Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China
Abstract
:1. Introduction
2. Material and Methods
2.1. Shihuyao Tombs
2.2. Preparation of Bone Samples
2.3. DNA Extraction and Sequencing
2.4. Data Analysis
2.5. Authenticity of the Ancient DNA
3. Results
3.1. Sequencing Results
3.2. Nucleotide Positions of the Akhal-Teke
3.3. Phylogenetic Trees
3.4. Median-Joining Network Analysis
3.5. Akhal-Teke Bayesian Skyline Demographic Profile
4. Discussion
4.1. Maternal Lineage Analysis of XSS Horses
4.2. The Significance of the Silk Road in the Spread of Ancient Horses
4.3. Analysis of the Maternal Demographic History of the Akhal-Teke
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cieslak, M.; Pruvost, M.; Benecke, N.; Hofreiter, M.; Morales, A.; Reissmann, M.; Ludwig, A. Origin and history of mitochondrial DNA lineages in domestic horses. PLoS ONE 2010, 5, e15311. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, B.L. International Encyclopedia of Horse Breeds; University of Oklahoma Press: Norman, OK, USA, 1995. [Google Scholar]
- Mackay-Smith, A. Speed and the Thoroughbred: The Complete History; Derrydale Press: New York, NY, USA, 2000. [Google Scholar]
- Sima, Q. The Historical Records; Zhonghua Book Company: Beijing, China, 2019. (In Chinese) [Google Scholar]
- Ban, G. History of the Han Dynasty; Zhonghua Book Company: Beijing, China, 2000. (In Chinese) [Google Scholar]
- Rong, X.J. The Silk Road and Cultural Interaction between East and West (Chinese Edition); Peking University Press: Beijing, China, 2015. [Google Scholar]
- Shen, Q. Artistic images of Han and Jin cultural relics of the Silk Road horse. Relics South 2020, 5, 288–291. [Google Scholar]
- Wang, Z. Mysterious “sweat horse”. Sci. Cult. 2002, 06, 23–24. (In Chinese) [Google Scholar]
- Jansen, T.; Forster, P.; Levine, M.A.; Oelke, H.; Hurles, M.; Renfrew, C.; Weber, J.; Olek, K. Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. USA 2002, 99, 10905–10910. [Google Scholar] [CrossRef] [PubMed]
- Vila, C.; Leonard, J.A.; Goterstrom, A.; Marklund, S.; Sandberg, K.; Liden, K.; Wayne, R.K.; Ellegren, H. Widespread Origins of Domestic Horse Lineages. Science 2001, 291, 474–477. [Google Scholar] [CrossRef] [PubMed]
- Achilli, A.; Olivieri, A.; Soares, P.; Lancioni, H.; Hooshiar Kashani, B.; Perego, U.A.; Nergadze, S.G.; Carossa, V.; Santagostino, M.; Capomaccio, S.; et al. Mitochondrial genomes from modern horses reveal the major haplogroups that underwent domestication. Proc. Natl. Acad. Sci. USA 2012, 109, 2449–2454. [Google Scholar] [CrossRef]
- Lippold, S.; Matzke, N.J.; Reissmann, M.; Hofreiter, M. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication. BMC Evol. Biol. 2011, 11, 328. [Google Scholar] [CrossRef] [PubMed]
- Librado, P.; Khan, N.; Fages, A.; Kusliy, M.A.; Suchan, T.; Tonasso-Calvière, L.; Schiavinato, S.; Alioglu, D.; Fromentier, A.; Perdereau, A.; et al. The origins and spread of domestic horses from the Western Eurasian steppes. Nature 2021, 598, 634–640. [Google Scholar] [CrossRef] [PubMed]
- Cozzi, M.C.; Strillacci, M.G.; Valiati, P.; Rogliano, E.; Bagnato, A.; Longeri, M. Genetic variability of Akhal-Teke horses bred in Italy. PeerJ 2018, 6, e4889. [Google Scholar] [CrossRef]
- Annals, Editorial Board of Zhaosu County. Zhaosu County Annals; Xinjiang People’s Publishing House: Urumchi, China, 2004. (In Chinese) [Google Scholar]
- Zhang, J.; Huang, F. An excavation and discussion on Shihuyao Tomb Group in Xinjiang. Turfanological Res. 2020, 2, 142–146. [Google Scholar]
- Yang, D.Y.; Eng, B.; Waye, J.S.; Dudar, J.C.; Saunders, S.R. Technical Note_ Improved DNA Extraction From Ancient Bones Using Silica-Based Spin Columns. Am. J. Phys. Anthropol. 1998, 105, 539–543. [Google Scholar] [CrossRef]
- Kalbfleisch, T.S.; Rice, E.S.; DePriest, M.S.; Walenz, B.P.; Hestand, M.S.; Vermeesch, J.R.; O’Connell, B.L.; Fiddes, I.T.; Vershinina, A.O.; Saremi, N.F.; et al. Improved reference genome for the domestic horse increases assembly contiguity and composition. Commun. Biol. 2018, 1, 197. [Google Scholar] [CrossRef]
- Schubert, M.; Ermini, L.; Der Sarkissian, C.; Jónsson, H.; Ginolhac, A.; Schaefer, R.; Martin, M.D.; Fernández, R.; Kircher, M.; McCue, M.; et al. Characterization of ancient and modern genomes by SNP detection and phylogenomic and metagenomic analysis using PALEOMIX. Nat. Protoc. 2014, 9, 1056–1082. [Google Scholar] [CrossRef]
- Schubert, M.; Ginolhac, A.; Lindgreen, S.; Thompson, J.F.; Al-Rasheid, K.A.; Willerslev, E.; Krogh, A.; Orlando, L. Improving ancient DNA read mapping against modern reference genomes. BMC Genom. 2012, 13, 178. [Google Scholar] [CrossRef]
- Schubert, M.; Lindgreen, S.; Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC Res. Notes 2016, 9, 88. [Google Scholar] [CrossRef]
- Li, H.; Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef]
- Jonsson, H.; Ginolhac, A.; Schubert, M.; Johnson, P.L.; Orlando, L. mapDamage2.0: Fast approximate Bayesian estimates of ancient DNA damage parameters. Bioinformatics 2013, 29, 1682–1684. [Google Scholar] [CrossRef]
- Gaunitz, C.; Fages, A.; Hanghoj, K.; Albrechtsen, A.; Khan, N.; Schubert, M.; Seguin-Orlando, A.; Owens, I.J.; Felkel, S.; Bignon-Lau, O.; et al. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses. Science 2018, 360, 111–114. [Google Scholar] [CrossRef]
- Korneliussen, T.S.; Albrechtsen, A.; Nielsen, R. ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinform. 2014, 15, 356. [Google Scholar] [CrossRef]
- Edgar, R.C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004, 32, 1792–1797. [Google Scholar] [CrossRef] [PubMed]
- Kozlov, A.M.; Darriba, D.; Flouri, T.; Morel, B.; Stamatakis, A. RAxML-NG: A fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 2019, 35, 4453–4455. [Google Scholar] [CrossRef] [PubMed]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast model selection for accurate phylogenetic estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef] [PubMed]
- Letunic, I.; Bork, P. Interactive tree of life (iTOL) v3: An online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016, 44, W242–W245. [Google Scholar] [CrossRef] [PubMed]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchene, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kuhnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed]
- Lanfear, R.; Calcott, B.; Ho, S.Y.; Guindon, S. Partitionfinder: Combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol. Biol. Evol. 2012, 29, 1695–1701. [Google Scholar] [CrossRef]
- Keane, T.M.; Creevey, C.J.; Pentony, M.M.; Naughton, T.J.; McLnerney, J.O. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 2006, 6, 29. [Google Scholar] [CrossRef] [PubMed]
- Drummond, A.J.; Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 2007, 7, 214. [Google Scholar] [CrossRef]
- Cooper, A.; Poinar, H.N. Ancient DNA: Do it right or not at all. Science 2000, 289, 1139. [Google Scholar] [CrossRef]
- Henthorn, W.E. Korea: The Mongol Invasions; Franklin Classics Trade Press: Sacramento, CA, USA, 2018. [Google Scholar]
- Institute of History, Inner Mongolia Academy of Social Sciences. Mongolian General History; Ethnic Publishing House: Beijing, China, 2002. (In Chinese) [Google Scholar]
- Xue, W. Research on Animal Burial Found in Xinjiang Archaeology. Master’s Dissertation, Minzu University of China, Beijing, China, 2011. (In Chinese). [Google Scholar]
- Valerie, H. The Silk Road: A New History; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Chen, S.A.-O.; Li, J.; Zhang, F.; Xiao, B.; Hu, J.M.; Cui, Y.Q.; Hofreiter, M.; Hou, X.D.; Sheng, G.L.; Lai, X.L.; et al. Different maternal lineages revealed by ancient mitochondrial genome of Camelus bactrianus from China. Mitochondrial DNA Part A DNA Mapp. Seq. Anal. 2019, 30, 786–793. [Google Scholar] [CrossRef]
Lab Code | Arch Code | Element | Period | Sanger Sequencing | DNA Library Construction | Raw Reads | Mapped Reads | Endogenous DNA | X Chromosome Coverage | Autosomal Coverage | Sex | Tomb Owner Sex | mtDNA Coverage |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
XSS01H-1 | 2017XSSIIIM54:1-4 | os coronale (L) | Western Han Dynasty | Success | Success | 89251214 | 14205018 | 31% | 0.367 | 0.746 | Male | Female | 58.376 |
XSS01H-2 | 2017XSSIIIM54:1-5 | pedal bone (L) | Western Han Dynasty | Success | Failure | ||||||||
XSS01H-3 | 2017XSSIIIm54:1-35 | metacarpal (L) | Western Han Dynasty | Success | Success | 92467552 | 4640559 | 10% | |||||
XSS01H-4 | 2017XSSIIIM54:1-42 | hyoid bone (L) | Western Han Dynasty | Success | Success | 33058070 | 5132236 | 31% | |||||
XSS01H-5 | 2017XSSIIIM54:1-43 | hyoid bone (R) | Western Han Dynasty | Success | Success | 36194492 | 2405398 | 13% | |||||
XSS01H-6 | 2017XSSIIIM54:1-1 | pastern (L) | Western Han Dynasty | Success | Failure | ||||||||
XSS07H-1 | 2017XSSIIM4:36 | tooth | Tang Dynasty | Success | Success | 31531568 | 3197891 | 20% | 0.175 | 0.175 | Female | Female | 25.416 |
XSS07H-2 | 2017XSSIIM4:37 | tooth | Tang Dynasty | Success | Success | 46666564 | 5425248 | 22% |
Sample | Variable Nucleotide Positions | Haplogroups | Origin | ||||
---|---|---|---|---|---|---|---|
NC_001640 | 15495 | 15521 | 15596 | 15602 | 15720 | ||
G1 | C | A | G | T | A | D | Cieslak et al. [1] |
XSS07H | C | A | G | T | A | D | This study |
SAMEA4075242 | C | A | G | T | A | D | Akhal-Teke |
SAMEA4075244 | C | A | G | T | A | D | Akhal-Teke |
HQ439441.1 | C | G | A | C | A | A | Akhal-Teke |
JN398385.1 | C | G | A | T | A | A | Akhal-Teke |
HQ439442.1 | C | G | A | T | A | M | Akhal-Teke |
JN398435.1 | C | G | A | T | A | M | Akhal-Teke |
JN398393.1 | C | G | A | T | A | C | Akhal-Teke |
JN398404.1 | C | G | A | T | A | G | Akhal-Teke |
JN398410.1 | C | G | A | T | A | G | Akhal-Teke |
JN398422.1 | C | G | A | T | A | L | Akhal-Teke |
JN398424.1 | C | G | A | T | A | L | Akhal-Teke |
JN398449.1 | C | G | A | T | A | Q | Akhal-Teke |
JN398450.1 | C | G | A | T | A | Q | Akhal-Teke |
JN398452.1 | C | G | A | T | A | Q | Akhal-Teke |
JN398453.1 | C | G | A | T | A | Q | Akhal-Teke |
JQ340137 | C | A | G | T | A | D | China |
GolModII_Mon26_1999 | C | A | G | T | A | D | Mongolia |
KT221842 | C | A | G | T | A | D | Thoroughbred |
JN398398 | C | A | G | T | A | D | Norwegian Fjord |
Thoroughbred_thb13 | C | A | G | T | A | D | Thoroughbred |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Zhang, N.; Zhang, J.; Shao, X.; Guo, Y.; Cai, D. Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China. Genes 2024, 15, 790. https://doi.org/10.3390/genes15060790
Zhu S, Zhang N, Zhang J, Shao X, Guo Y, Cai D. Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China. Genes. 2024; 15(6):790. https://doi.org/10.3390/genes15060790
Chicago/Turabian StyleZhu, Siqi, Naifan Zhang, Jie Zhang, Xinyue Shao, Yaqi Guo, and Dawei Cai. 2024. "Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China" Genes 15, no. 6: 790. https://doi.org/10.3390/genes15060790
APA StyleZhu, S., Zhang, N., Zhang, J., Shao, X., Guo, Y., & Cai, D. (2024). Ancient Mitochondrial Genomes Provide New Clues in the History of the Akhal-Teke Horse in China. Genes, 15(6), 790. https://doi.org/10.3390/genes15060790