Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Populations
2.2. Candidate Gene SNP Selection and Genotyping
2.3. Statistical Analysis
3. Results
3.1. Characteristics of Study Cohorts
3.2. Genotyping of 26 SNPs across SLC4A4, SLC1A3, and CHRNA4 in Migraine Samples versus Controls
3.3. Linkage Disequilibrium Analysis
3.4. Replication Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Quinette, P.; Constans, J.M.; Hainselin, M.; Desgranges, B.; Eustache, F.; Viader, F. Hippocampal modifications in transient global amnesia. Rev. Neurol. 2015, 171, 282–288. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Kataoka, Y.; Watanabe, Y. Role of cortical spreading depression in the pathophysiology of migraine. Neurosci. Bull. 2014, 30, 812–822. [Google Scholar] [CrossRef] [PubMed]
- Kowa, H.; Takigawa, H.; Nakashima, K. Cortical spreading depression and pain: A missing link in the pathophysiology of migraine? Rinsho Shinkeigaku = Clin. Neurol. 2014, 54, 1006–1008. [Google Scholar] [CrossRef] [PubMed]
- Fabricius, M.; Fuhr, S.; Willumsen, L.; Dreier, J.P.; Bhatia, R.; Boutelle, M.G.; Hartings, J.A.; Bullock, R.; Strong, A.J.; Lauritzen, M. Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain. Clin. Neurophysiol. 2008, 119, 1973–1984. [Google Scholar] [CrossRef] [PubMed]
- Lauritzen, M.; Dreier, J.P.; Fabricius, M.; Hartings, J.A.; Graf, R.; Strong, A.J. Clinical relevance of cortical spreading depression in neurological disorders: Migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J. Cereb. Blood Flow Metab. 2011, 31, 17–35. [Google Scholar] [CrossRef] [PubMed]
- Petrusic, I.; Zidverc-Trajkovic, J. Cortical spreading depression: Origins and paths as inferred from the sequence of events during migraine aura. Funct. Neurol. 2014, 29, 207–212. [Google Scholar] [PubMed]
- Shibata, M.; Suzuki, N. Exploring the role of microglia in cortical spreading depression in neurological disease. J. Cereb. Blood Flow Metab. 2017, 37, 1182–1191. [Google Scholar] [CrossRef]
- Barreto, G.E.; Capani, F.; Cabezas, R. Cortical spreading depression and mitochondrial dysfunction with aging: Lessons from ethanol abuse. Front. Aging Neurosci. 2014, 6, 117. [Google Scholar] [CrossRef]
- Dodick, D.W. A Phase-by-Phase Review of Migraine Pathophysiology. Headache 2018, 58 (Suppl. 1), 4–16. [Google Scholar] [CrossRef]
- Yan, J.; Dussor, G. Ion channels and migraine. Headache 2014, 54, 619–639. [Google Scholar] [CrossRef]
- Estevez, M. Invertebrate modeling of a migraine channelopathy. Headache 2006, 46 (Suppl. 1), S25–S31. [Google Scholar] [CrossRef]
- Ducros, A.; Denier, C.; Joutel, A.; Vahedi, K.; Michel, A.; Darcel, F.; Madigand, M.; Guerouaou, D.; Tison, F.; Julien, J.; et al. Recurrence of the T666M calcium channel CACNA1A gene mutation in familial hemiplegic migraine with progressive cerebellar ataxia. Am. J. Hum. Genet. 1999, 64, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Gritz, S.M.; Radcliffe, R.A. Genetic effects of ATP1A2 in familial hemiplegic migraine type II and animal models. Human. Genom. 2013, 7, 8. [Google Scholar] [CrossRef] [PubMed]
- Dichgans, M.; Freilinger, T.; Eckstein, G.; Babini, E.; Lorenz-Depiereux, B.; Biskup, S.; Ferrari, M.D.; Herzog, J.; van den Maagdenberg, A.M.; Pusch, M.; et al. Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 2005, 366, 371–377. [Google Scholar] [CrossRef] [PubMed]
- Power, C.; Elliott, J. Cohort profile: 1958 British birth cohort (National Child Development Study). Int. J. Epidemiol. 2006, 35, 34–41. [Google Scholar] [CrossRef]
- Silberstein, S.D.; Dodick, D.W. Migraine genetics: Part II. Headache 2013, 53, 1218–1229. [Google Scholar] [CrossRef] [PubMed]
- de Vries, B.; Frants, R.R.; Ferrari, M.D.; van den Maagdenberg, A.M. Molecular genetics of migraine. Hum. Genet. 2009, 126, 115–132. [Google Scholar] [CrossRef] [PubMed]
- Cestele, S.; Scalmani, P.; Rusconi, R.; Terragni, B.; Franceschetti, S.; Mantegazza, M. Self-limited hyperexcitability: Functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J. Neurosci. 2008, 28, 7273–7283. [Google Scholar] [CrossRef] [PubMed]
- Auffenberg, E.; Hedrich, U.B.; Barbieri, R.; Miely, D.; Groschup, B.; Wuttke, T.V.; Vogel, N.; Luhrs, P.; Zanardi, I.; Bertelli, S.; et al. Hyperexcitable interneurons trigger cortical spreading depression in an Scn1a migraine model. J. Clin. Investig. 2021, 131, e142202. [Google Scholar] [CrossRef]
- de Boer, I.; Harder, A.V.E.; Ferrari, M.D.; van den Maagdenberg, A.; Terwindt, G.M. Genetics of migraine: Delineation of contemporary understanding of the genetic underpinning of migraine. Handb. Clin. Neurol. 2023, 198, 85–103. [Google Scholar] [CrossRef]
- Sutherland, H.G.; Jenkins, B.; Griffiths, L.R. Genetics of migraine: Complexity, implications, and potential clinical applications. Lancet Neurol. 2024, 23, 429–446. [Google Scholar] [CrossRef] [PubMed]
- Riant, F.; Roos, C.; Roubertie, A.; Barbance, C.; Hadjadj, J.; Auvin, S.; Baille, G.; Beltramone, M.; Boulanger, C.; Cahn, A.; et al. Hemiplegic Migraine Associated With PRRT2 Variations: A Clinical and Genetic Study. Neurology 2022, 98, e51–e61. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, M.; Van Paesschen, W.; Stalmans, I.; Horita, S.; Yamada, H.; Bergmans, B.A.; Legius, E.; Riant, F.; De Jonghe, P.; Li, Y.; et al. Defective membrane expression of the Na+-HCO3− cotransporter NBCe1 is associated with familial migraine. Proc. Natl. Acad. Sci. USA 2010, 107, 15963–15968. [Google Scholar] [CrossRef] [PubMed]
- Jen, J.C.; Wan, J.; Palos, T.P.; Howard, B.D.; Baloh, R.W. Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005, 65, 529–534. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, H.G.; Maksemous, N.; Albury, C.L.; Ibrahim, O.; Smith, R.A.; Lea, R.A.; Haupt, L.M.; Jenkins, B.; Tsang, B.; Griffiths, L.R. Comprehensive Exonic Sequencing of Hemiplegic Migraine-Related Genes in a Cohort of Suspected Probands Identifies Known and Potential Pathogenic Variants. Cells 2020, 9, 2368. [Google Scholar] [CrossRef] [PubMed]
- Grangeon, L.; Lange, K.S.; Waliszewska-Prosol, M.; Onan, D.; Marschollek, K.; Wiels, W.; Mikulenka, P.; Farham, F.; Gollion, C.; Ducros, A.; et al. Genetics of migraine: Where are we now? J. Headache Pain. 2023, 24, 12. [Google Scholar] [CrossRef]
- Bjornsdottir, G.; Chalmer, M.A.; Stefansdottir, L.; Skuladottir, A.T.; Einarsson, G.; Andresdottir, M.; Beyter, D.; Ferkingstad, E.; Gretarsdottir, S.; Halldorsson, B.V.; et al. Rare variants with large effects provide functional insights into the pathology of migraine subtypes, with and without aura. Nat. Genet. 2023, 55, 1843–1853. [Google Scholar] [CrossRef] [PubMed]
- Hautakangas, H.; Winsvold, B.S.; Ruotsalainen, S.E.; Bjornsdottir, G.; Harder, A.V.E.; Kogelman, L.J.A.; Thomas, L.F.; Noordam, R.; Benner, C.; Gormley, P.; et al. Genome-wide analysis of 102,084 migraine cases identifies 123 risk loci and subtype-specific risk alleles. Nat. Genet. 2022, 54, 152–160. [Google Scholar] [CrossRef] [PubMed]
- Greenamyre, J.T.; Porter, R.H. Anatomy and physiology of glutamate in the CNS. Neurology 1994, 44, S7. [Google Scholar]
- Koch, H.P.; Lane Brown, R.; Larsson, H.P. The Glutamate-Activated Anion Conductance in Excitatory Amino Acid Transporters Is Gated Independently by the Individual Subunits. J. Neurosci. 2007, 27, 2943–2947. [Google Scholar] [CrossRef]
- Corringer, P.-J.; Taly, A.; Lestage, P.; Changeux, J.-P.; Guedin, D. Nicotinic receptors: Allosteric transitions and therapeutic targets in the nervous system. Nat. Rev. Drug Discov. 2009, 8, 733–750. [Google Scholar] [CrossRef] [PubMed]
- Rossman, A.C. The physiology of the nicotinic acetylcholine receptor and its importance in the administration of anesthesia. AANA J. 2011, 79, 433–440. [Google Scholar]
- Chapman, C.R.; Tuckett, R.P.; Song, C.W. Pain and Stress in a Systems Perspective: Reciprocal Neural, Endocrine, and Immune Interactions. J. Pain 2008, 9, 122–145. [Google Scholar] [CrossRef]
- Fejes, A.; Pardutz, A.; Toldi, J.; Vecsei, L. Kynurenine Metabolites and Migraine: Experimental Studies and Therapeutic Perspectives. Curr. Neuropharmacol. 2011, 9, 376–387. [Google Scholar] [CrossRef]
- Woolf, C.J. Central sensitization: Implications for the diagnosis and treatment of pain. Pain 2011, 152, S2–S15. [Google Scholar] [CrossRef] [PubMed]
- Lovati, C.; Giani, L.; Castoldi, D.; Mariotti D’Alessandro, C.; DeAngeli, F.; Capiluppi, E.; D’Amico, D.; Mariani, C. Osmophobia in allodynic migraineurs: Cause or consequence of central sensitization? Neurol. Sci. 2015, 36 (Suppl. 1), 145–147. [Google Scholar] [CrossRef]
- Schaaf, C.P. Nicotinic acetylcholine receptors in human genetic disease. Genet. Med. 2014, 16, 649–656. [Google Scholar] [CrossRef]
- Becchetti, A.; Grandi, L.C.; Cerina, M.; Amadeo, A. Nicotinic acetylcholine receptors and epilepsy. Pharmacol. Res. 2023, 189, 106698. [Google Scholar] [CrossRef] [PubMed]
- Nicolodi, M.; Galeotti, N.; Ghelardini, C.; Bartolini, A.; Sicuteri, F. Central cholinergic challenging of migraine by testing second-generation anticholinesterase drugs. Headache 2002, 42, 596–602. [Google Scholar] [CrossRef]
- Albinana, C.; Zhu, Z.; Borbye-Lorenzen, N.; Boelt, S.G.; Cohen, A.S.; Skogstrand, K.; Wray, N.R.; Revez, J.A.; Prive, F.; Petersen, L.V.; et al. Genetic correlates of vitamin D-binding protein and 25-hydroxyvitamin D in neonatal dried blood spots. Nat. Commun. 2023, 14, 852. [Google Scholar] [CrossRef]
- Sinnott-Armstrong, N.; Tanigawa, Y.; Amar, D.; Mars, N.; Benner, C.; Aguirre, M.; Venkataraman, G.R.; Wainberg, M.; Ollila, H.M.; Kiiskinen, T.; et al. Genetics of 35 blood and urine biomarkers in the UK Biobank. Nat. Genet. 2021, 53, 185–194. [Google Scholar] [CrossRef] [PubMed]
- Burstein, R.; Noseda, R.; Borsook, D. Migraine: Multiple processes, complex pathophysiology. J. Neurosci. 2015, 35, 6619–6629. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Daghlas, I.; Larsson, S.C. Alcohol, coffee consumption, and smoking in relation to migraine: A bidirectional Mendelian randomization study. Pain 2022, 163, e342–e348. [Google Scholar] [CrossRef] [PubMed]
- Danbolt, N.C. Glutamate uptake. Prog. Neurobiol. 2001, 65, 1–105. [Google Scholar] [PubMed]
- Grewer, C.; Gameiro, A.; Rauen, T. SLC1 glutamate transporters. Pflügers Arch.-Eur. J. Physiol. 2014, 466, 3–24. [Google Scholar] [CrossRef] [PubMed]
- de Vries, B.; Mamsa, H.; Stam, A.H.; Wan, J.; Bakker, S.L.; Vanmolkot, K.R.; Haan, J.; Terwindt, G.M.; Boon, E.M.; Howard, B.D.; et al. Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch. Neurol. 2009, 66, 97–101. [Google Scholar] [CrossRef] [PubMed]
- Beart, P.M.; O’Shea, R.D. Transporters for L-glutamate: An update on their molecular pharmacology and pathological involvement. Br. J. Pharmacol. 2007, 150, 5–17. [Google Scholar] [CrossRef] [PubMed]
- Variant Effect Predictor. Available online: http://www.ensembl.org/Tools/VEP (accessed on 20 June 2017).
- ENCODE: Encyclopedia of DNA Elements. Available online: https://www.encodeproject.org/ (accessed on 10 June 2024).
- Nassar, L.R.; Barber, G.P.; Benet-Pages, A.; Casper, J.; Clawson, H.; Diekhans, M.; Fischer, C.; Gonzalez, J.N.; Hinrichs, A.S.; Lee, B.T.; et al. The UCSC Genome Browser database: 2023 update. Nucleic Acids Res. 2023, 51, D1188–D1195. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, S.; Philippe, J.; Germain, S.; Mathieu, F.; Jeunemaitre, X.; Corvol, P.; Pinet, F. Functionality of two new polymorphisms in the human renin gene enhancer region. J. Hypertens. 2002, 20, 2391–2398. [Google Scholar] [CrossRef]
- de Vries, B.; Anttila, V.; Freilinger, T.; Wessman, M.; Kaunisto, M.A.; Kallela, M.; Artto, V.; Vijfhuizen, L.S.; Gobel, H.; Dichgans, M.; et al. Systematic re-evaluation of genes from candidate gene association studies in migraine using a large genome-wide association data set. Cephalalgia 2016, 36, 604–614. [Google Scholar] [CrossRef]
- Strachan, D.P.; Rudnicka, A.R.; Power, C.; Shepherd, P.; Fuller, E.; Davis, A.; Gibb, I.; Kumari, M.; Rumley, A.; Macfarlane, G.J.; et al. Lifecourse influences on health among British adults: Effects of region of residence in childhood and adulthood. Int. J. Epidemiol. 2007, 36, 522–531. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Rist, P.M.; Sabater-Lleal, M.; de Vries, P.; Smith, N.; Ridker, P.M.; Kurth, T.; Chasman, D.I. Association Between Hemostatic Profile and Migraine: A Mendelian Randomization Analysis. Neurology 2021, 96, e2481–e2487. [Google Scholar] [CrossRef] [PubMed]
- Yasin, S.; Gorucu Yilmaz, S.; Geyik, S.; Oguzkan Balci, S. The holistic approach to the CHRNA7 gene, hsa-miR-3158-5p, and 15q13.3 hotspot CNVs in migraineurs. Mol. Pain 2023, 19, 17448069231152104. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Liu, C.; Jiang, L.; Li, M.; Long, T.; He, W.; Qin, G.; Chen, L.; Zhou, J. alpha7 Nicotinic acetylcholine receptor-mediated anti-inflammatory effect in a chronic migraine rat model via the attenuation of glial cell activation. J. Pain. Res. 2018, 11, 1129–1140. [Google Scholar] [CrossRef] [PubMed]
Cohort 1 | ||
Migraine N = 182 | Control N = 179 | |
Female N, (%) | 144 (79.1) | 121 (67.6) |
Male N, (%) | 38 (20.9) | 58 (32.4) |
Age (years), mean ± SD | 44 ± 16 | 44 ± 14 |
Migraine with aura | 104 (57.1) | - |
Migraine without aura | 78 (42.9) | - |
Cohort 2 | ||
Migraine N = 258 | Control N = 290 | |
Female N, (%) | 221 (85.6) | 250 (86.2) |
Male N, (%) | 37 (14.4) | 40 (13.8) |
Age (years), mean ± SD | 54 ± 13 | 54 ± 14 |
Migraine with aura | 213 (82.5) | - |
Migraine without aura | 45 (17.5) | - |
SNP | Chromosome Position * | Allele | Wildtype Homozygotes, AA (%) | Heterozygotes, AB (%) | Mutant Homozygotes, BB (%) | ||||
---|---|---|---|---|---|---|---|---|---|
A | B | Migraine | Control | Migraine | Controls | Migraine | Controls | ||
SLC4A4 | Chr 4: | ||||||||
rs2602070 | 71,250,885 | C | A | 180 (98.9) | 173 (96.6) | 2 (1.1) | 6 (3.4) | 0 (0.0) | 0 (0.0) |
rs2602072 | 71,256,316 | G | T | 179 (98.4) | 172 (96.1) | 3 (1.6) | 7 (3.9) | 0 (0.0) | 0 (0.0) |
rs4353873 | 71,428,816 | A | G | 123 (67.6) | 123 (69.5) | 54 (29.7) | 49 (27.7) | 5 (2.7) | 5 (2.8) |
rs4458426 | 71,475,673 | T | A | 116 (63.7) | 124 (69.3) | 59 (32.4) | 51 (28.5) | 7 (3.8) | 4 (2.2) |
rs10938142 | 71,496,462 | G | A | 154 (84.6) | 147 (82.1) | 28 (15.4) | 29 (16.2) | 0 (0.0) | 3 (1.7) |
rs1031452 | 71,519,326 | C | T | 95 (52.2) | 90 (50.6) | 74 (40.7) | 78 (43.8) | 13 (7.1) | 10 (5.6) |
rs1453450 | 71,533,996 | C | A | 140 (76.9) | 133 (74.3) | 38 (20.9) | 41 (22.9) | 4 (2.2) | 5 (2.8) |
rs12504851 | 71,545,167 | A | G | 112 (61.5) | 103 (57.9) | 60 (33.0) | 61 (34.3) | 10 (5.5) | 14 (7.9) |
rs16846575 | 71,555,992 | T | C | 118 (64.8) | 116 (64.8) | 56 (30.8) | 60 (33.5) | 8 (4.4) | 3 (7.7) |
rs4254735 | 71,564,768 | T | C | 179 (98.9) | 175 (97.8) | 2 (1.1) | 4 (2.2) | 0 (0.0) | 0 (0.0) |
rs9997127 | 71,570,781 | A | G | 180 (98.9) | 175 (97.8) | 2 (1.1) | 4 (2.2) | 0 (0.0) | 0 (0.0) |
SLC1A3 | Chr 5: | ||||||||
rs7728680 | 36,612,951 | A | G | 88 (48.4) | 80 (44.7) | 78 (42.8) | 72 (40.2) | 16 (8.8) | 27 (15.1) |
rs7729389 | 36,613,099 | A | G | 117 (64.3) | 116 (64.8) | 58 (31.9) | 57 (31.8) | 7 (3.8) | 6 (3.4) |
rs3776565 | 36,631,551 | T | C | 123 (67.6) | 129 (72.1) | 54 (29.7) | 44 (24.6) | 5 (2.7) | 6 (3.3) |
rs3776567 | 36,632,373 | A | C | 124 (84.3) | 137 (91.3) | 22 (15.0) | 13 (8.7) | 1 (0.7) | 0 (0.0) |
rs1428968 | 36,646,844 | C | T | 133 (73.5) | 127 (71.3) | 45 (24.9) | 43 (24.2) | 3 (1.6) | 8 (4.5) |
rs3776578 | 36,651,884 | T | C | 173 (95.1) | 159 (88.8) | 9 (4.9) | 20 (11.2) | 0 (0.0) | 0 (0.0) |
rs16903247 | 36,653,353 | T | C | 173 (95.1) | 160 (89.4) | 9 (4.9) | 19 (10.6) | 0 (0.0) | 0 (0.0) |
rs10491374 | 36,667,477 | C | G | 48 (26.4) | 45 (25.3) | 93 (51.1) | 90 (50.6) | 41 (22.5) | 43 (24.2) |
rs2269272 | 36,687,754 | C | T | 112 (61.9) | 120 (67.0) | 65 (35.9) | 49 (27.4) | 4 (2.2) | 10 (5.6) |
rs1529461 | 36,689,261 | G | A | 104 (57.1) | 116 (64.8) | 72 (39.6) | 55 (30.7) | 6 (3.3) | 8 (4.5) |
CHRNA4 | Chr 20: | ||||||||
rs4809538 | 63,338,824 | G | A | 102 (56.4) | 100 (56.8) | 73 (40.3) | 69 (39.2) | 6 (3.3) | 7 (4.0) |
rs4522666 | 63,343,128 | A | G | 71 (39.0) | 64 (35.7) | 93 (51.1) | 90 (50.3) | 18 (9.9) | 25 (14.0) |
rs2273504 | 63,356,709 | G | A | 128 (70.3) | 120 (67.4) | 52 (28.6) | 52 (29.2) | 2 (1.1) | 6 (3.4) |
rs6010918 | 63,358,149 | G | A | 116 (95.1) | 103 (88.8) | 6 (4.9) | 13 (11.2) | 0 (0.0) | 0 (0.0) |
rs6122429 | 63,361,854 | C | T | 134 (73.6) | 133 (74.3) | 45 (24.7) | 44 (24.6) | 3 (1.6) | 2 (1.1) |
SNP | Allele | F_A | F_U | X2 | p-Value | OR | L95 | U95 | |
---|---|---|---|---|---|---|---|---|---|
A | B | ||||||||
SLC4A4 | |||||||||
rs2602070 | C | A | 0.0054 | 0.0167 | 2.0900 | 0.1482 | 0.3241 | 0.064 | 1.617 |
rs2602072 | G | T | 0.0082 | 0.0195 | 1.6910 | 0.1935 | 0.4167 | 0.106 | 1.624 |
rs4353873 | A | G | 0.1758 | 0.1667 | 0.1060 | 0.7447 | 1.0670 | 0.723 | 1.573 |
rs4458426 | T | A | 0.2005 | 0.1648 | 1.5440 | 0.2141 | 1.2710 | 0.870 | 1.857 |
rs10938142 | G | A | 0.0769 | 0.0977 | 0.9844 | 0.3211 | 0.7690 | 0.457 | 1.293 |
rs1031452 | C | T | 0.2747 | 0.2753 | 0.0002 | 0.9867 | 0.9972 | 0.718 | 1.383 |
rs1453450 | C | A | 0.1264 | 0.1425 | 0.4015 | 0.5263 | 0.8708 | 0.567 | 1.336 |
rs12504851 | A | G | 0.2198 | 0.2500 | 0.9150 | 0.3388 | 0.8451 | 0.598 | 1.193 |
rs16846575 | T | C | 0.1978 | 0.1844 | 0.2110 | 0.6460 | 1.0910 | 0.752 | 1.581 |
rs4254735 | T | C | 0.0055 | 0.0111 | 0.6949 | 0.4045 | 0.4917 | 0.089 | 2.701 |
rs9997127 | A | G | 0.0054 | 0.0111 | 0.7062 | 0.4007 | 0.4890 | 0.088 | 2.686 |
SLC1A3 | |||||||||
rs7728680 | A | G | 0.3022 | 0.3520 | 2.0310 | 0.1541 | 0.7974 | 0.583 | 1.089 |
rs7729389 | A | G | 0.1978 | 0.1927 | 0.0294 | 0.8637 | 1.0330 | 0.714 | 1.492 |
rs3776565 | T | C | 0.1758 | 0.1564 | 0.4902 | 0.4839 | 1.1500 | 0.776 | 1.704 |
rs3776567 | A | C | 0.0816 | 0.0433 | 3.7290 | 0.0534 | 1.9620 | 0.979 | 3.932 |
rs1428968 | C | T | 0.1409 | 0.1657 | 0.8541 | 0.3554 | 0.8255 | 0.549 | 1.24 |
rs3776578 | T | C | 0.0247 | 0.0558 | 4.5400 | 0.0331 * | 0.4285 | 0.192 | 0.954 |
rs16903247 | T | C | 0.0247 | 0.0530 | 3.8910 | 0.0485 * | 0.4523 | 0.201 | 1.014 |
rs10491374 | C | G | 0.4808 | 0.4944 | 0.1335 | 0.7148 | 0.9470 | 0.684 | 1.279 |
rs2269272 | C | T | 0.2017 | 0.1927 | 0.0904 | 0.7636 | 1.0580 | 0.706 | 1.268 |
rs1529461 | G | A | 0.2308 | 0.1983 | 1.1270 | 0.2884 | 1.2130 | 0.732 | 1.527 |
CHRNA4 | |||||||||
rs4809538 | G | A | 0.2348 | 0.2358 | 0.0009 | 0.9752 | 0.9945 | 0.849 | 1.732 |
rs4522666 | A | G | 0.3544 | 0.3911 | 1.0380 | 0.3083 | 0.8548 | 0.703 | 1.405 |
rs2273504 | G | A | 0.1538 | 0.1798 | 0.8712 | 0.3506 | 0.8295 | 0.632 | 1.156 |
rs6010918 | G | A | 0.0245 | 0.0537 | 2.7440 | 0.0976 | 0.4441 | 0.560 | 1.229 |
rs6122429 | C | T | 0.1401 | 0.1341 | 0.0555 | 0.8138 | 1.0520 | 0.166 | 1.188 |
rs6122429 | C | T | 0.1401 | 0.1341 | 0.0555 | 0.8138 | 1.0520 | 0.688 | 1.608 |
TEST | OR | SE | L95 | U95 | STAT | p-Value |
---|---|---|---|---|---|---|
SLC1A3 rs16903247 | ||||||
Logistic Regression (Unadjusted) | 0.4381 | 0.4193 | 0.1926 | 0.996 | −1.969 | 0.0490 * |
Adjusted by Sex and Age | 0.447 | 0.4229 | 0.1951 | 1.024 | −1.904 | 0.0569 |
Sex Association with Disease | 1.812 | 0.2443 | 1.1220 | 2.924 | 2.433 | 0.01497 * |
Age Association with Disease | 1.006 | 0.0078 | 0.9908 | 1.022 | 0.787 | 0.4310 |
SLC1A3 rs3776578 | ||||||
Logistic Regression (Unadjusted) | 0.4136 | 0.4161 | 0.1830 | 0.935 | −2.122 | 0.03387 * |
Adjusted by Sex and Age | 0.4282 | 0.4198 | 0.1881 | 0.975 | −2.020 | 0.04336 * |
Sex Association with Disease | 1.797 | 0.2445 | 1.1130 | 2.902 | 2.397 | 0.01654 * |
Age Association with Disease | 1.006 | 0.0078 | 0.9908 | 1.022 | 0.778 | 0.4360 |
SNP | Allele | F_A | F_U | X2 | p-Value | OR | L95 | U95 | |
---|---|---|---|---|---|---|---|---|---|
A | B | ||||||||
SLC1A3 | |||||||||
rs3776578 | T | C | 0.0119 | 0.0404 | 8.232 | 0.0041 * | 0.2866 | 0.1158 | 0.7907 |
rs16903247 | T | C | 0.0116 | 0.0347 | 6.197 | 0.0127 * | 0.3283 | 0.1308 | 0.8241 |
SNPs | Haplotype | F_A | F_U | X2 | DF | p-Value |
---|---|---|---|---|---|---|
rs16903247/rs3776578 | H1-CC | 0.018 | 0.042 | 8.866 | 1 | 0.002 * |
H2-TT | 0.982 | 0.958 | 8.866 | 1 | 0.002 * | |
H3-TC | 0.000 | 0.000 | - | - | - | |
H4-CT | 0.000 | 0.000 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Albury, C.L.; Sutherland, H.G.; Lam, A.W.Y.; Tran, N.K.; Lea, R.A.; Haupt, L.M.; Griffiths, L.R. Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk. Genes 2024, 15, 797. https://doi.org/10.3390/genes15060797
Albury CL, Sutherland HG, Lam AWY, Tran NK, Lea RA, Haupt LM, Griffiths LR. Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk. Genes. 2024; 15(6):797. https://doi.org/10.3390/genes15060797
Chicago/Turabian StyleAlbury, Cassie L., Heidi G. Sutherland, Alexis W. Y. Lam, Ngan K. Tran, Rod A. Lea, Larisa M. Haupt, and Lyn R. Griffiths. 2024. "Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk" Genes 15, no. 6: 797. https://doi.org/10.3390/genes15060797
APA StyleAlbury, C. L., Sutherland, H. G., Lam, A. W. Y., Tran, N. K., Lea, R. A., Haupt, L. M., & Griffiths, L. R. (2024). Identification of Polymorphisms in EAAT1 Glutamate Transporter Gene SLC1A3 Associated with Reduced Migraine Risk. Genes, 15(6), 797. https://doi.org/10.3390/genes15060797