354–3361. [Google Scholar] [CrossRef] [PubMed]
- Knopfel, E.B.; Vilches, C.; Camargo, S.M.R.; Errasti-Murugarren, E.; Staubli, A.; Mayayo, C.; Munier, F.L.; Miroshnikova, N.; Poncet, N.; Junza, A.; et al. Dysfunctional LAT2 amino acid transporter is associated with cataract in mouse and humans. Front. Physiol. 2019, 10, 688. [Google Scholar] [CrossRef] [PubMed]
- Muller, M.; Bhattacharya, S.S.; Moore, T.; Prescott, Q.; Wedig, T.; Herrmann, H.; Magin, T.M. Dominant cataract formation in association with a vimentin assembly disrupting mutation. Hum. Mol. Genet. 2009, 18, 1052–1057. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Ma, Z.; Jiao, X.; Fariss, R.; Kantorow, W.L.; Kantorow, M.; Pras, E.; Frydman, M.; Pras, E.; Riazuddin, S.; et al. Mutations in FYCO1 cause autosomal-recessive congenital cataracts. Am. J. Hum. Genet. 2011, 88, 827–838. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Costello, M.J.; Hejtmancik, J.F.; Menko, A.S.; Riazuddin, S.A.; Shiels, A.; Kantorow, M. Autophagy requirements for eye lens differentiation and transparency. Cells 2023, 12, 475. [Google Scholar] [CrossRef] [PubMed]
- Lachke, S.A.; Alkuraya, F.S.; Kneeland, S.C.; Ohn, T.; Aboukhalil, A.; Howell, G.R.; Saadi, I.; Cavallesco, R.; Yue, Y.; Tsai, A.C.; et al. Mutations in the RNA granule component TDRD7 cause cataract and glaucoma. Science 2011, 331, 1571–1576. [Google Scholar] [CrossRef] [PubMed]
- Aldahmesh, M.A.; Khan, A.O.; Mohamed, J.Y.; Alghamdi, M.H.; Alkuraya, F.S. Identification of a truncation mutation of acylglycerol kinase (AGK) gene in a novel autosomal recessive cataract locus. Hum. Mutat. 2012, 33, 960–962. [Google Scholar] [CrossRef]
- Aldahmesh, M.A.; Khan, A.O.; Mohamed, J.Y.; Hijazi, H.; Al-Owain, M.; Alswaid, A.; Alkuraya, F.S. Genomic analysis of pediatric cataract in Saudi Arabia reveals novel candidate disease genes. Genet. Med. 2012, 14, 955–962. [Google Scholar] [CrossRef]
- Stojanovic, D.; Stojanovic, M.; Milenkovic, J.; Velickov, A.; Ignjatovic, A.; Milojkovic, M. The multi-faceted nature of renalase for mitochondrial dysfunction improvement in cardiac disease. Cells 2023, 12, 1607. [Google Scholar] [CrossRef] [PubMed]
- Berry, V.; Gregory-Evans, C.; Emmett, W.; Waseem, N.; Raby, J.; Prescott, D.; Moore, A.T.; Bhattacharya, S.S. Wolfram gene (WFS1) mutation causes autosomal dominant congenital nuclear cataract in humans. Eur. J. Hum. Genet. 2013, 21, 1356–1360. [Google Scholar] [CrossRef] [PubMed]
- Hansen, L.; Comyn, S.; Mang, Y.; Lind-Thomsen, A.; Myhre, L.; Jean, F.; Eiberg, H.; Tommerup, N.; Rosenberg, T.; Pilgrim, D. The myosin chaperone UNC45B is involved in lens development and autosomal dominant juvenile cataract. Eur. J. Hum. Genet. 2014, 22, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Bennett, T.M.; Mackay, D.S.; Siegfried, C.J.; Shiels, A. Mutation of the melastatin-related cation channel, TRPM3, underlies inherited cataract and glaucoma. PLoS ONE 2014, 9, e104000. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Bennett, T.M.; Shiels, A. Mutation of the TRPM3 cation channel underlies progressive cataract development and lens calcification associated with pro-fibrotic and immune cell responses. FASEB J. 2021, 35, e21288. [Google Scholar] [CrossRef]
- Zhou, Y.; Bennett, T.M.; Ruzycki, P.A.; Guo, Z.; Cao, Y.Q.; Shahidullah, M.; Delamere, N.A.; Shiels, A. A cataract-causing mutation in the TRPM3 cation channel disrupts calcium dynamics in the lens. Cells 2024, 13, 257. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.Y.; Li, N.; Cao, X.; Wu, Q.Y.; Li, T.F.; Zhang, C.; Li, W.W.; Cui, Y.X.; Li, X.J.; Xue, C.Y. A novel COL4A1 gene mutation results in autosomal dominant non-syndromic congenital cataract in a Chinese family. BMC Med. Genet. 2014, 15, 97. [Google Scholar] [CrossRef]
- Greenlees, R.; Mihelec, M.; Yousoof, S.; Speidel, D.; Wu, S.K.; Rinkwitz, S.; Prokudin, I.; Perveen, R.; Cheng, A.; Ma, A.; et al. Mutations in SIPA1L3 cause eye defects through disruption of cell polarity and cytoskeleton organization. Hum. Mol. Genet. 2015, 24, 5789–5804. [Google Scholar] [CrossRef]
- Evers, C.; Paramasivam, N.; Hinderhofer, K.; Fischer, C.; Granzow, M.; Schmidt-Bacher, A.; Eils, R.; Steinbeisser, H.; Schlesner, M.; Moog, U. SIPA1L3 identified by linkage analysis and whole-exome sequencing as a novel gene for autosomal recessive congenital cataract. Eur. J. Hum. Genet. 2015, 23, 1627–1633. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, X.J.; Zhu, J.; Xi, Y.B.; Yang, X.; Hu, L.D.; Ouyang, H.; Patel, S.H.; Jin, X.; Lin, D.; et al. Lanosterol reverses protein aggregation in cataracts. Nature 2015, 523, 607–611. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, Q. A case of LSS-associated congenital nuclear cataract with hypotrichosis and literature review. Am. J. Med. Genet. A 2023, 191, 2398–2401. [Google Scholar] [CrossRef] [PubMed]
- Tan, Y.; Tian, H.; Mai, J.; Wang, H.; Yang, M.; Liu, S. A case of congenital cataracts with hypotrichosis caused by compound heterozygous variants in the LSS gene. Mol. Genet. Genomic Med. 2024, 12, e2320. [Google Scholar] [CrossRef] [PubMed]
- Zou, X.; Wang, H.; Zhou, D.; Liu, Z.; Wang, Y.; Deng, G.; Guan, H. The Polymorphism rs2968 of LSS Gene Confers Susceptibility to Age-Related Cataract. DNA Cell Biol. 2020, 39, 1970–1975. [Google Scholar] [CrossRef] [PubMed]
- Hashimi, M.; Amin, H.A.; Zagkos, L.; Day, A.C.; Drenos, F. Using genetics to investigate the association between lanosterol and cataract. Front. Genet. 2024, 15, 1231521. [Google Scholar] [CrossRef]
- Xu, J.; Fu, Q.; Chen, X.; Yao, K. Advances in pharmacotherapy of cataracts. Ann. Transl. Med. 2020, 8, 1552. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.O.; Aldahmesh, M.A.; Alkuraya, F.S. Phenotypes of recessive pediatric cataract in a cohort of children with identified homozygous gene mutations (An American Ophthalmological Society Thesis). Trans. Am. Ophthalmol. Soc. 2015, 113, T7. [Google Scholar] [PubMed]
- Patel, N.; Anand, D.; Monies, D.; Maddirevula, S.; Khan, A.O.; Algoufi, T.; Alowain, M.; Faqeih, E.; Alshammari, M.; Qudair, A.; et al. Novel phenotypes and loci identified through clinical genomics approaches to pediatric cataract. Hum. Genet. 2017, 136, 205–225. [Google Scholar] [CrossRef] [PubMed]
- Boone, P.M.; Yuan, B.; Gu, S.; Ma, Z.; Gambin, T.; Gonzaga-Jauregui, C.; Jain, M.; Murdock, T.J.; White, J.J.; Jhangiani, S.N.; et al. Hutterite-type cataract maps to chromosome 6p21.32-p21.31, co-segregates with a homozygous mutation in LEMD2, and is associated with sudden cardiac death. Mol. Genet. Genomic Med. 2016, 4, 77–94. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.H.; Huang, C.; Zhang, B.; Yin, S.; Liang, J.; Xu, C.; Huang, Y.; Cen, L.P.; Ng, T.K.; Zheng, C.; et al. Mutations of RagA GTPase in mTORC1 pathway are associated with autosomal dominant cataracts. PLoS Genet. 2016, 12, e1006090. [Google Scholar] [CrossRef]
- Sun, M.; Chen, C.; Hou, S.; Li, X.; Wang, H.; Zhou, J.; Chen, X.; Liu, P.; Kijlstra, A.; Lin, S.; et al. A novel mutation of PANK4 causes autosomal dominant congenital posterior cataract. Hum. Mutat. 2019, 40, 380–391. [Google Scholar] [CrossRef]
- Ansar, M.; Chung, H.L.; Taylor, R.L.; Nazir, A.; Imtiaz, S.; Sarwar, M.T.; Manousopoulou, A.; Makrythanasis, P.; Saeed, S.; Falconnet, E.; et al. Bi-allelic Loss-of-function variants in DNMBP cause infantile cataracts. Am. J. Hum. Genet. 2018, 103, 568–578. [Google Scholar] [CrossRef] [PubMed]
- Eiberg, H.; Mikkelsen, A.F.; Bak, M.; Tommerup, N.; Lund, A.M.; Wenzel, A.; Sabarinathan, R.; Gorodkin, J.; Bang-Berthelsen, C.H.; Hansen, L. A splice-site variant in the lncRNA gene RP1-140A9.1 cosegregates in the large Volkmann cataract family. Mol. Vis. 2019, 25, 1–11. [Google Scholar] [PubMed]
- Tang, S.; Di, G.; Hu, S.; Liu, Y.; Dai, Y.; Chen, P. AQP5 regulates vimentin expression via miR-124-3p.1 to protect lens transparency. Exp. Eye Res. 2021, 205, 108485. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.; Wu, Y.; Wang, Y.; Cui, Y.; Zhang, M.; Zhang, T.; Huang, X.; Yu, S.; Yu, T.; Zhao, J. Disruption of PIKFYVE causes congenital cataract in human and zebrafish. Elife 2022, 11, e71256. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Alcalde, C.; Nieves-Moreno, M.; Noval, S.; Peralta, J.M.; Montano, V.E.F.; Del Pozo, A.; Santos-Simarro, F.; Vallespin, E. Molecular and genetic mechanism of non-syndromic congenital cataracts. Mutation screening in Spanish families. Genes 2021, 12, 580. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Solana, P.; Arruti, N.; Nieves-Moreno, M.; Mena, R.; Rodriguez-Jimenez, C.; Guerrero-Carretero, M.; Acal, J.C.; Blasco, J.; Peralta, J.M.; Del Pozo, A.; et al. Whole exome sequencing of 20 Spanish families: Candidate genes for non-syndromic pediatric cataracts. Int. J. Mol. Sci. 2023, 24, 11429. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.; Zhang, K.; Veluchamy, A.; Hebert, H.L.; Looker, H.C.; Colhoun, H.M.; Palmer, C.N.; Meng, W. A Genome-Wide Association Study provides new evidence that CACNA1C gene is associated with diabetic cataract. Invest. Ophthalmol. Vis. Sci. 2016, 57, 2246–2250. [Google Scholar] [CrossRef] [PubMed]
- Zandy, A.J.; Lakhani, S.; Zheng, T.; Flavell, R.A.; Bassnett, S. Role of the executioner caspases during lens development. J. Biol. Chem 2005, 280, 30263–30272. [Google Scholar] [CrossRef] [PubMed]
- Ogden, A.T.; Nunes, I.; Ko, K.; Wu, S.; Hines, C.S.; Wang, A.F.; Hegde, R.S.; Lang, R.A. GRIFIN, a novel lens-specific protein related to the galectin family. J. Biol. Chem. 1998, 273, 28889–28896. [Google Scholar] [CrossRef]
- Barton, K.A.; Hsu, C.D.; Petrash, J.M. Interactions between small heat shock protein α-crystallin and galectin-related interfiber protein (GRIFIN) in the ocular lens. Biochemistry 2009, 48, 3956–3966. [Google Scholar] [CrossRef]
- Wyatt, K.; Gao, C.; Tsai, J.Y.; Fariss, R.N.; Ray, S.; Wistow, G. A role for lengsin, a recruited enzyme, in terminal differentiation in the vertebrate lens. J. Biol. Chem. 2008, 283, 6607–6615. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, S.; Kawane, K.; Watanabe-Fukunaga, R.; Fukuyama, H.; Ohsawa, Y.; Uchiyama, Y.; Hashida, N.; Ohguro, N.; Tano, Y.; Morimoto, T.; et al. Nuclear cataract caused by a lack of DNA degradation in the mouse eye lens. Nature 2003, 424, 1071–1074. [Google Scholar] [CrossRef]
- Brennan, L.A.; McGreal-Estrada, R.; Logan, C.M.; Cvekl, A.; Menko, A.S.; Kantorow, M. BNIP3L/NIX is required for elimination of mitochondria, endoplasmic reticulum and Golgi apparatus during eye lens organelle-free zone formation. Exp. Eye Res. 2018, 174, 173–184. [Google Scholar] [CrossRef]
- Apple, D.J.; Sims, J. Harold Ridley and the invention of the intraocular lens. Surv. Ophthalmol. 1996, 40, 279–292. [Google Scholar] [CrossRef] [PubMed]
- Abdelkader, H.; Alany, R.G.; Pierscionek, B. Age-related cataract and drug therapy: Opportunities and challenges for topical antioxidant delivery to the lens. J. Pharm. Pharmacol. 2015, 67, 537–550. [Google Scholar] [CrossRef] [PubMed]
- Nagaya, M.; Yamaoka, R.; Kanada, F.; Sawa, T.; Takashima, M.; Takamura, Y.; Inatani, M.; Oki, M. Histone acetyltransferase inhibition reverses opacity in rat galactose-induced cataract. PLoS ONE 2022, 17, e0273868. [Google Scholar] [CrossRef]
- Lamas, M. Epigenetic mechanisms of non-retinal components of the aging eye and novel therapeutic strategies. Exp. Eye Res. 2023, 236, 109673. [Google Scholar] [CrossRef]
- Alapure, B.V.; Stull, J.K.; Firtina, Z.; Duncan, M.K. The unfolded protein response is activated in connexin 50 mutant mouse lenses. Exp. Eye Res. 2012, 102, 28–37. [Google Scholar] [CrossRef]
- Andley, U.P.; Goldman, J.W. Autophagy and UPR in α-crystallin mutant knock-in mouse models of hereditary cataracts. Biochim. Et Biophys. Acta 2016, 1860 Pt B, 234–239. [Google Scholar] [CrossRef]
- Ma, Z.; Yao, W.; Chan, C.C.; Kannabiran, C.; Wawrousek, E.; Hejtmancik, J.F. Human betaA3/A1-crystallin splicing mutation causes cataracts by activating the unfolded protein response and inducing apoptosis in differentiating lens fiber cells. Biochim. Et Biophys. Acta 2016, 1862, 1214–1227. [Google Scholar] [CrossRef]
- Zhou, Y.; Bennett, T.M.; Shiels, A. Lens ER-stress response during cataract development in Mip-mutant mice. Biochim. Et Biophys. Acta 2016, 1862, 1433–1442. [Google Scholar] [CrossRef]
- Yang, J.; Zhou, S.; Gu, J.; Wang, Y.; Guo, M.; Liu, Y. Differences in unfolded protein response pathway activation in the lenses of three types of cataracts. PLoS ONE 2015, 10, e0130705. [Google Scholar] [CrossRef] [PubMed]
- Makley, L.N.; McMenimen, K.A.; DeVree, B.T.; Goldman, J.W.; McGlasson, B.N.; Rajagopal, P.; Dunyak, B.M.; McQuade, T.J.; Thompson, A.D.; Sunahara, R.; et al. Pharmacological chaperone for α-crystallin partially restores transparency in cataract models. Science 2015, 350, 674–677. [Google Scholar] [CrossRef] [PubMed]
- Lyu, D.; Zhang, L.; Qin, Z.; Ni, S.; Li, J.; Lu, B.; Hao, S.; Tang, Q.; Yin, H.; Chen, Z.; et al. Modeling congenital cataract in vitro using patient-specific induced pluripotent stem cells. NPJ Regen. Med. 2021, 6, 60. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, P.M.; Barigali, A.; Kadaskar, J.; Borgohain, S.; Mishra, D.K.; Ramanjulu, R.; Minija, C.K. Effect of lanosterol on human cataract nucleus. Indian J. Ophthalmol. 2015, 63, 888–890. [Google Scholar] [CrossRef] [PubMed]
- Daszynski, D.M.; Santhoshkumar, P.; Phadte, A.S.; Sharma, K.K.; Zhong, H.A.; Lou, M.F.; Kador, P.F. Failure of oxysterols such as lanosterol to restore lens clarity from cataracts. Sci. Rep. 2019, 9, 8459. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Fukuoka, Y.; Sato, K.; Otake, H.; Taga, A.; Oka, M.; Hiramatsu, N.; Yamamoto, N. The intravitreal injection of lanosterol nanoparticles rescues lens structure collapse at an early stage in Shumiya cataract rats. Int. J. Mol. Sci. 2020, 21, 1048. [Google Scholar] [CrossRef] [PubMed]
- Nagai, N.; Umachi, K.; Otake, H.; Oka, M.; Hiramatsu, N.; Sasaki, H.; Yamamoto, N. Ophthalmic in situ gelling system containing lanosterol nanoparticles delays collapse of lens structure in Shumiya cataract rats. Pharmaceutics 2020, 12, 629. [Google Scholar] [CrossRef] [PubMed]
- Ping, X.; Liang, J.; Shi, K.; Bao, J.; Wu, J.; Yu, X.; Tang, X.; Zou, J.; Shentu, X. Rapamycin relieves the cataract caused by ablation of Gja8b through stimulating autophagy in zebrafish. Autophagy 2021, 17, 3323–3337. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, B.; Li, X.; Li, M.; Wang, Y.; Dan, H.; Zhou, J.; Wei, Y.; Ge, K.; Li, P.; et al. The application and progression of CRISPR/Cas9 technology in ophthalmological diseases. Eye 2023, 37, 607–617. [Google Scholar] [CrossRef]
- Wu, Y.; Liang, D.; Wang, Y.; Bai, M.; Tang, W.; Bao, S.; Yan, Z.; Li, D.; Li, J. Correction of a genetic disease in mouse via use of CRISPR-Cas9. Cell Stem Cell 2013, 13, 659–662. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Zhou, H.; Fan, X.; Zhang, Y.; Zhang, M.; Wang, Y.; Xie, Z.; Bai, M.; Yin, Q.; Liang, D.; et al. Correction of a genetic disease by CRISPR-Cas9-mediated gene editing in mouse spermatogonial stem cells. Cell Res. 2015, 25, 67–79. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Sui, T.; Chen, M.; Deng, J.; Huang, Y.; Zeng, J.; Lv, Q.; Song, Y.; Li, Z.; Lai, L. CRISPR/Cas9-mediated GJA8 knockout in rabbits recapitulates human congenital cataracts. Sci. Rep. 2016, 6, 22024. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Yao, H.; Xu, Y.; Chen, M.; Deng, J.; Song, Y.; Sui, T.; Wang, Y.; Huang, Y.; Li, Z.; et al. CRISPR/Cas9-mediated mutation of alphaA-crystallin gene induces congenital cataracts in rabbits. Investig. Ophthalmol. Vis. Sci. 2017, 58, BIO34–BIO41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Jones, J.L.; Gasperini, R.J.; Charlesworth, J.C.; Liu, G.S.; Burdon, K.P. Rapid and efficient cataract gene evaluation in F0 zebrafish using CRISPR-Cas9 ribonucleoprotein complexes. Methods 2021, 194, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Ehling, U.H. Mutations in the F1 generation of mice. Prog. Clin. Biol. Res. 1991, 372, 481–496. [Google Scholar] [PubMed]
- Lenassi, E.; Clayton-Smith, J.; Douzgou, S.; Ramsden, S.C.; Ingram, S.; Hall, G.; Hardcastle, C.L.; Fletcher, T.A.; Taylor, R.L.; Ellingford, J.M.; et al. Clinical utility of genetic testing in 201 preschool children with inherited eye disorders. Genet. Med. 2020, 22, 745–751. [Google Scholar] [CrossRef]
- Moore, A.T. Understanding the molecular genetics of congenital cataract may have wider implications for age related cataract. Br. J. Ophthalmol. 2004, 88, 2–3. [Google Scholar] [CrossRef]
No. | Locus | Gene | Cataract Phenotype | Phenotype MIM No. | Gene MIM No. | Cat-Map AD | Cat-Map AR | Cat-Map Sporadic/? | Cat-Map Complex | Cat-Map Total |
---|---|---|---|---|---|---|---|---|---|---|
1 | 1pter-p36.13 | RP1-140A9.1 | CTRCT8, multiple types (cataract, congenital, Volkman-type, CCV) | 115665 | ? | 2 | 0 | 0 | 0 | 2 |
2 | 1p36.32 | PANK4 | CTRCT49, (posterior) | 619593 | 606162 | 1 | 0 | 0 | 0 | 1 |
3 | 1p36.13 | EPHA2 | CTRCT6, multiple types (age-related cortical cataract, ARCC2) | 116600 | 176946 | 24 | 7 | 3 | 14 | 48 |
4 | 1p33 | FOXE3 | CTRCT34, multiple types (±microcornea, CATC3) | 612968 | 601094 | 5 | 13 | 8 | 0 | 26 |
5 | 1q21.1 | GJA8 | CTRCT1, multiple types (±microcornea, CZP1, CAE1) | 116200 | 600897 | 113 | 13 | 16 | 6 | 146 |
6 | 2q33.3 | CRYGB | CTRCT39, multiple types | 615188 | 123670 | 2 | 0 | 1 | 0 | 3 |
7 | 2q33.3 | CRYGA | multiple types/nuclear | ? | 123660 | 3 | 1 | 0 | 0 | 4 |
8 | 2q33.3 | CRYGC | CTRCT2, multiple types (±microcornea, CCL) | 604307 | 123680 | 44 | 0 | 9 | 0 | 53 |
9 | 2q33.3 | CRYGD | CTRCT4, multiple types (±microcornea) | 115700 | 123690 | 70 | 0 | 8 | 0 | 78 |
10 | 2q34 | PIKFYVE | nuclear pulverulent, sutural, cortical punctate | ? | 609414 | 0 | 2 | 0 | 0 | 2 |
11 | 2q35 | CRYBA2 | CTRCT42 | 115900 | 600836 | 5 | 0 | 1 | 0 | 6 |
12 | 3p21.31 | FYCO1 | CTRCT18 | 610019 | 607182 | 0 | 31 | 4 | 0 | 35 |
13 | 3q22.1 | BFSP2 | CTRCT12; multiple types (±myopia) | 611597 | 603212 | 11 | 2 | 1 | 0 | 13 |
14 | 3q26.33 | SOX2-OT | age-related (nuclear) cataract | ? | 616338 | 0 | 0 | 0 | 2 | 2 |
15 | 3q27.3 | CRYGS | CTRCT20; multiple types | 116100 | 123730 | 11 | 0 | 1 | 0 | 12 |
16 | 4p16.1 | WFS1 | CTRCT41 (Wolfram syndrome/DIDMOAD) | 116400 | 606201 | 6 | 2 | 4 | 12 | |
17 | 6p24 | GCNT2 | CTRCT13 (+ adult i blood-group phenotype) | 116700 | 600429 | 0 | 16 | 0 | 0 | 16 |
18 | 6p21.31 | LEMD2 | CTRCT46, juvenile onset | 212500 | 616312 | 1 | 1 | 0 | 0 | 2 |
19 | 7q21.2 | CYP51A1 | lamellar/cortical? | ? | 601637 | 1 | 2 | 0 | 0 | 3 |
20 | 7q34 | AGK | CTRCT38 (Sengers syndrome) | 614691 | 610345 | 0 | 1 | 0 | 0 | 1 |
21 | 9p13.2 | RRAGA | nuclear, posterior subcapsular | ? | 612194 | 2 | 0 | 0 | 0 | 2 |
22 | 9q21.12-q21.13 | TRPM3 | CTRCT50; ± glaucoma | 620253 | 608961 | 2 | 0 | 0 | 0 | 2 |
23 | 9q22.33 | TDRD7 | CTRCT36 | 613887 | 611258 | 1 | 6 | 3 | 1 | 11 |
24 | 10p15.1 | AKR1E2 | congenital, complete? | ? | 617451 | 0 | 1 | 0 | 0 | 1 |
25 | 10p13 | VIM | CTRCT30; pulverulent | 116300 | 193060 | 3 | 0 | 2 | 0 | 5 |
26 | 10q23.31 | RNLS | congenital? | ? | 609360 | 0 | 1 | 0 | 0 | 1 |
27 | 10q23.31 | SLC16A12 | CTRCT47, juvenile, with microcornea (±glucosuria) | 61208 | 611910 | 1 | 0 | 2 | 8 | 11 |
28 | 10q24.2 | DNMBP | CTRCT48 | 618415 | 611282 | 3 | 1 | 1 | 5 | |
29 | 10q24.32 | PITX3 | CTRCT11; multiple types (microphthalmia, neurodevelopmental abnormalities included) | 610623 | 602669 | 34 | 2 | 0 | 0 | 36 |
30 | 11p13 | PAX6 | cataract with late-onset corneal dystrophy | 106210 | 607108 | 1 | 0 | 0 | 0 | 1 |
31 | 11q22.3 | CRYAB | CTRCT16; multiple types (±myopathy, multiple types) | 613763 | 123590 | 14 | 5 | 6 | 3 | 28 |
32 | 12q13.12 | AQP5 | sutural, nuclear | 600231 | 600442 | 2 | 0 | 0 | 0 | 2 |
33 | 12q13.3 | MIP | CTRCT15; multiple types | 615274 | 154050 | 42 | 1 | 5 | 4 | 52 |
34 | 13q12.1 | GJA3 | CTRCT14; multiple types | 601885 | 121015 | 66 | 3 | 10 | 3 | 82 |
35 | 13q34 | COL4A1 | non-syndromic congenital nuclear | ? | 120130 | 2 | 0 | 0 | 0 | 2 |
36 | 16p13.2 | TMEM114 | lamellar, central, polar, sutural | ? | 611579 | 3 | 0 | 0 | 0 | 3 |
37 | 16q21 | HSF4 | CTRCT5; multiple types | 116800 | 602438 | 22 | 11 | 4 | 1 | 38 |
38 | 16q22-q23 | MAF | CTRCT21; multiple types (±microcornea) | 610202 | 177075 | 14 | 0 | 16 | 0 | 29 |
39 | 17q11.2 | CRYBA1 | CTRCT10; multiple types | 600881 | 123610 | 42 | 1 | 9 | 0 | 52 |
40 | 17q12 | UNC45B | CTRCT43 | 616279 | 611220 | 1 | 0 | 0 | 0 | 1 |
41 | 17q25 | GALK1 | Galactokinase deficiency + cataract (Galactosemia II, GALAC2) | 230200 | 604313 | 1 | 32 | 2 | 1 | 36 |
42 | 19p13.2 | LONP1 | central/nuclear | 600373 | 605490 | 0 | 2 | 6 | 0 | 8 |
43 | 19q13.13 | WDR87 | complete/total white | ? | 620274 | 0 | 1 | 0 | 0 | 1 |
44 | 19q13.1-13.2 | SIPAIL3 | CTRCT45 | 616851 | 616655 | 1 | 2 | 2 | 0 | 5 |
45 | 19q13.3 | FTL (IRE) | Hyperferritinemia ± cataract | 600886 | 134790 | 78 | 1 | 32 | 1 | 112 |
46 | 19q13.41 | LIM2 | CTRCT19 | 615277 | 154045 | 8 | 3 | 0 | 3 | 14 |
47 | 20p12.1 | BFSP1 | CTRCT33; cortical | 611391 | 603307 | 4 | 2 | 4 | 1 | 11 |
48 | 20q11.22 | CHMP4B | CTRCT31; multiple types | 605387 | 610897 | 6 | 0 | 0 | 1 | 7 |
49 | 21q22.3 | CRYAA | CTRCT9; multiple types (±microcornea) | 604219 | 123580 | 51 | 7 | 15 | 11 | 80 |
50 | 21q22.3 | LSS | CTRCT44 | 616509 | 600909 | 0 | 3 | 0 | 1 | 4 |
51 | 22q11.23 | CRYBB2 | CTRCT3; multiple types (±microcornea) | 601547 | 123620 | 50 | 5 | 17 | 2 | 74 |
52 | 22q11.23 | CRYBB3 | CTRCT22; multiple types | 609741 | 123630 | 9 | 3 | 5 | 0 | 16 |
53 | 22q12.1 | CRYBB1 | CTRCT17; multiple types | 611544 | 6009291 | 18 | 7 | 7 | 0 | 32 |
54 | 22q12.1 | CRYBA4 | CTRCT23 | 610425 | 123631 | 9 | 1 | 3 | 1 | 14 |
55 | Xp22.13 | NHS | CTRCT40 (Nance-Horan/cataract-dental syndrome) | 302200 | 300457 | 0 | 0 | 6 | 0 | 75 |
No. | Locus | Cataract Phenotype | Inheritance | OMIM No. |
---|---|---|---|---|
1 | 1p31.1-p22.3 | DNASE2B | 608057 | |
2 | 1q25-q31 | Nuclear | AD | |
3 | 2p24-pter | CTRCT29 (coralliform) | AD | 115800 |
4 | 2p12 | CTRCT27 (nuclear progressive, CCNP) | AD | 607304 |
5 | 2q33 | Hexagonal, nuclear, cortical riders | AD | |
6 | 2q37-qter | Posterior polar | AD | |
7 | 2q37.3 | Posterior polar | de novo | |
8 | 3p26.2 [t(3;4)(p26.2;p15)] | Total | AD | |
9 | 3p22.3 [t(3;5)(p22.3;p15.1)] | Embryonal nuclear, sutural, punctate | AD | |
10 | 3q22.3-q25.2 | Coronary | AD | |
11 | 3q26.1-3q27.2 | Congenital, bilateral | AR | |
12 | 6p12-q12 | CTRCT28, (cataract age-related cortical 1, ARCC1) | Complex | 609026 |
13 | 6q12 | LGSN | 611470 | |
14 | 7p22.3 | GRIFIN | 619187 | |
15 | 7q21.11-q31.1 | Nuclear | AR | |
16 | 8p23.2-p21.3 | Laminar, nuclear | AR | |
17 | 9q13-q22 | CTRCT26, multiple types (cataract autosomal recessive early-onset pulverulent, CAAR, CTPL1) | AR | 605749 |
18 | 11q12.3-q13.1 | PLAAT3 | 613867 | |
19 | 12q24.2-q24.3 | CTRCT37 (cataract congenital cerulean type 5, CCA5) | AD | 614422 |
20 | 14q22-q23 | CTRCT32, multiple types (cataract posterior polar 5, CTPP5; cataract anterior polar 1, CTAA1) | AD | 115650 |
21 | 15q21-q22 | CTRCT25 (cataract central saccular/pouch-like, sutural opacities, CCSSO) | AD | 605728 |
22 | 16p13.3 [t(2;16)(p22.3;p13.3)] | Microphthalmia isolated with cataract 1 (MCOPCT1), cataract congenital with microphthalmia (CATM) | AD | 156850 |
23 | 17p13 | CTRCT24 (cataract anterior polar 2, CTAA2) | AD | 601202 |
24 | 17q24 | CTRCT7 (cataract congenital cerulean type 1, CCA1) | AD | 115660 |
25 | 19q13 | CTRCT35 (cataract congenital nuclear 1, CATCN1) | AR | 609376 |
26 | 19q13 | Cortical | AD | |
27 | 19q13-qter | Nuclear | AD | |
28 | 20p11.23-p12.2 | Progressive congenital zonular nuclear cataract (ADPCZNC) | AD | |
29 | 20p11.23-p12.1 | Infantile, total | AD | |
30 | Xq24 | Lamellar, nuclear, sutural, white dots | XL |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiels, A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes 2024, 15, 785. https://doi.org/10.3390/genes15060785
Shiels A. Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes. 2024; 15(6):785. https://doi.org/10.3390/genes15060785
Chicago/Turabian StyleShiels, Alan. 2024. "Through the Cat-Map Gateway: A Brief History of Cataract Genetics" Genes 15, no. 6: 785. https://doi.org/10.3390/genes15060785
APA StyleShiels, A. (2024). Through the Cat-Map Gateway: A Brief History of Cataract Genetics. Genes, 15(6), 785. https://doi.org/10.3390/genes15060785