Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin’s Lymphoma
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cultivation, Identification, and Susceptibility Testing
2.2. Genomic DNA Extraction
2.3. Whole Genome Sequencing, MLST, and Resistance Genes
2.4. Nucleotide Sequence Accession Number
2.5. Patient Data
3. Results
Genotyping and Antimicrobial Resistance Genes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Erdem, I.; Yıldırım, I.; Safak, B.; Karaali, R.; Erdal, B.; Ardic, E.; Dogan, M.; Kardan, M.E.; Kavak, C.; Karadil, K.S.; et al. A 5-year surveillance of healthcare-associated infections in a university hospital: A retrospective analysis. SAGE Open Med. 2022, 1, 10. [Google Scholar] [CrossRef] [PubMed]
- Annavajhala, M.K.; Gomez-Simmonds, A.; Uhlemann, A.C. Multidrug-resistant Enterobacter cloacae complex emerging as a global, diversifying threat. Front. Microbiol. 2019, 10, 44. [Google Scholar] [CrossRef] [PubMed]
- Irek, E.O.; Amupitan, A.A.; Obadare, T.O.; Aboderin, A.O. A systematic review of healthcare-associated infections in Africa: An antimicrobial resistance perspective. Afr. J. Lab. Med. 2018, 7, 9. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Liu, C.; Xie, H.; Zheng, J.; Zhang, Y.; Li, C.; Shen, H.; Cao, X. Genomic and clinical characteristics of carbapenem-resistant Enterobacter cloacae complex isolates collected in a Chinese tertiary hospital during 2013–2021. Front. Microbiol. 2023, 14, 1127948. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, B.; Sellera, F.P.; Sano, E.; Esposito, F.; Seabra, L.A.V.; Azedo, M.R.; Pogliani, F.C.; Lincopan, N. Phylogenomic analysis of CTX-M-15–producing Enterobacter hormaechei belonging to the high-risk ST78 from animal infection: Another successful One Health clone? J. Glob. Antimicrob. Resist. 2022, 29, 113–115. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, D.; Tang, M.; Jia, P.; Huo, Y.; Wei, E.; Xu, H.; Chi, X.; Wang, H. Genetic Characterization of Enterobacter hormaechei Co-Harboring blaNDM-1 and mcr-9 Causing Upper Respiratory Tract Infection. Infect. Drug Resist. 2022, 15, 5035–5042. [Google Scholar] [CrossRef] [PubMed]
- St. John, A.; Perault, A.I.; Giacometti, S.I.; Sommerfield, A.G.; DuMont, A.L.; Lacey, K.A.; Zheng, X.; Sproch, J.; Petzold, C.; Dancel-Manning, K.; et al. Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei. Mbio 2023, 14, e0259022. [Google Scholar]
- Knecht, C.A.; Allende, N.G.; Álvarez, V.E.; Cormicka, B.P.M.; Massó, M.G. New sequence type of an Enterobacter cloacae complex strain with the potential to become a high-risk clone. J. Glob. Antimicrob. Resist. 2022, 31, 162–164. [Google Scholar] [CrossRef]
- Liu, L.; Yu, J.; Tang, M.; Liu, J. Mechanisms of Resistance in Clinical Isolates of Enterobacter cloacae that Are Less Susceptible to Cefepime than to Ceftazidime. Ann. Clin. Lab. Sci. 2018, 48, 355–362. [Google Scholar]
- Huang, Y.T.; Yeh, T.K.; Chen, W.H.; Shih, P.W. Genome analysis of Enterobacter hormaechei identified ISEcp1 in association with blaCTX-M-236, a new blaCTX-M variant, located both in the chromosome and a plasmid. J. Glob. Antimicrob. Resist. 2021, 25, 37–39. [Google Scholar] [CrossRef]
- Davin-Regli, A.; Lavigne, J.P.; Pagès, J.M. Enterobacter spp.: Update on taxonomy, clinical aspects, and emerging antimicrobial resistance. Clinical Microbiology Reviews. Am. Soc. Microbiol. 2019, 32, e00002-19. [Google Scholar]
- Sumbana, J.; Santona, A.; Fiamma, M.; Taviani, E.; Deligios, M.; Chongo, V.; Sacarlal, J.; Rubino, S.; Paglietti, B. Polyclonal emergence of MDR Enterobacter cloacae complex isolates producing multiple extended spectrum beta-lactamases at Maputo Central Hospital, Mozambique. Rend. Lincei. Sci. Fis. E Nat. 2022, 33, 39–45. [Google Scholar] [CrossRef]
- European Center for Disease Prevention and Control. Antimicrobial Resistance Surveillance in Europe. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 15 May 2024).
- Zhao, Y.; Zhang, J.; Fu, Y.; Li, C.; Hu, K.; Su, S.; Yu, L.; Guo, Y.; Fu, Y.; Zhang, X. Molecular characterization of metallo-β-lactamase-producing carbapenem-resistant Enterobacter cloacae complex isolated in Heilongjiang Province of China. BMC Infect. Dis. 2020, 20, 2–7. [Google Scholar] [CrossRef] [PubMed]
- Mhawesh, A.A.; Ibraheem, R.N.; Zedan, T.H. Enterobacter cloacae: The association of antibiotic resistance, integron class I and carbapenemase genes. World J. Adv. Res. Rev. 2021, 12, 549–554. [Google Scholar] [CrossRef]
- Halder, G.; Chaudhury, B.N.; Mandal, S.; Denny, P.; Sarkar, D.; Chakraborty, M.; Khan, U.R.; Sarkar, S.; Biswas, B.; Chakraborty, A.; et al. Whole genome sequence-based molecular characterization of blood isolates of carbapenem-resistant Enterobacter cloacae complex from ICU patients in Kolkata, India, during 2017–2022: Emergence of phylogenetically heterogeneous Enterobacter hormaechei subsp. Xiangfangensis. Microbiol. Spectr. 2024, 12, e0352923. [Google Scholar] [CrossRef] [PubMed]
- Merhi, G.; Amayri, S.; Bitar, I.; Iraj, G.F.; Tokajian, S. Whole Genome-Based Characterization of Multidrug Resistant Enterobacter and Klebsiella aerogenes Isolates from Lebanon. Microbiol. Spectr. 2023, 11, e0291722. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Fang, R.; Zhang, Y.; Chen, L.; Huang, N.; Yu, K.; Zhou, C.; Cao, J.; Zhou, T. Characterization of resistance mechanisms of Enterobacter cloacae Complex co-resistant to carbapenem and colistin. BMC Microbiol. 2021, 21, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Peirano, G.; Matsumura, Y.; Adams, M.D.; Bradford, P.; Motyl, M.; Chen, L.; Kreiswirth, B.N.; Pitout, J.D. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008–2014. Emerg. Infect. Dis. 2018, 24, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Sutton, G.G.; Brinkac, L.M.; Clarke, T.H.; Fouts, D.E. Enterobacter hormaechei subsp. hoffmannii subsp. nov., Enterobacter hormaechei subsp. xiangfangensis comb. nov., Enterobacter roggenkampii sp. nov., and Enterobacter muelleri is a later heterotypic synonym of Enterobacter asburiae based on computational analysis of sequenced Enterobacter genomes. F1000Research 2018, 7, 521. [Google Scholar] [CrossRef]
- Barnich, N.; Bringer, M.A.; Claret, L.; Darfeuille-Michau, A. Involvement of Lipoprotein NlpI in the Virulence of Adherent Invasive Escherichia coli Strain LF82 Isolated from a Patient with Crohn’s Disease. Infect. Immun. 2004, 72, 2484–2493. [Google Scholar] [CrossRef]
- Ovi, F.; Zhang, L.; Nabors, H.; Jia, L.; Adhikari, P. A compilation of virulence-associated genes that are frequently reported in avian pathogenic Escherichia coli (APEC) compared to other E. coli. J. Appl. Microbiol. 2023, 134, lxad014. [Google Scholar] [CrossRef] [PubMed]
- Vadlamani, T.G.; Thomas, M.D.; Patel, T.R.; Donald, L.J.; Reeve, T.M. The β-Lactamase Gene Regulator AmpR Is a Tetramer That Recognizes and Binds the D-Ala-D-Ala Motif of Its Repressor UDP-N-acetylmuramic Acid (MurNAc)-pentapeptide. J. Biol. Chem. 2015, 290, 2630–2643. [Google Scholar] [CrossRef] [PubMed]
- Bishop, R.E. The bacterial lipocalins. Biochim. Et Biophys. Acta (BBA)-Protein Struct. Mol. Enzymol. 2000, 1482, 73–83. [Google Scholar] [CrossRef]
- Campanacci, V.; Bishop, R.E.; Blangy, S.; Tegoni, M.; Cambillau, C. The membrane bound bacterial lipocalin Blc is a functional dimer with binding preference for lysophospholipids. FEBS Lett. 2006, 580, 4877–4883. [Google Scholar]
- Porres-Osante, N.; Sáenz, Y.; Somalo, S.; Torres, C. Characterization of Beta-lactamases in Faecal Enterobacteriaceae Recovered from Healthy Humans in Spain: Focusing on AmpC Polymorphisms. Microb. Ecol. 2015, 70, 132–140. [Google Scholar] [PubMed]
- Pot, M.; Reynaud, Y.; Couvin, D.; Dereeper, A.; Ferdinand, S.; Bastian, S.; Foucan, T.; Pommier, J.D.; Valette, M.; Talarmin, A.; et al. Emergence of a Novel Lineage and Wide Spread of a blaCTX-M-15/IncHI2/ST1 Plasmid among Nosocomial Enterobacter in Guadeloupe. Antibiotics 2022, 11, 1443. [Google Scholar] [CrossRef] [PubMed]
- Beyene, D.; Bitew, A.; Fantew, S.; Mihret, A.; Evans, M. Multidrug-resistant profile and prevalence of extended spectrum β-lactamase and carbapenemase production in fermentative Gram-negative bacilli recovered from patients and specimens referred to National Reference Laboratory, Addis Ababa, Ethiopia. PLoS ONE 2019, 14, e0222911. [Google Scholar]
- El-Aziz, N.K.A.; Tartor, Y.H.; Gharieb, R.M.A.; Erfan, A.M.; Khalifa, E.; Said, M.A.; Ammar, A.M.; Samir, M. Extensive Drug-Resistant Salmonella enterica Isolated from Poultry and Humans: Prevalence and Molecular Determinants Behind the Co-resistance to Ciprofloxacin and Tigecycline. Front. Microbiol. 2021, 12, 738784. [Google Scholar] [CrossRef] [PubMed]
- Muraya, A.; Kyany’a, C.; Kiyaga, S.; Smith, H.J.; Kibet, C.; Martin, M.J.; Kimani, J.; Musila, L. Antimicrobial Resistance and Virulence Characteristics of Klebsiella pneumoniae Isolates in Kenya by Whole-Genome Sequencing. Pathogens 2022, 11, 545. [Google Scholar] [CrossRef]
- Zhang, H.; Zhou, Y.; Bao, H.; Zhang, L.; Wang, R.; Zhou, X. Plasmid-borne cadmium resistant determinants are associated with the susceptibility of Listeria monocytogenes to bacteriophage. Microbiol. Res. 2015, 172, 1–6. [Google Scholar] [CrossRef]
- Hu, K.; Zeng, L.; Zhang, J.; Li, H.; Su, S.; Zhao, Y.; Wang, Y.; Fu, Y.; Li, C.; Zhang, X. Antibiotic susceptibility and molecular analyses of clinical Enterobacter cloacae isolates in Eastern Heilongjiang Province, China. Ann. Cardiothorac. Surg. 2020, 9, 1211–1219. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Li, J.; Liu, C.; Zhang, Y.; Xie, H.; Li, C.; Shen, H.; Cao, X. Molecular characteristics of global β-lactamase-producing Enterobacter cloacae by genomic analysis. BMC Microbiol. 2022, 22, 2–11. [Google Scholar] [CrossRef] [PubMed]
- Dehkordi, E.B.; Tajbakhsh, E.; Momtaz, H. Molecular Characterization of Enterobacter cloacae Isolated from Urinary Tract Infections. Jundishapur J. Microbiol. 2022, 15, e122718. [Google Scholar] [CrossRef]
- Kotb, S.; Lyman, M.; Ismail, G.; Abd El Fattah, M.; Girgis, S.A.; Etman, A.; Hafez, S.; El-Kholy, J.; Zaki, M.E.S.; Rashed, H.-A.G.; et al. Epidemiology of Carbapenem-resistant Enterobacteriaceae in Egyptian intensive care units using National Healthcare-associated Infections Surveillance Data, 2011–2017. Antimicrob. Resist. Infect. Control 2020, 9, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Subhadra, B.; Kim, J.; Kim, D.H.; Woo, K.; Oh, M.H.; Choi, C.H. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front. Cell. Infect. Microbiol. 2018, 8, 270. [Google Scholar] [CrossRef] [PubMed]
- Gravey, F.; Cattoir, V.; Ethuin, F.; Fabre, L.; Beyrouthy, R.; Bonnet, R.; Le Hello, S.; Guérin, F. ramR deletion in an Enterobacter hormaechei isolate as a consequence of therapeutic failure of key antibiotics in a longterm hospitalized patient. Antimicrob. Agents Chemother. 2020, 64, e00962-20. [Google Scholar] [CrossRef] [PubMed]
- Nachimuthu, R.; Kannan, V.R.; Bozdogan, B.; Krishnakumar, V.; Pandian, K.; Manohar, P. CTX-M-type ESBL-mediated resistance to third-generation cephalosporins and conjugative transfer of resistance in Gram-negative bacteria isolated from hospitals in Tamil Nadu, India. Access Microbiol. 2021, 3, 000142. [Google Scholar] [CrossRef] [PubMed]
- Raun-Petersen, C.; Toft, A.; Nordestgaard, M.M.; Holm, A.; Overballe-Petersen, S.; Hammerum, A.M.; Hasman, H.; Justesen, U.S. Investigation of an Enterobacter hormaechei OXA-436 carbapenemase outbreak: When everything goes down the drain. Infect. Prev. Pract. 2022, 4, 100228. [Google Scholar]
- Zhou, K.; Zhou, Y.; Xue, C.X.; Xu, T.; Chen, Y.; Shen, P.; Xiao, Y. Bloodstream infections caused by Enterobacter hormaechei ST133 in China, 2010–2022. Lancet Microbe 2023, 4, e13. [Google Scholar]
- Xu, T.; Xue, C.; Huang, J.; Wu, J.; Chen, R.; Zhou, K. Emergence of an epidemic hypervirulent clone of Enterobacter hormaechei coproducing MCR-9 and carbapenemases. Lancet Microbe 2022, 3, e474–e475. [Google Scholar] [CrossRef]
- Morhart, P.; Gerlach, R.G.; Kunz, C.; Held, J.; Valenza, G.; Wölfle, J.; Reutter, H.; Hanslik, G.J.; Fahlbusch, F.B. Application of Next-Generation Sequencing to Enterobacter Hormaechei Subspecies Analysis during a Neonatal Intensive Care Unit Outbreak. Children 2023, 10, 1696. [Google Scholar] [CrossRef] [PubMed]
- Izdebski, R.; Biedrzycka, M.; Urbanowicz, P.; Żabicka, D.; Gniadkowski, M. Genome-Based Epidemiologic Analysis of VIM/IMP Carbapenemase-Producing Enterobacter spp., Poland. Emerg. Infect. Dis. 2023, 29, 1618–1626. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, C.L.; Miranda, L.E.; Moreira, B.M.; Rebello, D.; Carson, L.A.; Kellum, M.E.; de Almeida, M.C.; Sampaio, J.L.; O’Hara, C.M. Enterobacter hormaechei bloodstream infection at three neonatal intensive care units in Brazil. Pediatr. Infect. Dis. J. 2002, 21, 175–177. [Google Scholar] [CrossRef] [PubMed]
- Gou, J.-J.; Liu, N.; Guo, L.-H.; Xu, H.; Lv, T.; Yu, X.; Chen, Y.-B.; Guo, X.-B.; Rao, Y.-T.; Zheng, B.-W. Carbapenem-Resistant Enterobacter hormaechei ST1103 with IMP-26 Carbapenemase and ESBL Gene blaSHV-178. Infect. Drug Resist. 2020, 13, 597–605. [Google Scholar] [CrossRef] [PubMed]
- Dyabi, F.Z.; Bennaoui, F.; El Idrissi Slitine, N.; Soraa, N.; Maoulainine, F.M.R. Enterobacter Hormaechei: New Neonatal Infection in Morocco. Open Infect. Dis. J. 2018, 10, 147–150. [Google Scholar] [CrossRef]
- Ferreira, C.M.; Filho, R.A.A.B.; Ferreira, G.M.A.; Lacerda, M.V.G.; Oliveira, C.M.C.; Sampaio, V.d.S.; Silva, L.M.; Pascoal, A.G.; Ferreira, W.A. Molecular epidemiology of methicillin resistant Staphylococcus species in healthcare workers of a blood bank in the Brazilian Amazon. BMC Microbiol. 2021, 21, 306. [Google Scholar] [CrossRef]
Antibiotic Class | Antibiotics | MIC 4 (mg/L) | Interpretation |
---|---|---|---|
β-Lactams: (penicillins 1; carbapenens 2; cephalosporins 3) | Ampicillin 1 | ≥32 | R 5 |
Ampicillin/sulbactam 1 | ≥32 | R | |
Piperacillin/tazobactam 1 | ≥128 | R | |
Ertapenem 2 | ≥8 | R | |
Meropenem 2 | ≥16 | R | |
Imipenem 2 | ≥16 | R | |
Cefuroxime 3 | ≥64 | R | |
Axetil cefuroxime 3 | ≥64 | R | |
Cefoxitin 3 | ≥64 | R | |
Ceftazidime 3 | ≥64 | R | |
Ceftriaxone 3 | ≥64 | R | |
Cefepime 3 | ≥64 | R | |
Aminoglycosides | Amikacin | ≥64 | R |
Gentamicin | ≥16 | R | |
Fluoroquinolone | Ciprofloxacin | ≥4 | R |
Glycylcyclines | Tigecycline | ≥8 | R |
Polymyxins | Colistin | ≤0.5 | S 6 |
AMR Mechanism | Genes |
---|---|
Antibiotic activation enzyme | KatG |
Antibiotic inactivation enzyme | aac(3)-II, III, IV, VI, VIII, IX, X, aac(6′)-Ib/aac(6′)-II, ACT/MIR family, CatB family, CTX-M family, GES family, NDM family, OXA-1family, TEM family |
Antibiotic resistance gene cluster, cassette, or operon | MarA, MarB, MarR |
Antibiotic target susceptible species | Alr, Ddl, dxr, EF-G, EF-Tu, folA, Dfr, folP, gyrA, gyrB, inha, fabI, Iso-tRNA, kasA, MurA, rho, rpoB, rpoC, S10p, S12p |
Antibiotic target protection protein | BcrC, QnrB10 |
Antibiotic target replacement protein | fabV |
Efflux pump conferring antibiotic resistance | AcrAB-TolC, AcrAD-TolC, AcrEF-TolC, AcrZ, EmrAB-TolC, EmrD, MacA, MacB, MdfA/Cmr, MdtABC-TolC, MdtL, QacE, SugE, TolC/OpmH |
Gene conferring resistance via absence | gidB |
Protein altering cell wall charge conferring antibiotic resistance | GdpD, PgsA |
Protein modulating permeability to antibiotic | OccD6/OprQ |
Regulator modulating expression of antibiotic resistance genes | AcrAB-TolC, EmrAB-TolC, H-NS, OxyR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferreira, C.M.; Naveca, F.G.; Ferreira, G.M.A.; Barbosa, M.d.N.S.; de Souza, V.C.; Calheiros, F.O.; Souza, V.S.; Ferreira, W.A. Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin’s Lymphoma. Genes 2024, 15, 814. https://doi.org/10.3390/genes15060814
Ferreira CM, Naveca FG, Ferreira GMA, Barbosa MdNS, de Souza VC, Calheiros FO, Souza VS, Ferreira WA. Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin’s Lymphoma. Genes. 2024; 15(6):814. https://doi.org/10.3390/genes15060814
Chicago/Turabian StyleFerreira, Cristina Motta, Felipe Gomes Naveca, Guilherme Motta Antunes Ferreira, Maria de Nazaré Saunier Barbosa, Victor Costa de Souza, Franceline Oliveira Calheiros, Vander Silva Souza, and William Antunes Ferreira. 2024. "Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin’s Lymphoma" Genes 15, no. 6: 814. https://doi.org/10.3390/genes15060814
APA StyleFerreira, C. M., Naveca, F. G., Ferreira, G. M. A., Barbosa, M. d. N. S., de Souza, V. C., Calheiros, F. O., Souza, V. S., & Ferreira, W. A. (2024). Whole-Genome Analysis of Extensively Drug-Resistant Enterobacter hormaechei Isolated from a Patient with Non-Hodgkin’s Lymphoma. Genes, 15(6), 814. https://doi.org/10.3390/genes15060814