The First Three Mitochondrial Genomes for the Characterization of the Genus Egeirotrioza (Hemiptera: Triozidae) and Phylogenetic Implications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Taxon Sampling and Sequencing
2.2. Assembly, Annotation, and Composition Analyses
2.3. Phylogenetic Analyses
3. Results and Discussion
3.1. Mitogenomic Organization
3.2. Protein-Coding Genes, Composition, and Evolutionary Rates
3.3. Nucleotide Diversity and Codon Usage
3.4. Phylogenetic Relationships
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameron, S.L. Insect Mitochondrial Genomics: Implications for Evolution and Phylogeny. Annu. Rev. Entomol. 2014, 59, 95–117. [Google Scholar] [CrossRef]
- Ge, X.; Peng, L.; Vogler, A.P.; Morse, J.C.; Yang, L.; Sun, C.; Wang, B. Massive gene rearrangements of mitochondrial genomes and implications for the phylogeny of Trichoptera (Insecta). Syst. Entomol. 2023, 48, 278–295. [Google Scholar] [CrossRef]
- Lin, X.-L.; Liu, Z.; Yan, L.-P.; Duan, X.; Bu, W.-J.; Wang, X.-H.; Zheng, C.-G. Mitogenomes provide new insights of evolutionary history of Boreheptagyiini and Diamesini (Diptera: Chironomidae: Diamesinae). Ecol. Evol. 2022, 51, 119–132. [Google Scholar] [CrossRef]
- Boore, L. Animal mitochondrial genomes. Nucleic Acids Res. 1999, 27, 1767–1780. [Google Scholar] [CrossRef]
- Kim, K.Y.; Lee, S.Y.; Bang, I.C.; Nam, Y.K. Complete mitogenome sequence of an endangered freshwater fish, Iksookimia choii (Teleostei; Cypriniformes; Cobitidae). Mitochondrial DNA 2008, 19, 438–445. [Google Scholar] [CrossRef]
- Percy, D.M.; Crampton-Platt, A.; Sveinsson, S.; Lemmon, A.R.; Lemmon, E.M.; Ouvrard, D.; Burckhardt, D. Resolving the psyllid tree of life: Phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Syst. Entomol. 2018, 43, 762–776. [Google Scholar] [CrossRef]
- Perilla-Henao, L.M.; Casteel, C.L. Vector-Borne Bacterial Plant Pathogens: Interactions with Hemipteran Insects and Plants. Front. Plant Sci. 2016, 64, 325–338. [Google Scholar] [CrossRef]
- Hodkinson, I.D. The biology of the Psylloidea (Homoptera): A review. Bull. Entomol. Res. 1974, 64, 325–338. [Google Scholar] [CrossRef]
- Ouvrard, D. Psyl’list-The World Psylloidea Database. Available online: http://flow.hemiptera-databases.org/flow/ (accessed on 19 February 2015).
- Li, F.S. Psyllydomorpha of China; Science Press: Beijing, China, 2011. [Google Scholar]
- Ren, L.L.; Li, Z.Y.; Li, Y.C.; Guo, Y.M. Revision of Scientific Nosmes for the main Insect Species in the Monograph “Forest Insects of China (2rd Edition, 1992)”. Sci. Silvae Sin. 2016, 52, 110–115. [Google Scholar] [CrossRef]
- Zhang, B.K.; Cui, X.P.; Wang, P.L.; Sun, H.Y.; Zhou, L.; Pang, H.L.; Tong, L. Morphological Identification and Damage Characteristics of Three Populus Euphratica Psyllid in Northern Xinjiang. Xinjiang Agric. Sci. 2012, 49, 1887–1890. [Google Scholar] [CrossRef]
- Bolger, A.M.; Marc, L.; Bjoern, U. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Nicolas, D.; Patrick, M.; Guillaume, S. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 2017, 45, 18. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Chan, P.P.; Lowe, T.M. tRNAscan-SE: Searching for tRNA genes in genomic sequences. In Gene Prediction; Springer: Berlin/Heidelberg, Germany, 2019; pp. 1–14. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Shen, W.; Le, S.; Li, Y.; Hu, F.Q. SeqKit: A Cross-Platform and Ultrafast Toolkit for FASTA/Q File Manipulation. PLoS ONE 2016, 11, 10. [Google Scholar] [CrossRef]
- Rozas, J.; Ferrer-Mata, A.; Sánchez-DelBarrio, J.C.; Guirao-Rico, S.; Librado, P.; Ramos-Onsins, S.E.; Sánchez-Gracia, A. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol. Biol. Evol. 2017, 34, 3299–3302. [Google Scholar] [CrossRef]
- Standley, D. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Capella-Gutierrez, S.; Silla-Martinez, J.M.; Gabaldon, T. trimAl: A tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 2009, 25, 1972–1973. [Google Scholar] [CrossRef]
- Longo, P.K.G. FASconCAT-G: Extensive functions for multiple sequence alignment preparations concerning phylogenetic studies. Front. Zool. 2014, 11, 812. [Google Scholar] [CrossRef]
- Kück, P.; Meid, S.A.; Groß, C.; Wägele, J.W.; Misof, B. AliGROOVE—Visualization of heterogeneous sequence divergence within multiple sequence alignments and detection of inflated branch support. BMC Bioinform. 2014, 15, 294. [Google Scholar] [CrossRef]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.; Von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534, Erratum in Mol. Biol. Evol. 2020, 37, 2461. [Google Scholar]
- Wang, H.-C.; Minh, B.Q.; Susko, E.; Roger, A.J. Modeling Site Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate Phylogenomic Estimation. Syst. Biol. 2018, 67, 216–235. [Google Scholar] [CrossRef]
- Nicolas Lartillot, N.R.; Stubbs, D.; Richer, J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst. Biol. 2013, 62, 611–615. [Google Scholar] [CrossRef]
- Cui, Y.; Xie, Q.; Hua, J.; Dang, K.; Zhou, J.; Liu, X.; Wang, G.; Yu, X.; Bu, W. Phylogenomics of Hemiptera (Insecta: Paraneoptera) based on mitochondrial genomes. Syst. Entomol. 2013, 38, 233–245. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, R.; Xue, H.; Li, Y.; Bu, W. Mitogenomics of Chinch Bugs from China and Implications for Its Coevolutionary Relationship with Grasses. Insects 2022, 13, 643. [Google Scholar] [CrossRef]
- Zhang, D.; He, F.-X.; Li, X.-B.; Aishan, Z.; Lin, X.-L. New Mitogenomes of the Polypedilum Generic Complex (Diptera: Chironomidae): Characterization and Phylogenetic Implications. Insects 2023, 14, 238. [Google Scholar] [CrossRef]
- Ge, X.; Zang, H.; Ye, X.; Peng, L.; Wang, B.; Lian, G.; Sun, C. Comparative Mitogenomic Analyses of Hydropsychidae Revealing the Novel Rearrangement of Protein-Coding Gene and tRNA (Trichoptera: Annulipalpia). Insects 2022, 13, 759. [Google Scholar] [CrossRef]
- Yu, P.; Zhou, L.; Zhou, X.-Y.; Yang, W.-T.; Zhang, J.; Zhang, X.-J.; Wang, Y.; Gui, J.-F. Unusual AT-skew of Sinorhodeus microlepis mitogenome provides new insights into mitogenome features and phylogenetic implications of bitterling fishes. Int. J. Biol. Macromol. 2019, 129, 339–350. [Google Scholar] [CrossRef]
- Bratic, A.; Clemente, P.; Calvogarrido, J.; Maffezzini, C.; Felser, A.; Wibom, R.; Wedell, A.; Freyer, C.; Wredenberg, A. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. PLoS Genet. 2016, 12, e1006028. [Google Scholar] [CrossRef] [PubMed]
- Ji, H.; Xu, X.; Jin, X.; Yin, H.; Luo, J.; Liu, G.; Zhao, Q.; Chen, Z.; Bu, W.; Gao, S. Using high-resolution annotation of insect mitochondrial DNA to decipher tandem repeats in the control region. RNA Biol. 2019, 16, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Toompuu, M.; Tuomela, T.; Laine, P.; Paulin, L.; Dufour, E.; Jacobs, H.T. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Nucleic Acids Res. 2018, 46, 5209–5226. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.H.; Bielawski, J.P. Statistical methods for detecting molecular adaptation. Trends Ecol. Evol. 2000, 15, 496–503. [Google Scholar] [CrossRef] [PubMed]
- Eyre-Walker, A. Differentiating between selection and mutation bias. Genetic 1997, 147, 1983–1987. [Google Scholar] [CrossRef] [PubMed]
- Ouvrard, D.B.D. A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). ZOOTAXA 2012, 3509, 1–34. [Google Scholar] [CrossRef]
- Sun, X.; Ding, Y.; Orr, M.C.; Zhang, F. Streamlining universal single-copy orthologue and ultraconserved element design: A case study in Collembola. Mol. Ecol. Resour. 2020, 20, 706–717. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Niu, Z.-Q.; Luo, A.-R.; Orr, M.C.; Ferrari, R.R.; Jin, J.-F.; Wu, Q.-T.; Zhang, F.; Zhu, C.-D. Testing the systematic status of Homalictus and Rostrohalictus with weakened cross-vein groups within Halictini (Hymenoptera: Halictidae) using low-coverage whole-genome sequencing. Insect Sci. 2022, 29, 1819–1833. [Google Scholar] [CrossRef]
- Zhang, F.; Ding, Y.; Zhu, C.D.; Zhou, X.; Orr, M.C.; Scheu, S.; Luan, Y.X. Phylogenomics from low-coverage whole-genome sequencing. Methods Ecol. Evol. 2019, 10, 507–517. [Google Scholar] [CrossRef]
Species | Location | Longitude and Latitude | Elevation (m) | Data | Collector |
---|---|---|---|---|---|
Egeirotrioza gracilis | Luntai County, Xinjiang, China | 84.3081° E, 41.5911° N | 931.4 | 27.V.2023 | Chen-Hong Wang |
Egeirotrioza rufa | Luntai County, Xinjiang, China | 84.2050° E, 41.2537° N | 928.1 | 26.V.2023 | Jin-Ling Wang |
Egeirotrioza xingi | Luntai County, Xinjiang, China | 84.2050° E, 41.2537° N | 931.4 | 27.V.2023 | Chen-Hong Wang |
Species | Whole Genome | PCG | tRNA | rRNA | CR | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Length | AT% | AT- | GC% | GC- | Length | AT% | AT- | GC% | GC- | Length | AT% | AT- | GC% | GC- | Length | AT% | AT- | GC% | GC- | Length | AT% | AT- | GC% | GC- | |
(bp) | Skew | Skew | (bp) | Skew | Skew | (bp) | Skew | Skew | (bp) | Skew | Skew | (bp) | Skew | Skew | |||||||||||
Egeirotrioza rufa | 15,830 | 76.920 | 0.010 | 23.06 | −0.154 | 10,825 | 78.343 | −0.134 | 21.64513 | −0.080 | 1377 | 79.450 | 0.013 | 20.55 | 0.145 | 1892 | 79.080 | −0.019 | 20.92 | 0.314 | 1764 | 71.090 | −0.065 | 28.74 | 0.014 |
Egeirotrioza gracilis | 15,355 | 74.460 | 0.033 | 25.53 | −0.23854 | 10,822 | 73.553 | −0.135 | 26.44744 | −0.110 | 1361 | 78.170 | 0.024 | 21.82 | 0.145 | 1891 | 76.975 | −0.016 | 23.03 | 0.331 | 1303 | 82.880 | 0.006 | 16.96 | −0.177 |
Egeirotrioza xingi | 15,301 | 76.4 | 0.031 | 23.63 | −0.243 | 10,818 | 75.8 | −0.131 | 24.19436 | −0.094 | 1367 | 79.6 | 0.035 | 20.41 | 0.154 | 1898 | 78.6 | −0.035 | 21.4 | 0.357 | 1249 | 84.7 | −0.009 | 15.14 | −0.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aishan, Z.; Mu, Z.-L.; Li, Z.-C.; Luo, X.-Y.; Huangfu, N. The First Three Mitochondrial Genomes for the Characterization of the Genus Egeirotrioza (Hemiptera: Triozidae) and Phylogenetic Implications. Genes 2024, 15, 842. https://doi.org/10.3390/genes15070842
Aishan Z, Mu Z-L, Li Z-C, Luo X-Y, Huangfu N. The First Three Mitochondrial Genomes for the Characterization of the Genus Egeirotrioza (Hemiptera: Triozidae) and Phylogenetic Implications. Genes. 2024; 15(7):842. https://doi.org/10.3390/genes15070842
Chicago/Turabian StyleAishan, Zhulidezi, Ze-Lu Mu, Zi-Cong Li, Xin-Yu Luo, and Ning Huangfu. 2024. "The First Three Mitochondrial Genomes for the Characterization of the Genus Egeirotrioza (Hemiptera: Triozidae) and Phylogenetic Implications" Genes 15, no. 7: 842. https://doi.org/10.3390/genes15070842
APA StyleAishan, Z., Mu, Z. -L., Li, Z. -C., Luo, X. -Y., & Huangfu, N. (2024). The First Three Mitochondrial Genomes for the Characterization of the Genus Egeirotrioza (Hemiptera: Triozidae) and Phylogenetic Implications. Genes, 15(7), 842. https://doi.org/10.3390/genes15070842