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Abstract: Cytochrome P450 (CYP) is a crucial oxidoreductase enzyme that plays a significant role
in plant defense mechanisms. In this study, a specific cytochrome P450 gene (MnCYP710A11) was
discovered in mulberry (Morus notabilis). Bioinformatic analysis and expression pattern analysis were
conducted to elucidate the involvement of MnCYP710A11 in combating Botrytis cinerea infection.
After the infection of B. cinerea, there was a notable increase in the expression of MnCYP710A11.
MnCYP710A11 is overexpressed in Arabidopsis and mulberry and strongly reacts to B. cinerea. The
overexpression of the MnCYP710A11 gene in Arabidopsis and mulberry led to a substantial enhance-
ment in resistance against B. cinerea, elevated catalase (CAT) activity, increased proline content, and
reduced malondialdehyde (MDA) levels. At the same time, H2O2 and O2

− levels in MnCYP710A11
transgenic Arabidopsis were decreased, which reduced the damage of ROS accumulation to plants.
Furthermore, our research indicates the potential involvement of MnCYP710A11 in B. cinerea resis-
tance through the modulation of other resistance-related genes. These findings establish a crucial
foundation for gaining deeper insights into the role of cytochrome P450 in mulberry plants.

Keywords: cytochrome P450; B. cinerea; mulberry; MnCYP710A11

1. Introduction

Cytochrome P450 (CYP) is one of the most important enzymes in the oxidoreduc-
tase family, which uses heme-thiolate as a cofactor [1]. CYP functions as a protective
agent for plants, defending them against various pathogenic microorganisms and pests
by facilitating the synthesis and metabolism of numerous physiologically essential com-
pounds [2–6]. CYP operates within an intricate network of plant defense mechanisms [7].
These defense mechanisms encompass hypersensitivity and the suppression of specific
plant pathogen growth [8,9]. The infection of Pseudomonas syringae triggered a hyper-
sensitive response (HR), leading to an upregulation of the CYP76C2 gene in Arabidopsis
thaliana. The activation of the CYP76C2 gene is associated with injury, senescent cell culture,
and leaf senescence [10,11]. CYP51H10 is responsible for the synthesis of antimicrobial
oleanane-triterpene saponins, which confer resistance to root-infecting fungi in oats [12].

CYP710 is a member of the CYP superfamily and is believed to have originated from
the CYP51 family through evolution [13]. The transformation of β-sitosterol into stigmas-
terol occurs through a singular enzymatic process catalyzed by sterol C-22 desaturase,
facilitated by the cytochrome P450 710A11 (CYP710A11) enzyme [14]. As of now, there
is limited knowledge regarding the function of CYP710A11 in the context of B. cinerea
infection.
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Mulberry is an important economic tree. Its leaves are the main feed of silkworm,
and the fruit is rich in nutrition, active substances, good taste, and has high edible and
medicinal value [15–18]. In addition, mulberry is also used for ecological control because
of its strong resistance to stress [19]. B. cinerea is a necrotrophic fungal pathogen capable of
infecting a broad spectrum of plant species, including significant agricultural crops [20,21].
Its primary targets are tender tissues like fruits, vegetables, and flowers. This fungus is
prevalent globally and is recognized as a highly economically impactful plant pathogen,
leading to substantial crop losses pre- and post-harvest [22]. Simultaneously, B. cinerea
stands as a primary pathogenic fungus affecting mulberry plants [23].

The transcriptomic data detailing the resistance of mulberry (M. notabilis) to B. cinerea
infection provide valuable insights for investigating the resistance of MnCYP710A11 to
B. cinerea infection [24]. According to the preceding transcriptome data, we observed a
significant increase in MnCYP710A11 expression levels in M. notabilis during B. cinerea
infection. The resistance conferred by MnCYP710A11 against B. cinerea infection was
investigated. In addition, in order to explore the role of MnCYP710A11, we induced the
overexpression of MnCYP710A11 in both Arabidopsis and mulberry trees. We examined
the resistance of transgenic Arabidopsis and transiently overexpressed mulberry using
diverse methods, confirming the involvement of MnCYP710A11 in the defense response
of these transgenic plants. These results offer preliminary insights into the resistance
mechanism of CYP710A11 and have established a basis for further elucidating the function
of CYP710A11. At the same time, this serves as a reference for investigating CYP710A11 in
other plant species and presents a potential target gene for enhancing mulberry’s resistance
to B. cinerea.

2. Materials and Methods
2.1. Plant Materials and Growth Conditions

The genetic background of A. thaliana was Columbia-0 (Col-0), which was cultured in
a growth chamber at 22 ◦C, with 60–80% relative humidity and a 12 h day cycle. Mulberry
trees were cultured in a growth chamber at 25 ◦C, with a 12 h day cycle and 75% humidity.

2.2. RNA Isolation and Quantitative Real-Time PCR

Plant tissues were processed for total RNA extraction utilizing CTAB-pBIOZOL (Bioer,
Hangzhou, China) following the manufacturer’s guidelines. The initial complementary
DNA (cDNA) strand was generated using gDNA Eraser (Takara, Kusatsu, Shiga, Japan)
in conjunction with the PrimeScript RT reagent Kit (Takara, Kusatsu, Shiga, Japan), sub-
sequently followed by the synthesis of the second cDNA strand. The qRT-PCR analysis
was conducted utilizing the SYBR Green PCR Master Mix (Takara, Kusatsu, Shiga, Japan)
on both the Step One and Step OnePlus real-time PCR platforms (Applied Biosystems,
Waltham, MA, USA). The Actin gene was employed as the internal reference gene. The
qRT-PCR analysis was repeated using three different techniques, with the specific qRT-PCR
primer sequences detailed in Table S1. The expression levels were analyzed by using the
2−∆CT method [25].

2.3. Bioinformatic Analysis

The MnCYP710A11 (L484_021687) amino acid sequence was downloaded from a mul-
berry genome database (https://morus.biodb.org/morusdb/, accessed on 17 May 2023).
Different species of CYP710A11 amino acid sequences were obtained from the National Cen-
ter for Biotechnology Information database (https://www.ncbi.nlm.nih.gov/, accessed on
17 May 2023). ClustalX software (v. 1.83) was used to align amino acid sequences [26]. The
phylogenetic tree was built utilizing the adjacency method as implemented in Molecular
Evolutionary Genetic Analysis (MEGA 7) software with a bootstrap value of 1000 [27].

https://morus.biodb.org/morusdb/
https://www.ncbi.nlm.nih.gov/
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2.4. Transformation of A. thaliana

The complete coding sequence of the mulberry MnCYP710A11 gene was inserted into
the pLGNL expression vector using KpnI and EcoRI restriction enzymes [28]. Subsequently,
the modified plasmid was introduced into the Agrobacterium tumefaciens LBA4404 strain.
The positive A. tumefaciens containing MnCYP710A11 was transformed into Arabidopsis by
using the flower dip method [29]. The T3 homozygous lines were studied.

2.5. Histochemical GUS Staining

Histochemical analysis of GUS activity is a modification of the procedure previously
described [30]. First, the obtained homozygous Arabidopsis seeds overexpressing the
MnCYP710A11 gene were sterilized, and then, the sterilized seeds were spread in an MS
medium for culturing. After 2–3 days of cultivation, the plants underwent a water rinse
followed by immersion in a GUS staining solution comprising 1 mM 5-bromo-4-chloro-3-
indolyl-β-d-glucuronic acid (X-Gluc), 50 mM sodium phosphate (pH = 7.0), 1 mM ethylene-
diaminetetraacetic acid (EDTA), 0.1% Triton X-100, 50 mM potassium ferricyanide, and
50 mM potassium ferrocyanide. The samples were then incubated at 37 ◦C for 8–16 h. To
improve the visibility of GUS staining, chlorophyll was eliminated using 70% (v/v) ethanol.
For GUS staining of mulberry leaves, first, the plant leaves were invaded by Agrobacterium
tumefaciae containing the plant expression vector of the GUS fusion gene by using the
vacuum immersion method. After co-culturing, the mulberry leaves were immersed in the
GUS staining solution for staining, and finally decolorized with 70% (v/v) ethanol.

2.6. Transformation of Mulberry

A. tumefaciens LBA4404 harboring the pLGNL-MnCYP710A11 vector was prepared
using a transformation solution (1/2 MS, 5% sucrose, 200 µM acetosyringone, 0.05% Tween-
20, pH 5.6) and adjusted to a final OD600 of 0.5. Fifteen-day-old mulberry seedlings were
immersed in the LBA4404 transformation solution containing pLGNL-MnCYP710A11 and
subjected to vacuum treatment at room temperature for 20 min [31].

2.7. Transgenic Plants Inoculated with B. cinerea

To assess the resistance of transgenic Arabidopsis to B. cinerea (MM1 strain), a resistance
test was conducted. Transgenic seeds were germinated on 1/2 Murashige and Skoog (MS)
agar medium. After 7 days, the seedlings were transplanted into nutrient soil pots and
cultivated under conditions of 24 ◦C/22 ◦C with a 16 h light and 8 h dark cycle. Mycelium
fragments were then applied to the leaves of 21-day-old plants for the experiment. B. cinerea
was initially cultured on a PDA plate and cultured in an incubator at 25 ◦C for 2~3 days. The
fungus was then harvested from the edge of the B. cinerea fungus colony using a sterilized
hole punch, and the fungus was inoculated on fresh and healthy Arabidopsis leaves. Before
inoculation, we rinsed the leaf surface with distilled water and wiped the leaf surface dry.
The diameter of the lesion was measured. The Arabidopsis plants were monitored at 12 h
intervals post-inoculation, and photographs were taken 36 h later.

2.8. Evaluation of Resistance of Transgenic Plants to B. cinerea

Following the manufacturer’s guidelines, the levels of malondialdehyde (MDA), pro-
line, peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) activities were
assessed using a plant detection kit (Solarbio, Beijing, China). Briefly, 0.1 g of plant sample
was added to 1 mL of extraction liquid, homogenized, and then centrifuged; the supernatant
was collected and finally determined by using a spectrophotometer. The levels of super-
oxide radicals (O2

−) and hydrogen peroxide (H2O2) in the leaves were assessed through
nitro blue tetrazolium (NBT) [32] and 3, 3′-diaminobenzidine (DAB) staining [33].The leaf
samples were vacuum-infiltrated with NBT solution, which reacts with superoxide anion
radicals to form a dark blue formazan compound that is insoluble. After dyeing, the leaves
were soaked in 70% ethanol (v/v) until all chlorophyll was completely removed. Another
portion of the sample was immersed in DAB solution and stained for 12 h in the dark.
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Following this, these samples were also soaked in 70% ethanol (v/v) until all chlorophyll
was entirely removed.

2.9. Statistical Analyses

The experiments in this study were replicated thrice. Data analysis was carried
out using Excel 2021 (Microsoft, Redmond, WA, USA). The outcomes are presented as
the mean ± standard deviation (SD). Statistical analysis was performed utilizing SPSS
Statistics 26.0 software (SPSS Inc., Chicago, IL, USA), and graphical representations were
generated using GraphPad Prism 10 software (GraphPad software Inc., La Jolla, CA, USA).

3. Results
3.1. Phylogenetic Analysis of MnCYP710A11 Gene

Multiple alignment was performed with other plant CYP710A11 protein sequences
obtained from the NCBI database. Subsequently, phylogenetic and molecular evolutionary
analyses were conducted utilizing MEGA 7 to investigate the evolutionary connections
among various species (Figure 1). The results indicated that CYP710A11 in mulberry was
closely related to CYP710A11 in Malus domestica and more distantly related to CYP710A11
in Vitis vinifera and Helianthus annuus.
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Figure 1. A phylogenetic tree of CYP710A11 proteins in mulberry and other plants. The num-
ber represents the confidence percentage. The accession numbers for these protein sequences ob-
tained from GenBank are as follows: PdCYP710A11 (Prunus dulcis, XP_034213338.1); PpCYP710A11
(Prunus persica, XP_007213284.2); PaCYP710A11 (Prunus avium, XP_021805687.1); MdCYP710A11
(M. domestica, XP_008371595.2); CmCYP710A11 (Cucurbita moschata, XP_022926360.1); CpCYP710A11
(Cucurbita pepo, XP_023518762.1); CsCYP710A11 (Cucumis sativus, XP_004134602.1); BhCYP710A11
(Benincasa hispida, XP_038883734.1); JrCYP710A11 (Juglans regia, XP_018859536.2); StCYP710A11
(Senna tora, KAF7840462.1); MpCYP710A11 (Mucuna pruriens, RDX60276.1); VvCYP710A11 (V. vinifera,
RVW16710.1); and HaCYP710A11 (H. annuus, XP_022035515.1).

3.2. B. cinerea-Induced MnCYP710A11 Expression

The expression level of MnCYP710A11 in mulberry seedlings infected with B. cinerea
was examined using qRT-PCR analysis (Figure 2). Compared with 3 days of mock treat-
ment, the expression level of MnCYP710A11 was significantly increased after 3 days of
inoculation, consistent with our previous transcriptome findings [24]. This suggests that
the MnCYP710A11 gene could play a role in enhancing mulberry’s resistance to B. cinerea.
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Figure 2. The expression levels of MnCYP710A11 in mulberry leaves following mock treatment (Mock)
and after inoculation with B. cinerea (Inoculated) was compared. The values represent averages, and
the standard error (SE) is depicted as an error bar, based on three independent biological samples,
each with three technical replicates (*** p < 0.001; two-tailed t-test). Mock, inoculated B. cinerea-free
agar blocks; Inoculated, inoculated agar blocks containing B. cinerea.

3.3. Ectopic Expression of MnCYP710A11

To further validate the role of the MnCYP710A11 gene in resistance, we introduced
the MnCYP710A11 gene into Arabidopsis for heterologous expression. The cDNA of Mn-
CYP710A11 was incorporated into Arabidopsis under the regulation of the Cauliflower
mosaic virus 35S promoter, leading to the acquisition of T3 transgenic Arabidopsis plants
following screening. First, the positive transgenic plants were verified by GUS staining.
Following GUS staining, the transgenic plants exhibited a blue coloration (Figure 3a). Sub-
sequent validation through qRT-PCR confirmed the overexpression of the MnCYP710A11
gene (Figure 3b). These outcomes affirm the successful overexpression of the MnCYP710A11
gene in Arabidopsis, resulting in the generation of positive transgenic plants.
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Figure 3. The identification of transgenic Arabidopsis. (a) Transgenic Arabidopsis GUS staining.
(b) An assessment of the relative expression levels of MnCYP710A11 in transgenic Arabidopsis. WT,
wild Arabidopsis; OE, MnCYP710A11 transgene Arabidopsis. The values represent averages, and the
standard error (SE) is depicted as an error bar, based on three independent biological samples, each
with three technical replicates (*** p < 0.001; two-tailed t-test).
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3.4. MnCYP710A11 Transgenic Plant Enhances Resistance to B. cinerea

To evaluate the resistance of Arabidopsis transgenic plants overexpressing MnCYP710A11
against B. cinerea, we conducted an experiment where transgenic Arabidopsis leaves were
inoculated with agar blocks containing B. cinerea hyphae (Figure 4a). After 36 h of inocu-
lation, while control leaves exhibited severe lesions, the leaves of MnCYP710A11 overex-
pression lines only showed mild lesions. Quantitative analysis clearly demonstrated that
the overexpression of MnCYP710A11 in Arabidopsis effectively suppressed the infection
induced by B. cinerea (Figure 4b). In addition, the production of reactive oxygen species
represents a plant’s reaction to stress. To determine this, we conducted DAB staining and
NBT staining to detect the levels of hydrogen peroxide (H2O2) and superoxide (O2

−) in
the leaves, respectively (Figure 4c,d). The results showed that Arabidopsis plants trans-
fected with MnCYP710A11 displayed minimal dark-brown patches after DAB staining,
indicating lower levels of H2O2 accumulation. Conversely, the WT Arabidopsis plants
exhibited large dark-brown patches, suggesting higher H2O2 accumulation. Similarly,
NBT staining revealed minimal dark-blue patches in Arabidopsis plants transfected with
MnCYP710A11, indicating lower levels of O2

− accumulation, whereas large dark-blue
patches were observed in the WT Arabidopsis plants, indicating higher O2

− accumulation.
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morphology in Arabidopsis 36 h post-infection with B. cinerea. (b) Quantitative assessment of
resistance in transgenic Arabidopsis. (c) DAB staining showed H2O2 levels. (d) NBT staining showed
O2
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3.5. Detection of Biochemical Indices

We assessed the variations in malondialdehyde (MDA) content under both normal
conditions and during B. cinerea infection to assess cell membrane damage (Figure 5a). The
findings revealed no notable disparity in MDA content between wild-type (WT) and trans-
genic Arabidopsis plants during normal growth conditions. However, the MDA content
of WT and transgenic Arabidopsis increased 36 h after infection by B. cinerea compared
with 0 h. Meanwhile, the MDA content of transgenic plants was significantly lower than
that of WT plants after 36 h of infection with B. cinerea. These results indicate that plasma
membrane damage is more pronounced in WT plants than in transgenic Arabidopsis.
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Figure 5. The determined physicochemical indexes before and after B. cinerea inoculation. (a) MDA
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During normal conditions, there was no substantial variance in proline content be-
tween wild-type (WT) Arabidopsis and those overexpressing MnCYP710A11 (Figure 5b).
The proline content of wild-type and transgenic plants increased 36 h after B. cinerea infec-
tion compared with 0 h. At the same time, the proline content of transgenic Arabidopsis
was significantly higher than that of wild-type plants 36 h after B. cinerea infection.

Catalase (CAT), superoxide dismutase (SOD), and peroxidase (POD) are crucial en-
zymes in plants that are pivotal in eliminating reactive oxygen species (ROS). During
normal conditions, there were no notable variances in the activities of CAT, SOD, and
POD between wild-type (WT) and transgenic Arabidopsis leaves (Figure 5c–e). However,
the CAT, SOD, and POD activities of transgenic Arabidopsis were significantly increased
compared with those of WT plants 36 h after infection with B. cinerea.

3.6. Disease Resistance Analysis of Mulberry Seedlings Overexpressing MnCYP710A11

For a more in-depth exploration of MnCYP710A11’s role in mulberry trees, a transient
overexpression of MnCYP710A11 was induced in mulberry trees (Figure 6). Histochemical
examination of β-glucuronidase (GUS) displayed intense GUS staining in the leaves of mul-
berry seedlings, confirming the successful overexpression of MnCYP710A11 in mulberry
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trees (Figure 6a). Compared with WT plants, mulberry trees overexpressing MnCYP710A11
showed increased resistance to B. cinerea (Figure 6b). Upon B. cinerea infection, the transient
expression of MnCYP710A11 led to a notable reduction in malondialdehyde (MDA) content
in mulberry seedlings (Figure 6c), while simultaneously enhancing proline content and
catalase (CAT) activity (Figure 6d,e). These findings align with the earlier results observed
in MnCYP710A11 transgenic Arabidopsis.
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Figure 6. The resistance of MnCYP710A11 to B. cinerea was analyzed through transient expression in
mulberry. (a) GUS staining of WT plants and transient overexpression after 72 h in mulberry leaves.
WT, wild-type; Control, empty vector. (b) The photos were taken 72 h after infection with B. cinerea of
mulberry leaves. (c) MDA content, (d) proline content, and (e) CAT activity. The values are averages
and the standard error (SE) is represented by a bar representing three independent biological samples
with three technical replicates per sample (** p < 0.01 and *** p < 0.001; two-tailed t-test). ns, no
significant difference.

3.7. Enhancement of AtBG2 Expression in MnCYP710A11 Transgenic Plants

β-1,3-glucanase 2 (BG2) serves as a marker gene associated with plant defense mech-
anisms. The findings revealed no notable variance in AtBG2 gene expression between
transgenic Arabidopsis plants transfected with MnCYP710A11 and wild-type (WT) plants
prior to B. cinerea infection (see Figure 7). However, compared with 0 h, AtBG2 expression
levels in transgenic Arabidopsis plants transfected with MnCYP710A11 and WT plants
were upregulated 36 h after infection with B. cinerea. At the same time, the expression
level of transgenic plants was significantly higher than that of WT plants 36 h after infec-
tion with B. cinerea. These findings indicate that the introduction of the MnCYP710A11
gene into Arabidopsis can induce the expression of resistance-related genes to combat
B. cinerea infection.
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4. Discussion

The identification of plant resistance genes is the basis of breeding resistant varieties.
Transcriptomic analysis has been utilized to identify genes that govern plant resistance
against pathogen infections [34,35]. In our prior research, we conducted comparative
transcriptomic analyses of mulberry trees after B. cinerea infection and obtained candidate
genes that may regulate B. cinerea resistance. As a reactive enzyme, cytochrome P450 is
extensively distributed among animals, plants, and microorganisms. Certain P450 enzymes
have been documented to catalyze the production of diverse primary and secondary
metabolites in plants. However, the roles of most cytochrome P450 genes in mulberry
remain unknown. In this study, we chose the CYP450 protein-coding gene CYP710A11 to
validate its role in disease resistance, thereby enhancing the precision of our findings.

Within plants, the CYP450 protein is categorized into 10 distinct clans spanning
61 families [36]. In this study, we isolated and characterized a CYP450 gene, CYP710A11,
from mulberry, classified under the CYP710 subfamily. The CYP710 family is widely dis-
tributed in plants, exhibiting diverse structures and functions, with its members playing
a role in sterol biosynthesis [14,37,38]. For example, overexpression of the WsCYP710A11
gene in transgenic hairy roots of Withania resulted in a significant elevation of withanolides
and phytosterol levels [38]. Although the role of CYP710 in sterol biosynthesis is well es-
tablished, there is limited information on the disease resistance mechanisms of the CYP710
subfamily in plants. This study demonstrated that the overexpression of CYP710A11 im-
proved the resistance of Arabidopsis and mulberry against B. cinerea. These findings offer
fresh perspectives on the role of the P450 710 subfamily.

Reactive oxygen species (ROS) and ROS enzymes are crucial factors in enhancing
plant resistance against B. cinerea. For example, ABA can reduce resistance to B. cinerea
in tomatoes by reducing NO production, which also inhibits ROS and ethylene produc-
tion [39]. In addition, the disruption of cuticle integrity mediated by peroxide-dependent
ROS accumulation plays an important role in the strong resistance of plants with altered
homogalacturonan integrity to B. cinerea [40]. ROS can harm cellular constituents such
as lipids, proteins, and nucleic acids, leading to elevated levels of MDA, which serves
as a marker for lipid peroxidation. [41]. When faced with oxidative stress, plants trigger
the activation of antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT),
and peroxidase (POD) to eliminate reactive oxygen species (ROS) [42]. Plants addition-
ally amass osmolytes like proline to uphold osmotic equilibrium and safeguard cellular
structures against dehydration [43]. In this study, in comparison to the WT, the parameters
of Pro, SOD, CAT, and POD were significantly increased after infection with the gray
mold, while the parameter of MDA was significantly decreased after the overexpression of
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CYP710A11. This indicates that the overexpression of MnCYP710A11 helps prevent cell
membrane damage and enhances the capacity to preserve cell integrity in response to B.
cinerea infection. Proline accumulation leads to hypersensitivity in incompatible interac-
tions between plants and pathogens. At the same time, proline catabolism can act as a
regulatory center of defense-related metabolism in many eukaryotes, connecting metabolic
activities of different subcellular compartments and promoting and integrating ROS signals
to regulate pathogen response [44]. The overexpression of MnCYP710A11 may increase
plant hypersensitivity by increasing proline content and may combine with ROS signaling
pathways to enhance resistance against B. cinerea.

The level of callose (β-1,3-glucan) is controlled through the coordinated action of
callose synthetase (CalSs) and β-1,3-glucanase [45,46]. The deposition of callose between the
plasma membrane (PM) and the cell wall serves as a complex defense mechanism exhibited
by the plant host when encountering pathogen infection [47], for instance, stimulated by
MAMP activation (such as bacterial flagellate epitopes like flg22 and chitosan), as well as
by filamentous fungal attacks and physical injury [48–50]. This callose accumulation helps
fight diseases, such as fungal infections [51]. The presence of β-1,3-glucanase in V. vinifera
had an inhibitory effect on Plasmopara viticola [52]. In our study, the BG2 gene associated
with callose biosynthesis was upregulated in CYP710A11-OE plants, suggesting that this
pathway is activated in CYP710A11-OE plants.

5. Conclusions

Our findings indicate that the CYP450 protein-coding gene CYP710A11 actively en-
hances the immune response in mulberry, thereby broadening our comprehension of the
potential role of P450 proteins and offering valuable insights into the molecular mecha-
nisms of plant immunity. Additionally, following the overexpression of MnCYP710A11, the
resistance of mulberry to B. cinerea was augmented, thereby presenting significant genetic
resources for the breeding of disease-resistant mulberry varieties.
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