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Abstract: Genome-wide association studies (GWAS) have accelerated the exploration of genotype–
phenotype associations, facilitating the discovery of replicable genetic markers associated with specific
traits or complex diseases. This narrative review explores the statistical methodologies developed
using GWAS data to investigate relationships between various phenotypes, focusing on endome-
trial cancer, the most prevalent gynecological malignancy in developed nations. Advancements
in analytical techniques such as genetic correlation, colocalization, cross-trait locus identification,
and causal inference analyses have enabled deeper exploration of associations between different
phenotypes, enhancing statistical power to uncover novel genetic risk regions. These analyses have
unveiled shared genetic associations between endometrial cancer and many phenotypes, enabling
identification of novel endometrial cancer risk loci and furthering our understanding of risk factors
and biological processes underlying this disease. The current status of research in endometrial cancer
is robust; however, this review demonstrates that further opportunities exist in statistical genetics that
hold promise for advancing the understanding of endometrial cancer and other complex diseases.
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1. Introduction

Genome-wide association studies (GWAS) play a pivotal role in advancing the identi-
fication of genotype–phenotype associations. GWAS entail a comprehensive examination
of common and lower-frequency variants (minor allele frequency > 0.1%) across the entire
genome for genetic markers, predominantly single nucleotide polymorphisms (SNPs),
demonstrating statistically significant (p value < 5 × 10−8) associations with specific traits
or complex diseases. Identification of genetic risk loci through GWAS allows for the discov-
ery of interventions, identification of high genetic risk groups, and guidance of treatment
protocol [1].

Traits or diseases often present with shared clinical and epidemiological risk factors
and can be linked through molecular, biological, and population-based data. GWAS have
facilitated the exploration of relationships between different diseases and phenotypes
through analytical advancements in genetic association, correlation, cross-trait locus iden-
tification, and causal inference testing. These methods all have a key role in the analysis
of genetic data, offering unique insight into the genetic architecture of complex traits and
diseases. Genome-wide genetic correlation measures the overall genetic similarity between
two traits by evaluating the average effect of shared genetic variants across the entire
genome. While local genetic correlation focuses on individual regions of the genome to
identify genetic similarities between traits. Cross-trait GWAS involves the joint analysis of
multiple genetically correlated traits to enhance statistical power to uncover pleiotropic
loci. Causal inference analysis, such as Mendelian randomization, uses genetic variants
as instrumental variables to infer causal relationships between traits. Together, these ap-
proaches can provide information on comorbidities for particular diseases, modifiable risk
factors and enable cross-phenotype GWAS meta-analyses to identify new genetic loci.
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This narrative review will present methods developed using GWAS data to explore
relationships between different phenotypes (Table in Section 3) and, where feasible, discuss
their application to endometrial cancer, the most commonly diagnosed gynecological cancer
in developed countries. This review prioritizes studies incorporating cross-trait genetic
analyses pertinent to endometrial cancer. In cases where specific statistical methods had
not yet been applied to endometrial cancer, studies on related phenotypes were considered,
emphasizing recent publications, large sample sizes, established biological relevance, and
peer-reviewed sources.

2. Endometrial Cancer

Endometrial cancer has witnessed noteworthy trends in incidence and mortality in
recent years. The incidence has surged by over 132% in the past 30 years, with 417,000 new
diagnoses worldwide in 2020 [2,3]. While the incidence rates vary globally, there has been
a discernible increase in developed nations, likely attributed to factors such as ageing
populations and the rising prevalence of obesity [2,4]. There is a well-established link
between obesity and endometrial cancer, with excess adiposity leading to increased levels
of estrogen, thereby augmenting the risk of developing this malignancy [5]. Although
endometrial cancer is typically diagnosed in post-menopausal women at around 60 years
of age, up to five percent of cases occur in women under the age of 40 [4].

The leading theoretical pathogenetic pathway for endometrial carcinoma involves
prolonged exposure to elevated estrogen levels, whether from exogenous or endogenous
sources, which stimulates unopposed endometrial proliferation without adequate opposi-
tion by progestin [4,5]. In addition to obesity, other established risk factors include diabetes,
polycystic ovary syndrome (PCOS), hypertension, and lifestyle factors like smoking and
diet, which all may indirectly influence estrogen levels [6,7]. Direct estrogen-related fac-
tors, such as the use of combined oral contraceptive pills for risk reduction or unopposed
estrogen replacement therapy for increased risk, further contribute to the disease’s dynam-
ics [8]. Reproductive factors like early menarche, late menopause, and nulliparity also play
significant roles [8].

Epidemiological observations and family-based studies have demonstrated that the
genetic effect of endometrial cancer is significant, with heritability estimates ranging
from 27% to 52% and a two-to-threefold increased risk associated with a family history of
endometrial cancer [9–12]. Rare pathogenic germline variants within mismatch-repair genes
(i.e., MLH1, MSH2, MSH6, PMS2, and EPCAM) indicated an initial genetic predisposition
for endometrial cancer in women with Lynch syndrome [13,14]. Despite their rarity in the
general population, estimates suggest that these high-risk germline variants contribute to
3% of endometrial cancer cases [15,16].

The genetics of endometrial cancer, particularly elucidated through GWAS, have
significantly advanced our understanding of the disease’s etiology, functional mechanisms,
and translational implications, demonstrating the effects of common genetic variation
(minor allele frequency > 1%) on endometrial cancer risk [17,18]. The largest endometrial
cancer GWAS to date, conducted by the Endometrial Cancer Association Consortium
(ECAC), used data from nearly 13,000 cases and identified 16 genetic loci associated with
endometrial cancer risk [19]. Risk estimates for these common variants individually are
expected to only slightly increase the risk associated with endometrial cancer; however,
cumulatively they explain about 28% of the familial relative risk [17]. The identified
16 variants are estimated to account for only a quarter of the variance that genetics can
explain, implicating a further potential for discovery in unidentified genetic loci.

Increases in sample size and availability of GWAS summary statistics, in addition
to larger genetic cohorts, will improve power and facilitate the discovery of genetic risk
regions. Patterns of shared genetic influence combined with existing epidemiological
observations promise to elucidate functional pathways and contribute to our understanding
of the biological underpinning and comorbidity of diseases.
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3. Genetic Correlation

Genetic correlation is a critical metric to quantify the overall genetic similarity between
complex traits irrespective of environmental confounders, which are prevalent and mostly
unavoidable in conventional epidemiologic studies. Genetic correlation (denoted as rg)
ranges from 0 to 1 and describes the average effect of pleiotropy across all causal loci. It is
frequently used in the initial identification of associations between traits of interest. Several
methods to assess genetic correlation have been developed, summarized in Table 1.

Table 1. Programs available for exploring relationships between traits using GWAS data.

Program Ref. Description Data Input 1 Examples 2

Genetic correlation

BOLT-REML [20]

A Monte Carlo algorithm for variance component
analysis to estimate genetic correlations and
partition SNP heritability among multiple

phenotypes. Computationally fast.

Individual 37340002
30929738

GenomicSEM [21] Synthesizes genetic correlations of multiple traits
with unknown amounts of sample overlap. Summary 32606422

35513722

GCTA [22]
Provides highly accurate estimates of genetic

correlations between phenotypes while accounting
for different genetic architectures.

Individual 24944428

PCGC-s [23]
Estimates genetic correlation and partitioned

heritability large datasets while accounting for
case-control sampling and covariates.

Summary 31488892

LD Score Regression [24]
Estimates genetic correlations across multiple

phenotypes while accounting for cryptic
relatedness and population stratification.

Summary
30093612
29608257
26414676

HDL [25]

Highly powered and accurate estimates of genetic
correlations fully account for whole genome LD
and reduce the variance of genetic correlation

estimates.

Summary 35492879
34997191

MTG2 [26]

Combines the average information algorithm used
by REML with an eigen-decomposition of the

genomic relationship matrix to estimate genetic
variance.

Individual 29977057
35729236

GNOVA [27]
Provides powerful statistical inference through

annotation-stratified genetic covariance analysis
that is robust to LD and sample overlap.

Summary 37034223
34634379

ρ-HESS [28]

Localized and precise quantification of genetic
correlation between pairs of traits due to

small-region genetic variation. Accounts for LD
and sample overlap while making no distributional
assumptions on the causal effect size under a fixed

effects model.

Summary 34355204
34561436

LAVA [29]

Tests local genetic correlation between two
phenotypes. Can also analyze local heritability and
conditional genetic relationships between several

phenotypes.

Summary 36471075
38637617
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Table 1. Cont.

Program Ref. Description Data Input 1 Examples 2

SUPERGNOVA [30]
Accurate and powerful local genetic correlation

estimate using summary statistics that is robust to
arbitrary and unknown amount of sample overlap.

Summary 38191017
37467357

Colocalization

COLOC [31]

Bayesian statistical test to enable the computation
of probabilities that two traits share a common

genetic causal variant from single variant
association p-values and MAFs. Locus-specific

analysis.

Summary 34268601
34355204

GWAS-PW [32]

Bayesian statistical test to enable the computation
of probabilities that two traits share a common

genetic causal variant from single variant
association p-values and MAFs. Locus-specific

analysis.

Summary
33144283
35178771
35851147

Cross-Trait Locus Identification

MTAG [33] Joint analysis of multiple traits to increase
statistical power and account for sample overlap. Summary

34268601
31488892
29292387

CPASSOC [34] Assess cross-phenotype associations for both
continuous or binary traits. Summary 37636041

31669095

MV-PLINK [35]
Computationally fast implementation of canonical
correlation analysis, including multiple phenotypes

and uses
Individual 35278618

MultiPhen [36]

Employs ordinal regression for joint multivariate
modelling of multiple phenotypes, with increased
statistical power and an appropriate type 1 error

rate.

Individual 35701404
35680855

conjFDR [37]

A model-free strategy for analysis that leverages
genetic overlap between two phenotypes which

boosts statistical power and identifies shared
genomic association regardless of the cross-trait

correlations.

Summary 37752828
31792363

bGWAS [38]

A Bayesian method that leverages published
studies for related risk factors to construct priors.
Increase power to identify susceptibility variants
and allows for assessment of posterior and direct

effects.

Summary 37168552
35653391

RE2C [39]
A generalized likelihood model that accounts for

correlations of statistics and achieves optimal
power under the condition of heterogeneity.

Summary
35492870
3734002

35753705

MetABF [40]

Employs a Bayesian framework using both an
independent and fixed effect model to

meta-analysis GWAS statistics. An efficient tool
that allows the expected relationships between
studies or traits to be encoded in the analysis.

Summary 36653479
35492870
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Table 1. Cont.

Program Ref. Description Data Input 1 Examples 2

TATES [41]

A multivariate method that combines univariate
GWAS p-values to estimate a global trait-based

p-value while accounting for correlations between
phenotypes. Increase power to identify novel

susceptibility variants.

Summary 35391794

Multi-ACAT [42]

Computationally fast and flexible combination
p-value method to test for association with a single
rare or common variants and multiple phenotypes

in a genomic region

Summary 33432394

PCSC-s [43]

Cauchy combination method to test the association
multiple phenotypes and a variant using an
integrated p-value. Particularly effective in

joint-analysis of phenotypesfrom unbalanced
case-control association studies.

Summary 36691904

CCT [44]

Combination p-value method in which test statistic
is a weighted sum of Cauchy transformation of
individual p-values. Powerful under arbitrary

dependency structures of the p-values but lacks
power when large and small p-values are

combined.

Summary 35210502

Causal Inference

LCVA [45]

Distinguishes causal relationships among
genetically correlated phenotypes such that a

positive result is more likely to be the true causal
effect.

Summary
36653534
36151087
31669095

MiXer [46]
Applies a bivariate causal model to quantify and

visualize polygenic overlap by estimating the total
number of shared and trait-specific causal variants.

Summary 37752828
34761251

Mendelian
randomization [47]

Uses instrument variables in statistical models to
identify causal relationships between an exposure
and outcome. Various programs and techniques

have been developed (see Table in Section 6).

Both 34268601

1 GWAS data required for analysis: Individual-level genotypes, or summary statistics, 2 Example publications
(PubMed IDs) that have used these approaches; note, this is not exhaustive.

The most commonly used approach for genetic correlation estimation is linkage
disequilibrium (LD) score regression, mainly owing to its computational efficiency and use
of GWAS summary statistics [24]. LD score regression has been used for an array of diseases
and phenotypes, uncovering potentially shared genetic architecture between schizophrenia
and a range of psychiatric, metabolite, personality, immune, cardiovascular, substance-
related, and anthropometric traits [24,48–51]. Interestingly, epidemiological studies have
previously reported both opposing and direct comorbidity between schizophrenia and
several cancer types [52,53]. LD score regression has also estimated a significant positive
genetic correlation between schizophrenia and breast cancer, which may partly explain
the epidemiological bidirectional association between the two traits and suggests shared
biological mechanisms [54].

The largest endometrial GWAS published to date determined genetic correlations
between endometrial cancer and 224 non-cancer traits [19]. A significant positive genetic
correlation, consistent with existing epidemiological observations, was found between
endometrial cancer risk, type 2 diabetes, and anthropometric traits related to obesity
(e.g., body mass index (BMI) and waist circumference) [19]. A significant negative cor-
relation was found between years of schooling and the age of menarche, both of which
negatively correlate with obesity-related traits [19].
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LD score regression has explored the relationship between endometrial cancer and var-
ious cancers, finding a strong correlation with ovarian and ER-positive breast cancer [55,56].
Additionally, LD score regression has unveiled a potential shared genetic architecture with
non-cancerous gynecological diseases, including polycystic ovarian syndrome (PCOS),
uterine fibroids, and endometriosis [57–59]. Unlike the genetic correlation between uterine
fibroid and endometrial cancer, adjustment for genetically predicted BMI at least partly me-
diated the genetic correlation between PCOS and endometrial cancer [59]. Further research
into cross-trait genetic correlation will enable a better understanding of endometrial cancer
genetic predisposition.

While LD score regression is predominantly used to uncover genetic correlations in
relation to endometrial cancer, multiple methods are available, each with their own advan-
tages and limitations. The GeNetic cOVariance Analyzer (GNOVA) is often compared to
LDSC for providing fast and accurate estimates, particularly efficient in large datasets [27].
GNOVA employs a method of moments algorithm to estimate genetic covariance, unlike
the weighted regression used in LDSC, and has been widely applied to complex pheno-
types [60–62]. Studies have shown similar results when using both methods to estimate
the genetic correlation between sex hormones and breast cancer [63]. However, both LDSC
and GNOVA assume a linear relationship between LD scores and test statistics/genetic
covariance, which might not hold true for all traits and populations [64].

Phenotype Correlation–Genotype Correlation with summary statistics (PCGC-s) is
another tool for genetic correlation. It is designed to correctly model case-control data and
outperform LDSC in the presence of covariates representing major risk factors, such as
sex and age [23]. PCGC-s has been used in endometrial cancer research to detect positive
correlations between ovarian cancer, uterine fibroids, and endometriosis, although the au-
thors stated the approach did not produce standard errors or p-values for the estimates [57].
Genomic-SEM uses structural equation modeling to determine an underlying latent factor
driving an observed genetic correlation between two traits [21,65]. Though more computa-
tionally intensive, it offers greater parameter flexibility to identify the most representative
model to fit the data, improving the accuracy of the estimated genetic covariance [21].

When data are available and computational efficiency is not a limiting factor, individual-
level data-based methods using restricted maximum likelihood (REML) provide more
precise genetic correlation estimates compared to LDSC and other summary-based meth-
ods [66,67]. Several individual-level tools have been developed (Table 1), differing primarily
in their log-likelihood optimization algorithms [67]. However, data availability often poses
a logistical barrier to using individual-level methods, making GWAS summary statistics
methods more popular for determining genetic correlations between traits. While a power-
ful tool for understanding the overall genetic similarity of complex traits, genetic correlation
analysis has several limitations to consider. LD score regression employs a polygenic model
and is most effective when analyzing traits with a polygenic genetic architecture. However,
when significant SNPs account for a sizable proportion of heritability, analyzing only those
SNPs can prove more efficient [24]. It is crucial to recognize that genetic correlation analysis
cannot establish causal relationships or determine the directionality of effects [24]. Any
observed genetic correlation could result from a true direct relationship between two traits,
or the genetic variant could be associated with an unknown risk factor, which also affects
both traits. Therefore, while significant results may suggest shared genetic architecture, cau-
tion is needed in interpreting these findings without additional evidence from functional
studies or experimental designs capable of elucidating causal relationships.

The absence of genome-wide genetic correlation does not overrule the occurrence
of locus-specific genetic correlation. A correlation between two traits could result from
multiple genetic variants, some of which may have opposing effects on the two traits;
in these circumstances, local genetic correlations can be more insightful in identifying
shared common causes [66]. Regional genetic correlations can quantify which genomic
regions disproportionately contribute to the genome-wide correlation [28]. A large-scale
cross-cancer study used ρ-HESS (Heritability Estimation using Summary Statistics) to
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successfully identify thirteen pairs of cancers with statistically significant local genetic
correlations across eight distinct genomic regions [68]. This study found a positive genetic
correlation between endometrial and prostate cancer at region 17q12 and a statistically
significant local genetic correlation at 5p15.33 across six pairs of cancers, including ER-
negative breast, pancreatic, glioma, melanoma, lung, pancreatic, prostate, and colorectal
cancer. Despite the varying direction of these correlations, the result postulates that the
5p15.33 region may harbor key genetic variants related to multiple cancer types supported
by the number of susceptibility variants already reported in this region [68].

Several methods have been developed for estimating local genetic correlation, includ-
ing ρ-HESS, LAVA (Local Analysis of [co]Variant Annotation), and SUPERGNOVA, each
offering unique advantages in elucidating distinct genetic correlations across genomic
regions [28–30]. While all these methods utilize summary statistics, they differ in their
sensitivity to data quality, sample size, and choice of reference panel [69]. ρ-HESS and
SUPERGNOVA are primarily focused on bivariate correlation estimates, providing precise
measurements for pairwise trait correlations [28,30]. A real-data application comparing
the two methods highlighted the importance of reference panel selection in local genetic
correlation analyses. The study concluded that SUPERGNOVA is more robust to variations
in LD matrices but is susceptible to type-I errors, whereas ρ-HESS maintains well-controlled
type-I error rates but sacrifices statistical power [69]. In contrast, LAVA offers a unique
capability by extending its application to estimate multivariate correlations, allowing for a
more comprehensive analysis of multiple traits simultaneously [29]. This flexibility makes
LAVA particularly advantageous in studies utilizing an in-sample reference panel, aiming
to uncover complex genetic relationships across various phenotypes.

Pinpointing specific regions that may drive the global genetic correlation, as well
as regions that might be neutral or antagonistic, can complement genome-wide anal-
ysis and deepen understanding of the genetic architecture of the traits. Such analysis
has not been widely pursued in endometrial cancer, thus presenting an area ripe for ex-
ploring locally shared genetic pathways that may go unnoticed in genome-wide genetic
correlation analysis.

4. Colocalization

Colocalization refers to the identification of causal variants shared between different
traits after controlling for the independent signals identified in individual analysis [70,71].
Multi-trait colocalization enhances the statistical power to identify shared variants across
multiple traits and provides a more robust indication of the variant’s potential causality [31].
Programs developed for colocalization analysis use Bayesian statistical tests to enable
the computation of posterior probabilities that can disentangle whether the association
signals across traits colocalize (colocalization) or are driven by distinct causal variants
(pleiotropy) (Table 1) [31]. While programs such as COLOC [31] look at a specific queried
locus, GWAS-PW [32] can perform genome-wide analysis, partitioning the genome into
predefined regions.

Colocalization analysis in endometrial cancer research has unveiled intriguing insights
into the shared genetic architecture between this malignancy and other traits or diseases.
Colocalization analyses have indicated shared genetic variants between endometrial cancer
and traits such as ovarian cancer [55] and COVID-19 phenotypes [72]. Colocalization
analysis can also include expression quantitative trait loci (eQTLs) that have enabled the
identification of several novel candidate endometrial cancer susceptibility genes [59,73–75].

Colocalization analysis faces several limitations; for example, in instances of very high
linkage disequilibrium (LD), distinguishing between shared pleiotropic variants and those
acting independently becomes challenging, leading to ambiguity in attributing shared
genetic influences to specific traits. Additionally, limitations in statistical power may
hinder the detection of true colocalization events, particularly in independent studies
with small sample sizes or low genetic variant density. Like genetic correlation analysis,
colocalization analysis does not provide information on the directionality of effects or
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causality, highlighting the need for complementary experimental approaches to validate
findings and elucidate underlying biological mechanisms.

5. Cross-Trait Locus Identification

Cross-trait locus identification is the process of identifying genetic variants associated
with multiple phenotypes or traits simultaneously. This approach uses a meta-analysis
framework to combine summary or individual-level statistics of distinct or related traits
to detect pleiotropic loci with shared associations. Cross-trait GWAS leverage power
from multiple genetically correlated phenotypes to detect genetic loci that may not reach
genome-wide statistical significance when considering each trait individually. Moreover,
cross-trait analysis offers the benefit of utilizing existing datasets, obviating the necessity
for additional genotyping efforts, thus presenting a considerable practical advantage.

Several methods have been developed for cross-trait variant identification (Table 1),
with the most commonly used being Multi-Trait Analysis of GWAS (MTAG) due to its
robustness to sample overlap and its ability to leverage GWAS summary statistics from
multiple traits simultaneously [33]. MTAG can improve statistical power by borrowing
information across traits and has been shown to increase the discovery of associated
loci, especially for traits with smaller sample sizes [33]. Additional methods for cross-
trait variant identification include Cross-Phenotype Association (CPASSOC), employing a
Bayesian framework to account for correlation structures and offering valuable insights into
shared genetic mechanisms [34]; Multivariate PLINK (MV-PLINK), which is particularly
effective in extensive individual-level datasets, employing multivariate linear regression to
detect common variants while controlling for covariates and population structure [35]; and
Multi-Phenotype Conditional False Discovery Rate (MultiPhen conjFDR), regulating false
discovery rates across diverse traits and highlighting variants with the strongest evidence
of shared associations [36,37].

Cross-trait variant identification has shown promise in advancing our understanding
of endometrial cancer by uncovering novel risk regions replicable in larger endometrial
cancer GWAS. In past studies, joint analyses aimed at identifying cross-trait variants associ-
ated with endometrial cancer have employed MTAG, incorporating genetically correlated
traits such as ovarian cancer, PCOS, and uterine fibroids [55,59]. Additionally, joint anal-
yses with endometriosis used a fixed-effects GWAS meta-analysis for cross-trait variant
identification [58]. Preliminary findings using RE2C [39] supported the identification of
five novel risk loci for endometrial cancer in a joint analysis with three hormone-related
cancers (breast, prostate, and ovarian) [76]. Other cross-trait analyses of COVID-19 and
endometrial cancer employed CPASSOC and determined five independent pleiotropic
SNPs for endometrial cancer located at three previously identified loci (9q34.2, 2p16.1, and
15q21.2) [72]. These findings postulate genetic variants can simultaneously affect suscepti-
bility to severe COVID-19 and the risk of developing endometrial cancer through shared
biological mechanisms rather than a direct causal link. Severe COVID-19 is characterized
by an excessive inflammatory response known as a cytokine storm, which can lead to tissue
damage and chronic inflammatory states. This prolonged inflammation may create an
environment conducive to cancer development, potentially explaining the observed genetic
correlations between severe COVID-19 and endometrial cancer. Similarly, a multi-trait
GWAS analysis using a Bayesian framework (bGWAS) [38] included several endometrial
cancer risk factors and identified a novel risk locus at 7q22.1, replicated in an independent
cohort [74]. This newly identified locus at 7q22.1 encompasses CYP3A7, which encodes
an enzyme that metabolizes testosterone and synthesizes estrogen. Exposure to estrogen
is suspected to elevate the risk of endometrial carcinogenesis. Despite these insightful
findings, there is ample room for more research in cross-trait variant identification, in-
cluding a broader range of traits, to improve our understanding of the underlying genetic
architecture of endometrial cancer and shed light on potential biological pathways and
mechanisms driving its development.
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Strategies aimed at identifying cross-trait loci are diverse and continually evolving.
p-value combination methods are preferred when only summary statistics are available and
computational efficiency is a priority. These approaches represent a significant category of
meta-analysis techniques that impose fewer restrictions on statistical modelling, thereby
broadening their applicability. Notable examples including TATES, Multi-ACAT, PCSC,
and CCT are highlighted in Table 1, where their potential advantages and limitations are
discussed [41–44]. These methods effectively handle diverse and complex data structures,
making them a valuable tool in facilitating the integration of multivariate analyses.

Cross-trait variant identification, while demonstrating many potential benefits, also
presents several limitations. Firstly, a shared causal variant may exhibit varying biological
impacts among different traits, leading to heightened heterogeneity in reported effect sizes.
Secondly, a genetic variant might solely influence a subset of study traits. Methods aimed
at identifying cross-trait variants typically report an overall association with a genetic locus
without attributing the association to a specific trait. Occasionally, the same genetic variant
can exert opposing effects, increasing the risk of one disease while decreasing the risk of
another. In such instances, these methods may fail to detect an association when a genetic
locus exhibits antagonistic effects on the traits under investigation. Lastly, discriminating
between heterogeneous effects and statistical noise can prove challenging when assessing
multiple traits of differing power and study design. These complexities underscore the need
for robust methodologies and cautious interpretation in cross-trait variant identification
analyses to ensure reliable insights into shared genetic architecture across diverse traits
and diseases.

6. Causal Inference Analysis

Mendelian randomization (MR) is the most commonly used genetic approach for
causal inference analysis, a statistical method that uses genetic variants as instrumental
variables (IVs) to infer causal relationships of observed associations between an expo-
sure trait and an outcome trait [47]. MR is analogous to a conventional randomized
controlled trial; however, unlike random intervention allocation, MR relies on the premise
that the germline alleles of these variants are randomly distributed (due to Mendel’s Law
of Independent Assortment), thereby establishing an unconfounded relationship between
exposure and outcome [47,77]. When the exposure traits have a substantial genetic compo-
nent, the IV explains a larger proportion of variation in the risk factor and improves power.
As GWAS samples become larger and more SNP associations are identified, the IVs will
only become a stronger proxy for the exposure trait, increasing statistical power in MR
studies [66].

Several publications have described the underlying statistical framework and assump-
tions required for MR [47]. Briefly, for the validity of causal effect estimates, MR analysis
relies on three primary assumptions that must be satisfied (Figure 1): the relevance as-
sumption, which asserts that genetic variants are robustly associated with the risk factor;
the independence assumption, which stipulates that there are no external confounding
influences affecting the association between the genetic variants, the risk-factor, and the
outcome; and the exclusion restriction assumption, which posits that the genetic variants
affect only the outcome through the risk-factor (also known as the pleiotropy assumption);
this assumes there is no pleiotropic effect influencing the gene–outcome association other
than that of the vertical pleiotropy implicating the causal pathway between the risk-factor
and the outcome. MR methods should be combined with robust estimation methods
(Table 2) to tackle bias introduced due to pleiotropy [78].
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Table 2. Mendelian randomization software packages and consistency assumption approaches.

Methods Ref. Description

Packages

MR-Base [79] A web platform housing GWAS summary statistics that can perform
two-sample MR analyses.

MendelianRandomization [80] R software package that implements several methods for MR
analyses based on summary statistics including multivariable MR.

CAUSE [81] R software package for MR analysis accounting for both uncorrelated
and correlated horizontal pleiotropy effects.

TwoSampleMR [82]
R software package to perform a range of two-sample MR analyses
using GWAS summary data from two independent exposure and

outcome cohorts.

OneSampleMR [83] R software package to perform a range of one-sample MR analyses
using GWAS data from a single cohort (individual-level data).

Consistency Assumption: Instrument Strength Independent of Direct Effect

MR-Egger [84]

A sensitivity analysis tool used to test for bias from pleiotropy caused
by some genetic variants having multiple proximal phenotypic

correlations, making them invalid instrumental variables. Egger’s
test provides a valid causal effect estimate when some or all the

genetic variants are invalid instrumental variables.

Consistency Assumption: Majority Valid

Weight-median [85]

A sensitivity analysis tool that uses GWAS summary data for MR
with multiple genetic variants. Provides a consistent causal effect

estimate even when up to 50% of the information comes from invalid
instrumental variables.

Consistency Assumption: Plurality Valid

Weighted-MBE [86]

A sensitivity analysis tool using summary data that is robust to
horizontal pleiotropy. Provides a consistent causal estimate when the

largest number of similar individual-instrument causal effect
estimates comes from valid instruments, even if the majority of

instruments are invalid.

Consistency Assumption: Horizontal pleiotropy around 0

MR-LDP [87]

An efficient variational Bayesian expectation-maximization algorithm
using GWAS summary statistics to estimate the causal effects of

complex traits that have multiple instrumental variants within LD.
The random component eliminates the impact of

horizontal pleiotropy.

MR-RAPS [88]

Uses GWAS summary data under a random-effect model to estimate
the causal effects of genetic variants while accounting [81] for

pleiotropy. It is robust to outliers but sensitive to the assumption that
pleiotropy is normally distributed around 0.

Consistency Assumption: Outlier-robust

GSMR + HEIDI [89]
Uses summary GWAS data to perform MR analysis by accounting for

LD between the variants, thereby improving statistical power.
Detects and accounts for outliers that could violate MR assumptions.

MR-GRAPPLE [90]

Uses GWAS summary statistics to identify multiple pleiotropic
pathways and determine the causal effect, under a likelihood model
pervasive pleiotropy accounted for as long as the InSIDE assumption

holds for all genetic instruments.
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Table 2. Cont.

Methods Ref. Description

MR-Lasso [78]

Extension of the IVW-MR framework by adding an intercept term for
each genetic variant and a lasso penalty term for identification. Aims
to remove a potential source of bias (outliers) that could violate the

assumptions of the analysis.

MR-Robust [78]

IVW method is performed by regression resulting in MM-estimation
(robust against influential points) and Tukey’s loss function (robust
against outliers). Aims to downweigh outliers which could cause a

violation of the assumptions underlying the analysis.

MR-PRESSO [91]

Uses summary-level data to test and correct for horizontal pleiotropic
outliers. Uses aregression framework with a “leave-one-out”

approach to detect and remove outliers from the analysis
determining which SNP is driving the difference in computed

residual sum of squares.
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Figure 1. Conceptual visualization of the key genetic instrumental variable assumptions of Mendelian
Randomization. In this valid Mendelian randomization (MR) simulation, a genetic variant causally
affects the exposure, which may, in turn, causally affect the outcome while accounting for confounders
that influence both the exposure and the outcome. Causal effects are depicted using one-sided arrows
indicating the direction of causation. Panel (A) illustrates the three key assumptions: the green arrow
represents the relevance assumption, indicating a valid causal pathway, while the red arrows represent
causal pathways explicitly excluded by the independence and exclusion restriction assumptions.
Panel (B) depicts a scenario in which a valid alternative instrument, though not causal, is in linkage
disequilibrium with a causal variant introducing a bias due to pleiotropy. This is tackled by applying
a range of MR sensitivity analysis methods and recognition of assumptions underlying the analysis
when interpreting results.

MR analyses can clarify the causal nature between putative risk factors and endome-
trial cancer susceptibility [18]. A recent study analyzed all known and suspected risk factors
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for endometrial cancer risk using MR and then performed a multivariable analysis to distil
risk factors into five independent factors: waist circumference (in a module with BMI), age
of menarche, age of menopause, SHBG levels, and testosterone levels [74]. Factors such
as cigarette smoking, dietary factors, cannabis consumption, gut microbiota, sedentary
behavior, and caffeine consumption have all received attention in MR research [92–99].
When interpreting results from published studies, it is crucial to consider the quality of the
MR analysis as the quality of evidence provided relies on the satisfaction of instrumental
variable assumptions. The accessibility of summary-level data for MR has contributed to a
surge in the tool’s popularity, often leading to its opportunistic use without substantiated
biological or functional relevance. The risk factor should only be considered a common
genetic predictor in these instances. While this represents a weaker claim, it still holds
its place in scientific literature. Causation claims in MR analysis should be entirely for
genetic variants with well-established biological and statistical relevance. For example,
the established relationship between obesity and endometrial cancer risk means obesity-
related factors have received extensive focus from MR research. Several studies leveraging
GWAS [100,101] data have substantiated the causal link between higher BMI and increased
risk of endometrial cancer across multiple European and Japanese cohorts [100–105] and
histological subtypes [19,100].

MR approaches can unravel the associations between endometrial cancer and a trait
that may be affected by their relationships with BMI. For example, childhood adipos-
ity is an apparent health problem epidemiologically associated with endometrial cancer
risk [106,107]. However, the causal nature of this association and whether it represents a
direct or indirect effect mediated by adult obesity remain unclear. MR studies have disentan-
gled the relationship between child and adult adiposity and subtype-specific endometrial
cancer risk, identifying direct independent effects of childhood adiposity on the risk of
non-endometrioid endometrial cancer but a minimal indirect effect that adult adiposity
mediates on endometrioid EC risk [106]. These novel findings shed light on the critical role
of targeting adiposity at different life stages to limit subtype-specific endometrial cancer
risk. Similarly, MR analyses have determined molecular mediators underlying endometrial
cancer risk [103]. This study identified that two sex-steroid hormones (bioavailable testos-
terone and SHBG), as well as fasting insulin, strongly mediate the relationship between
excess adiposity and endometrial carcinogenesis [103]. These findings suggest that in the
future, there is scope to investigate targeting these hormone-related and insulin-related
traits for endometrial cancer prevention.

With the rapid advancement of MR in endometrial cancer research, awareness of the
limitations of this approach is essential for the correct interpretation of results. As men-
tioned, traditional approaches rely on the core assumptions being met for accurate causal ef-
fect estimates [108]. Bias in MR studies can arise from confounding of genetic-intermediate
phenotype–disease associations, trait heterogeneity, and linkage disequilibrium, which
may obscure causal effect estimates [89,109–111]. Sensitivity analyses and careful selection
of instrumental variables are essential to address these issues and ensure reliable causal
inferences [111,112]. Additionally, canalization or developmental compensation processes
can distort MR estimates by mitigating the effects of genetic variants on phenotype expres-
sion, further complicating interpretation [111–113]. Other limitations include confounding
due to population stratification, dynastic effects, assortative mating, selection bias, and
collider bias, all of which can introduce systematic errors and undermine the validity of
MR findings [111,114,115].

7. Conclusions

In summary, this review underscores the crucial role of cross-trait GWAS in eluci-
dating genotype–phenotype associations and advancing our understanding of complex
diseases such as endometrial cancer. It provides an updated synopsis of the genetic archi-
tecture of endometrial cancer by comprehensively detailing related genetic studies in the
field. Through leveraging large-scale publicly available data, joint analysis has effectively
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highlighted the interplay between genetic susceptibility in different phenotypes, offering
insights into comorbidities, modifiable risk factors, and genetic predisposition. While
primary analytic methods have been instrumental in unveiling significant associations with
shared common genetic variants in endometrial cancer, these variants only explain a frac-
tion of the expected risk variance, suggesting the potential for introducing new statistical
tools to identify novel risk loci. Despite the potential benefits of cross-trait GWAS, they also
present methodological challenges, underscoring the need for robust methodologies and
cautious interpretation to ensure reliable insights.

Furthermore, this review delineates significant findings achieved through various
stages of genome-wide cross-trait analysis, including genetic correlation, colocalization
analysis, cross-trait meta-analysis, and Mendelian randomization. It emphasizes that
investigation of shared genetic factors in endometrial cancer is still in its infancy, offering
numerous promising avenues for future exploration. The expanding data repositories
and innovative analytical methodologies enhance the capacity for identifying risk loci.
Integrating multi-omics datasets can also deepen our understanding of the molecular
mechanisms underlying disease susceptibility and progression, potentially unveiling novel
biomarkers. These advancements broaden the scope for downstream analyses focused on
discovering new biological pathways and therapeutic targets, with the ultimate goal of
clinical translation of multiple diseases. Cross-trait GWAS may facilitate the development
of polygenic risk scores and predictive models to assess individual risk profiles and guide
personalized prevention and intervention strategies. Moreover, expanding GWAS data to
include under-represented populations, thus better reflecting the global community and
increasing emphasis on cross-population analyses, may offer novel insights into disease
etiology and pathogenesis. The field holds promise for further elucidating the genetic basis
of endometrial cancer and other complex diseases, offering multiple avenues for improved
prevention, diagnosis, and treatment strategies that can impact on the global community.

Author Contributions: Conceptualization, T.A.O.; investigation, K.B. and N.I.; data curation, K.B.;
writing—original draft preparation, K.B.; writing—review and editing, N.I. and T.A.O.; visualization,
K.B.; supervision, T.A.O.; funding acquisition, T.A.O. All authors have read and agreed to the
published version of the manuscript.

Funding: This research was funded by an Investigator Grant from the National Health and Medical
Research Council of Australia, grant number APP1173170.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Conflicts of Interest: The authors declare no conflicts of interest. The funders had no role in the
design of the review; in the collection, or interpretation of data; in the writing of the manuscript; or in
the decision to publish.

References
1. Uffelmann, E.; Huang, Q.Q.; Munung, N.S.; de Vries, J.; Okada, Y.; Martin, A.R.; Martin, H.C.; Lappalainen, T. Genome-Wide

Association Studies. Nat. Rev. Methods Primers 2021, 1, 59. [CrossRef]
2. Gu, B.; Shang, X.; Yan, M.; Li, X.; Wang, W.; Wang, Q.; Zhang, C. Variations in Incidence and Mortality Rates of Endometrial

Cancer at the Global, Regional, and National Levels, 1990–2019. Gynecol. Oncol. 2021, 161, 573–580. [CrossRef]
3. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN

Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [CrossRef]
4. Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial Cancer. Lancet 2022, 399,

1412–1428. [CrossRef] [PubMed]
5. Kitson, S.J.; Crosbie, E.J. Endometrial Cancer and Obesity. Obstet. Gynaecol. 2019, 21, 237–245. [CrossRef]
6. Setiawan, V.W.; Yang, H.P.; Pike, M.C.; McCann, S.E.; Yu, H.; Xiang, Y.-B.; Wolk, A.; Wentzensen, N.; Weiss, N.S.; Webb, P.M.; et al.

Type I and II Endometrial Cancers: Have They Different Risk Factors? J. Clin. Oncol. 2013, 31, 2607–2618. [CrossRef]
7. Raglan, O.; Kalliala, I.; Markozannes, G.; Cividini, S.; Gunter, M.J.; Nautiyal, J.; Gabra, H.; Paraskevaidis, E.; Martin-Hirsch, P.;

Tsilidis, K.K.; et al. Risk Factors for Endometrial Cancer: An Umbrella Review of the Literature. Int. J. Cancer 2019, 145, 1719–1730.
[CrossRef]

https://doi.org/10.1038/s43586-021-00056-9
https://doi.org/10.1016/j.ygyno.2021.01.036
https://doi.org/10.3322/caac.21660
https://doi.org/10.1016/S0140-6736(22)00323-3
https://www.ncbi.nlm.nih.gov/pubmed/35397864
https://doi.org/10.1111/tog.12601
https://doi.org/10.1200/JCO.2012.48.2596
https://doi.org/10.1002/ijc.31961


Genes 2024, 15, 939 14 of 18

8. Kaaks, R.; Lukanova, A.; Kurzer, M.S. Obesity, Endogenous Hormones, and Endometrial Cancer Risk: A Synthetic Review. Cancer
Epidemiol. Biomark. Prev. 2002, 11, 1531–1543.

9. Mucci, L.A.; Hjelmborg, J.B.; Harris, J.R.; Czene, K.; Havelick, D.J.; Scheike, T.; Graff, R.E.; Holst, K.; Möller, S.; Unger, R.H.; et al.
Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA 2016, 315, 68–76. [CrossRef]

10. Lu, Y.; Ek, W.E.; Whiteman, D.; Vaughan, T.L.; Spurdle, A.B.; Easton, D.F.; Pharoah, P.D.; Thompson, D.J.; Dunning, A.M.;
Hayward, N.K.; et al. Most Common “sporadic” Cancers Have a Significant Germline Genetic Component. Hum. Mol. Genet.
2014, 23, 6112–6118. [CrossRef]

11. Johnatty, S.E.; Tan, Y.Y.; Buchanan, D.D.; Bowman, M.; Walters, R.J.; Obermair, A.; Quinn, M.A.; Blomfield, P.B.; Brand, A.; Leung,
Y.; et al. Family History of Cancer Predicts Endometrial Cancer Risk Independently of Lynch Syndrome: Implications for Genetic
Counselling. Gynecol. Oncol. 2017, 147, 381–387. [CrossRef] [PubMed]

12. Lichtenstein, P.; Holm, N.V.; Verkasalo, P.K.; Iliadou, A.; Kaprio, J.; Koskenvuo, M.; Pukkala, E.; Skytthe, A.; Hemminki, K.
Environmental and Heritable Factors in the Causation of Cancer—Analyses of Cohorts of Twins from Sweden, Denmark, and
Finland. N. Engl. J. Med. 2000, 343, 78–85. [CrossRef] [PubMed]

13. Spurdle, A.B.; Bowman, M.A.; Shamsani, J.; Kirk, J. Endometrial Cancer Gene Panels: Clinical Diagnostic vs Research Germline
DNA Testing. Mod. Pathol. 2017, 30, 1048–1068. [CrossRef] [PubMed]

14. Dörk, T.; Hillemanns, P.; Tempfer, C.; Breu, J.; Fleisch, M.C. Genetic Susceptibility to Endometrial Cancer: Risk Factors and
Clinical Management. Cancers 2020, 12, 2407. [CrossRef] [PubMed]

15. Ryan, N.A.J.; Glaire, M.A.; Blake, D.; Cabrera-Dandy, M.; Evans, D.G.; Crosbie, E.J. The Proportion of Endometrial Cancers
Associated with Lynch Syndrome: A Systematic Review of the Literature and Meta-Analysis. Genet. Med. 2019, 21, 2167–2180.
[CrossRef] [PubMed]

16. Buchanan, D.D.; Tan, Y.Y.; Walsh, M.D.; Clendenning, M.; Metcalf, A.M.; Ferguson, K.; Arnold, S.T.; Thompson, B.A.; Lose, F.A.;
Parsons, M.T.; et al. Tumor Mismatch Repair Immunohistochemistry and DNA MLH1 Methylation Testing of Patients with
Endometrial Cancer Diagnosed at Age Younger than 60 Years Optimizes Triage for Population-Level Germline Mismatch Repair
Gene Mutation Testing. J. Clin. Oncol. 2014, 32, 90–100. [CrossRef] [PubMed]

17. O’Mara, T.A.; Glubb, D.M.; Kho, P.F.; Thompson, D.J.; Spurdle, A.B. Genome-Wide Association Studies of Endometrial Cancer:
Latest Developments and Future Directions. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1095–1102. [CrossRef]

18. Wang, X.; Glubb, D.M.; O’Mara, T.A. 10 Years of GWAS Discovery in Endometrial Cancer: Aetiology, Function and Translation.
eBioMedicine 2022, 77, 103895. [CrossRef]

19. O’Mara, T.A.; Glubb, D.M.; Amant, F.; Annibali, D.; Ashton, K.; Attia, J.; Auer, P.L.; Beckmann, M.W.; Black, A.; Bolla, M.K.; et al.
Identification of Nine New Susceptibility Loci for Endometrial Cancer. Nat. Commun. 2018, 9, 3166. [CrossRef]

20. Loh, P.-R.; Bhatia, G.; Gusev, A.; Finucane, H.K.; Bulik-Sullivan, B.K.; Pollack, S.J.; de Candia, T.R.; Lee, S.H.; Wray, N.R.;
Schizophrenia Working Group of Psychiatric Genomics Consortium; et al. Contrasting Genetic Architectures of Schizophrenia
and Other Complex Diseases Using Fast Variance-Components Analysis. Nat. Genet. 2015, 47, 1385–1392. [CrossRef]

21. Grotzinger, A.D.; Rhemtulla, M.; de Vlaming, R.; Ritchie, S.J.; Mallard, T.T.; Hill, W.D.; Ip, H.F.; Marioni, R.E.; McIntosh, A.M.;
Deary, I.J.; et al. Genomic Structural Equation Modelling Provides Insights into the Multivariate Genetic Architecture of Complex
Traits. Nat. Hum. Behav. 2019, 3, 513–525. [CrossRef] [PubMed]

22. Yang, J.; Lee, S.H.; Goddard, M.E.; Visscher, P.M. GCTA: A Tool for Genome-Wide Complex Trait Analysis. Am. J. Hum. Genet.
2011, 88, 76–82. [CrossRef] [PubMed]

23. Weissbrod, O.; Flint, J.; Rosset, S. Estimating SNP-Based Heritability and Genetic Correlation in Case-Control Studies Directly
and with Summary Statistics. Am. J. Hum. Genet. 2018, 103, 89–99. [CrossRef] [PubMed]

24. Bulik-Sullivan, B.; Finucane, H.K.; Anttila, V.; Gusev, A.; Day, F.R.; Loh, P.-R.; Duncan, L.; ReproGen Consortium; Psychiatric
Genomics Consortium; Genetic Consortium for Anorexia Nervosa of the Wellcome Trust Case Control Consortium 3; et al. An
Atlas of Genetic Correlations across Human Diseases and Traits. Nat. Genet. 2015, 47, 1236–1241. [CrossRef] [PubMed]

25. Ning, Z.; Pawitan, Y.; Shen, X. High-Definition Likelihood Inference of Genetic Correlations across Human Complex Traits. Nat.
Genet. 2020, 52, 859–864. [CrossRef] [PubMed]

26. Lee, S.H.; van der Werf, J.H.J. MTG2: An Efficient Algorithm for Multivariate Linear Mixed Model Analysis Based on Genomic
Information. Bioinformatics 2016, 32, 1420–1422. [CrossRef]

27. Lu, Q.; Li, B.; Ou, D.; Erlendsdottir, M.; Powles, R.L.; Jiang, T.; Hu, Y.; Chang, D.; Jin, C.; Dai, W.; et al. A Powerful Approach
to Estimating Annotation-Stratified Genetic Covariance via GWAS Summary Statistics. Am. J. Hum. Genet. 2017, 101, 939–964.
[CrossRef] [PubMed]

28. Shi, H.; Mancuso, N.; Spendlove, S.; Pasaniuc, B. Local Genetic Correlation Gives Insights into the Shared Genetic Architecture of
Complex Traits. Am. J. Hum. Genet. 2017, 101, 737–751. [CrossRef] [PubMed]

29. Werme, J.; van der Sluis, S.; Posthuma, D.; de Leeuw, C.A. An Integrated Framework for Local Genetic Correlation Analysis. Nat.
Genet. 2022, 54, 274–282. [CrossRef]

30. Zhang, Y.; Lu, Q.; Ye, Y.; Huang, K.; Liu, W.; Wu, Y.; Zhong, X.; Li, B.; Yu, Z.; Travers, B.G.; et al. SUPERGNOVA: Local Genetic
Correlation Analysis Reveals Heterogeneous Etiologic Sharing of Complex Traits. Genome Biol. 2021, 22, 262. [CrossRef]

31. Giambartolomei, C.; Vukcevic, D.; Schadt, E.E.; Franke, L.; Hingorani, A.D.; Wallace, C.; Plagnol, V. Bayesian Test for Colocalisation
between Pairs of Genetic Association Studies Using Summary Statistics. PLoS Genet. 2014, 10, e1004383. [CrossRef] [PubMed]

https://doi.org/10.1001/jama.2015.17703
https://doi.org/10.1093/hmg/ddu312
https://doi.org/10.1016/j.ygyno.2017.08.011
https://www.ncbi.nlm.nih.gov/pubmed/28822557
https://doi.org/10.1056/NEJM200007133430201
https://www.ncbi.nlm.nih.gov/pubmed/10891514
https://doi.org/10.1038/modpathol.2017.20
https://www.ncbi.nlm.nih.gov/pubmed/28452373
https://doi.org/10.3390/cancers12092407
https://www.ncbi.nlm.nih.gov/pubmed/32854222
https://doi.org/10.1038/s41436-019-0536-8
https://www.ncbi.nlm.nih.gov/pubmed/31086306
https://doi.org/10.1200/JCO.2013.51.2129
https://www.ncbi.nlm.nih.gov/pubmed/24323032
https://doi.org/10.1158/1055-9965.EPI-18-1031
https://doi.org/10.1016/j.ebiom.2022.103895
https://doi.org/10.1038/s41467-018-05427-7
https://doi.org/10.1038/ng.3431
https://doi.org/10.1038/s41562-019-0566-x
https://www.ncbi.nlm.nih.gov/pubmed/30962613
https://doi.org/10.1016/j.ajhg.2010.11.011
https://www.ncbi.nlm.nih.gov/pubmed/21167468
https://doi.org/10.1016/j.ajhg.2018.06.002
https://www.ncbi.nlm.nih.gov/pubmed/29979983
https://doi.org/10.1038/ng.3406
https://www.ncbi.nlm.nih.gov/pubmed/26414676
https://doi.org/10.1038/s41588-020-0653-y
https://www.ncbi.nlm.nih.gov/pubmed/32601477
https://doi.org/10.1093/bioinformatics/btw012
https://doi.org/10.1016/j.ajhg.2017.11.001
https://www.ncbi.nlm.nih.gov/pubmed/29220677
https://doi.org/10.1016/j.ajhg.2017.09.022
https://www.ncbi.nlm.nih.gov/pubmed/29100087
https://doi.org/10.1038/s41588-022-01017-y
https://doi.org/10.1186/s13059-021-02478-w
https://doi.org/10.1371/journal.pgen.1004383
https://www.ncbi.nlm.nih.gov/pubmed/24830394


Genes 2024, 15, 939 15 of 18

32. Pickrell, J.K.; Berisa, T.; Liu, J.Z.; Ségurel, L.; Tung, J.Y.; Hinds, D.A. Detection and Interpretation of Shared Genetic Influences on
42 Human Traits. Nat. Genet. 2016, 48, 709–717. [CrossRef] [PubMed]

33. Turley, P.; Walters, R.K.; Maghzian, O.; Okbay, A.; Lee, J.J.; Fontana, M.A.; Nguyen-Viet, T.A.; Wedow, R.; Zacher, M.; Furlotte,
N.A.; et al. Multi-Trait Analysis of Genome-Wide Association Summary Statistics Using MTAG. Nat. Genet. 2018, 50, 229–237.
[CrossRef]

34. Zhu, X.; Feng, T.; Tayo, B.O.; Liang, J.; Young, J.H.; Franceschini, N.; Smith, J.A.; Yanek, L.R.; Sun, Y.V.; Edwards, T.L.; et al.
Meta-Analysis of Correlated Traits via Summary Statistics from GWASs with an Application in Hypertension. Am. J. Hum. Genet.
2015, 96, 21–36. [CrossRef] [PubMed]

35. Ferreira, M.A.R.; Purcell, S.M. A Multivariate Test of Association. Bioinformatics 2009, 25, 132–133. [CrossRef] [PubMed]
36. O’Reilly, P.F.; Hoggart, C.J.; Pomyen, Y.; Calboli, F.C.F.; Elliott, P.; Jarvelin, M.-R.; Coin, L.J.M. MultiPhen: Joint Model of Multiple

Phenotypes Can Increase Discovery in GWAS. PLoS ONE 2012, 7, e34861. [CrossRef] [PubMed]
37. Smeland, O.B.; Frei, O.; Shadrin, A.; O’Connell, K.; Fan, C.-C.; Bahrami, S.; Holland, D.; Djurovic, S.; Thompson, W.K.; Dale, A.M.;

et al. Discovery of Shared Genomic Loci Using the Conditional False Discovery Rate Approach. Hum. Genet. 2020, 139, 85–94.
[CrossRef] [PubMed]

38. Mounier, N.; Kutalik, Z. BGWAS: An R Package to Perform Bayesian Genome Wide Association Studies. Bioinformatics 2020, 36,
4374–4376. [CrossRef] [PubMed]

39. Lee, C.H.; Eskin, E.; Han, B. Increasing the Power of Meta-Analysis of Genome-Wide Association Studies to Detect Heterogeneous
Effects. Bioinformatics 2017, 33, i379–i388. [CrossRef]

40. Trochet, H.; Pirinen, M.; Band, G.; Jostins, L.; McVean, G.; Spencer, C.C.A. Bayesian Meta-Analysis across Genome-Wide
Association Studies of Diverse Phenotypes. Genet. Epidemiol. 2019, 43, 532–547. [CrossRef]

41. van der Sluis, S.; Posthuma, D.; Dolan, C.V. TATES: Efficient Multivariate Genotype-Phenotype Analysis for Genome-Wide
Association Studies. PLoS Genet. 2013, 9, e1003235. [CrossRef] [PubMed]

42. Chen, L.; Zhou, Y. A Fast and Powerful Aggregated Cauchy Association Test for Joint Analysis of Multiple Phenotypes. Genes
Genom. 2021, 43, 69–77. [CrossRef] [PubMed]

43. Xie, H.; Cao, X.; Zhang, S.; Sha, Q. Joint Analysis of Multiple Phenotypes for Extremely Unbalanced Case-Control Association
Studies. Genet. Epidemiol. 2023, 47, 185–197. [CrossRef] [PubMed]

44. Liu, Y.; Xie, J. Cauchy Combination Test: A Powerful Test with Analytic p-Value Calculation under Arbitrary Dependency
Structures. J. Am. Stat. Assoc. 2020, 115, 393–402. [CrossRef] [PubMed]

45. O’Connor, L.J.; Price, A.L. Distinguishing Genetic Correlation from Causation across 52 Diseases and Complex Traits. Nat. Genet.
2018, 50, 1728–1734. [CrossRef]

46. Frei, O.; Holland, D.; Smeland, O.B.; Shadrin, A.A.; Fan, C.C.; Maeland, S.; O’Connell, K.S.; Wang, Y.; Djurovic, S.; Thompson,
W.K.; et al. Bivariate Causal Mixture Model Quantifies Polygenic Overlap between Complex Traits beyond Genetic Correlation.
Nat. Commun. 2019, 10, 2417. [CrossRef] [PubMed]

47. Sanderson, E.; Glymour, M.M.; Holmes, M.V.; Kang, H.; Morrison, J.; Munafò, M.R.; Palmer, T.; Schooling, C.M.; Wallace, C.;
Zhao, Q.; et al. Mendelian Randomization. Nat. Rev. Methods Primers 2022, 2, 6. [CrossRef]

48. Rødevand, L.; Rahman, Z.; Hindley, G.F.L.; Smeland, O.B.; Frei, O.; Tekin, T.F.; Kutrolli, G.; Bahrami, S.; Hoseth, E.Z.; Shadrin,
A.; et al. Characterizing the Shared Genetic Underpinnings of Schizophrenia and Cardiovascular Disease Risk Factors. Am. J.
Psychiatry 2023, 180, 815–826. [CrossRef]

49. Ohi, K.; Sumiyoshi, C.; Fujino, H.; Yasuda, Y.; Yamamori, H.; Fujimoto, M.; Shiino, T.; Sumiyoshi, T.; Hashimoto, R. Genetic
Overlap between General Cognitive Function and Schizophrenia: A Review of Cognitive GWASs. Int. J. Mol. Sci. 2018, 19, 3822.
[CrossRef]

50. Romero, C.; Werme, J.; Jansen, P.R.; Gelernter, J.; Stein, M.B.; Levey, D.; Polimanti, R.; de Leeuw, C.; Posthuma, D.; Nagel, M.; et al.
Exploring the Genetic Overlap between Twelve Psychiatric Disorders. Nat. Genet. 2022, 54, 1795–1802. [CrossRef]

51. Duncan, L.E.; Shen, H.; Ballon, J.S.; Hardy, K.V.; Noordsy, D.L.; Levinson, D.F. Genetic Correlation Profile of Schizophrenia
Mirrors Epidemiological Results and Suggests Link Between Polygenic and Rare Variant (22q11.2) Cases of Schizophrenia.
Schizophr. Bull. 2018, 44, 1350–1361. [CrossRef] [PubMed]

52. Catalá-López, F.; Suárez-Pinilla, M.; Suárez-Pinilla, P.; Valderas, J.M.; Gómez-Beneyto, M.; Martinez, S.; Balanzá-Martínez, V.;
Climent, J.; Valencia, A.; McGrath, J.; et al. Inverse and Direct Cancer Comorbidity in People with Central Nervous System
Disorders: A Meta-Analysis of Cancer Incidence in 577,013 Participants of 50 Observational Studies. Psychother. Psychosom. 2014,
83, 89–105. [CrossRef] [PubMed]

53. Tran, E.; Rouillon, F.; Loze, J.-Y.; Casadebaig, F.; Philippe, A.; Vitry, F.; Limosin, F. Cancer Mortality in Patients with Schizophrenia:
An 11-Year Prospective Cohort Study. Cancer 2009, 115, 3555–3562. [CrossRef]

54. Lu, D.; Song, J.; Lu, Y.; Fall, K.; Chen, X.; Fang, F.; Landén, M.; Hultman, C.M.; Czene, K.; Sullivan, P.; et al. A Shared Genetic
Contribution to Breast Cancer and Schizophrenia. Nat. Commun. 2020, 11, 4637. [CrossRef] [PubMed]

55. Glubb, D.M.; Thompson, D.J.; Aben, K.K.H.; Alsulimani, A.; Amant, F.; Annibali, D.; Attia, J.; Barricarte, A.; Beckmann, M.W.;
Berchuck, A.; et al. Cross-Cancer Genome-Wide Association Study of Endometrial Cancer and Epithelial Ovarian Cancer Identifies
Genetic Risk Regions Associated with Risk of Both Cancers. Cancer Epidemiol. Biomark. Prev. 2021, 30, 217–228. [CrossRef]
[PubMed]

https://doi.org/10.1038/ng.3570
https://www.ncbi.nlm.nih.gov/pubmed/27182965
https://doi.org/10.1038/s41588-017-0009-4
https://doi.org/10.1016/j.ajhg.2014.11.011
https://www.ncbi.nlm.nih.gov/pubmed/25500260
https://doi.org/10.1093/bioinformatics/btn563
https://www.ncbi.nlm.nih.gov/pubmed/19019849
https://doi.org/10.1371/journal.pone.0034861
https://www.ncbi.nlm.nih.gov/pubmed/22567092
https://doi.org/10.1007/s00439-019-02060-2
https://www.ncbi.nlm.nih.gov/pubmed/31520123
https://doi.org/10.1093/bioinformatics/btaa549
https://www.ncbi.nlm.nih.gov/pubmed/32470106
https://doi.org/10.1093/bioinformatics/btx242
https://doi.org/10.1002/gepi.22202
https://doi.org/10.1371/journal.pgen.1003235
https://www.ncbi.nlm.nih.gov/pubmed/23359524
https://doi.org/10.1007/s13258-020-01034-3
https://www.ncbi.nlm.nih.gov/pubmed/33432394
https://doi.org/10.1002/gepi.22513
https://www.ncbi.nlm.nih.gov/pubmed/36691904
https://doi.org/10.1080/01621459.2018.1554485
https://www.ncbi.nlm.nih.gov/pubmed/33012899
https://doi.org/10.1038/s41588-018-0255-0
https://doi.org/10.1038/s41467-019-10310-0
https://www.ncbi.nlm.nih.gov/pubmed/31160569
https://doi.org/10.1038/s43586-021-00092-5
https://doi.org/10.1176/appi.ajp.20220660
https://doi.org/10.3390/ijms19123822
https://doi.org/10.1038/s41588-022-01245-2
https://doi.org/10.1093/schbul/sbx174
https://www.ncbi.nlm.nih.gov/pubmed/29294133
https://doi.org/10.1159/000356498
https://www.ncbi.nlm.nih.gov/pubmed/24458030
https://doi.org/10.1002/cncr.24383
https://doi.org/10.1038/s41467-020-18492-8
https://www.ncbi.nlm.nih.gov/pubmed/32934226
https://doi.org/10.1158/1055-9965.EPI-20-0739
https://www.ncbi.nlm.nih.gov/pubmed/33144283


Genes 2024, 15, 939 16 of 18

56. Lindström, S.; Wang, L.; Feng, H.; Majumdar, A.; Huo, S.; Macdonald, J.; Harrison, T.; Turman, C.; Chen, H.; Mancuso, N.; et al.
Genome-Wide Analyses Characterize Shared Heritability among Cancers and Identify Novel Cancer Susceptibility Regions. J.
Natl. Cancer Inst. 2023, 115, 712–732. [CrossRef] [PubMed]

57. Masuda, T.; Low, S.-K.; Akiyama, M.; Hirata, M.; Ueda, Y.; Matsuda, K.; Kimura, T.; Murakami, Y.; Kubo, M.; Kamatani, Y.; et al.
GWAS of Five Gynecologic Diseases and Cross-Trait Analysis in Japanese. Eur. J. Hum. Genet. 2020, 28, 95–107. [CrossRef]
[PubMed]

58. Painter, J.N.; O’Mara, T.A.; Morris, A.P.; Cheng, T.H.T.; Gorman, M.; Martin, L.; Hodson, S.; Jones, A.; Martin, N.G.; Gordon, S.;
et al. Genetic Overlap between Endometriosis and Endometrial Cancer: Evidence from Cross-Disease Genetic Correlation and
GWAS Meta-Analyses. Cancer Med. 2018, 7, 1978–1987. [CrossRef]

59. Kho, P.F.; Mortlock, S.; Amant, F.; Annibali, D.; Ashton, K.; Attia, J.; Auer, P.L.; Beckmann, M.W.; Black, A.; Brinton, L.; et al.
Genetic Analyses of Gynecological Disease Identify Genetic Relationships between Uterine Fibroids and Endometrial Cancer,
and a Novel Endometrial Cancer Genetic Risk Region at the WNT4 1p36.12 Locus. Hum. Genet. 2021, 140, 1353–1365. [CrossRef]

60. Li, C.; Liu, J.; Lin, J.; Shang, H. COVID-19 and Risk of Neurodegenerative Disorders: A Mendelian Randomization Study. Transl.
Psychiatry 2022, 12, 283. [CrossRef]

61. Xu, K.; Li, B.; McGinnis, K.A.; Vickers-Smith, R.; Dao, C.; Sun, N.; Kember, R.L.; Zhou, H.; Becker, W.C.; Gelernter, J.; et al.
Genome-Wide Association Study of Smoking Trajectory and Meta-Analysis of Smoking Status in 842,000 Individuals. Nat.
Commun. 2020, 11, 5302. [CrossRef] [PubMed]

62. Kim, Y.J.; Moon, S.; Hwang, M.Y.; Han, S.; Jang, H.-M.; Kong, J.; Shin, D.M.; Yoon, K.; Kim, S.M.; Lee, J.-E.; et al. The Contribution
of Common and Rare Genetic Variants to Variation in Metabolic Traits in 288,137 East Asians. Nat. Commun. 2022, 13, 6642.
[CrossRef] [PubMed]

63. Ke, B.; Li, C.; Shang, H. Sex Hormones in the Risk of Breast Cancer: A Two-Sample Mendelian Randomization Study. Am. J.
Cancer Res. 2023, 13, 1128–1136. [PubMed]

64. Lee, J.J.; McGue, M.; Iacono, W.G.; Chow, C.C. The Accuracy of LD Score Regression as an Estimator of Confounding and Genetic
Correlations in Genome-Wide Association Studies. Genet. Epidemiol. 2018, 42, 783–795. [CrossRef] [PubMed]

65. Warrington, N.M.; Hwang, L.-D.; Nivard, M.G.; Evans, D.M. Estimating Direct and Indirect Genetic Effects on Offspring
Phenotypes Using Genome-Wide Summary Results Data. Nat. Commun. 2021, 12, 5420. [CrossRef] [PubMed]

66. Kraft, P.; Chen, H.; Lindström, S. The Use of Genetic Correlation and Mendelian Randomization Studies To Increase Our
Understanding of Relationships Between Complex Traits. Curr. Epidemiol. Rep. 2020, 7, 104–112. [CrossRef] [PubMed]

67. Zhang, Y.; Cheng, Y.; Jiang, W.; Ye, Y.; Lu, Q.; Zhao, H. Comparison of Methods for Estimating Genetic Correlation between
Complex Traits Using GWAS Summary Statistics. Brief. Bioinform. 2021, 22, bbaa442. [CrossRef] [PubMed]

68. Chen, H.; Majumdar, A.; Wang, L.; Kar, S.; Brown, K.M.; Feng, H.; Turman, C.; Dennis, J.; Easton, D.; Michailidou, K.; et al.
Large-Scale Cross-Cancer Fine-Mapping of the 5p15.33 Region Reveals Multiple Independent Signals. Hum. Genet. Genom. Adv.
2021, 2, 100041. [CrossRef] [PubMed]

69. Zhang, C.; Zhang, Y.; Zhang, Y.; Zhao, H. Benchmarking of Local Genetic Correlation Estimation Methods Using Summary
Statistics from Genome-Wide Association Studies. Brief. Bioinform. 2023, 24, bbad407. [CrossRef]

70. Guo, H.; Fortune, M.D.; Burren, O.S.; Schofield, E.; Todd, J.A.; Wallace, C. Integration of Disease Association and EQTL Data
Using a Bayesian Colocalisation Approach Highlights Six Candidate Causal Genes in Immune-Mediated Diseases. Hum. Mol.
Genet. 2015, 24, 3305–3313. [CrossRef]

71. Jaffe, A.E.; Gao, Y.; Deep-Soboslay, A.; Tao, R.; Hyde, T.M.; Weinberger, D.R.; Kleinman, J.E. Mapping DNA Methylation across
Development, Genotype and Schizophrenia in the Human Frontal Cortex. Nat. Neurosci. 2016, 19, 40–47. [CrossRef]

72. Zhao, X.; Wu, X.; Xiao, J.; Zhang, L.; Hao, Y.; Xiao, C.; Zhang, B.; Li, J.; Jiang, X. A Large-Scale Genome-Wide Cross-Trait Analysis
for the Effect of COVID-19 on Female-Specific Cancers. iScience 2023, 26, 107497. [CrossRef]

73. Kho, P.F.; Wang, X.; Cuéllar-Partida, G.; Dörk, T.; Goode, E.L.; Lambrechts, D.; Scott, R.J.; Spurdle, A.B.; O’Mara, T.A.; Glubb,
D.M. Multi-Tissue Transcriptome-Wide Association Study Identifies Eight Candidate Genes and Tissue-Specific Gene Expression
Underlying Endometrial Cancer Susceptibility. Commun. Biol. 2021, 4, 1211. [CrossRef] [PubMed]

74. Wang, X.; Kho, P.F.; Ramachandran, D.; Bafligil, C.; Amant, F.; Goode, E.L.; Scott, R.J.; Tomlinson, I.; Evans, D.G.; Crosbie, E.J.;
et al. Multi-Trait Genome-Wide Association Study Identifies a Novel Endometrial Cancer Risk Locus That Associates with
Testosterone Levels. iScience 2023, 26, 106590. [CrossRef]

75. Zhou, Y.; Zhou, X.; Sun, J.; Wang, L.; Zhao, J.; Chen, J.; Yuan, S.; He, Y.; Timofeeva, M.; Spiliopoulou, A.; et al. Exploring the Cross-
Cancer Effect of Smoking and Its Fingerprints in Blood DNA Methylation on Multiple Cancers: A Mendelian Randomization
Study. Int. J. Cancer 2023, 153, 1477–1486. [CrossRef] [PubMed]

76. Kar, S.P.; Lindström, S.; Hung, R.J.; Lawrenson, K.; Schmidt, M.K.; O’Mara, T.A.; Glubb, D.M.; Tyrer, J.P.; Schildkraut, J.M.; Chang-
Claude, J.; et al. Combining Genome-Wide Studies of Breast, Prostate, Ovarian and Endometrial Cancers Maps Cross-Cancer
Susceptibility Loci and Identifies New Genetic Associations. bioRxiv 2020. [CrossRef]

77. Davies, N.M.; Holmes, M.V.; Davey Smith, G. Reading Mendelian Randomisation Studies: A Guide, Glossary, and Checklist for
Clinicians. BMJ 2018, 362, k601. [CrossRef]

78. Slob, E.A.W.; Burgess, S. A Comparison of Robust Mendelian Randomization Methods Using Summary Data. Genet. Epidemiol.
2020, 44, 313–329. [CrossRef]

https://doi.org/10.1093/jnci/djad043
https://www.ncbi.nlm.nih.gov/pubmed/36929942
https://doi.org/10.1038/s41431-019-0495-1
https://www.ncbi.nlm.nih.gov/pubmed/31488892
https://doi.org/10.1002/cam4.1445
https://doi.org/10.1007/s00439-021-02312-0
https://doi.org/10.1038/s41398-022-02052-3
https://doi.org/10.1038/s41467-020-18489-3
https://www.ncbi.nlm.nih.gov/pubmed/33082346
https://doi.org/10.1038/s41467-022-34163-2
https://www.ncbi.nlm.nih.gov/pubmed/36333282
https://www.ncbi.nlm.nih.gov/pubmed/37034223
https://doi.org/10.1002/gepi.22161
https://www.ncbi.nlm.nih.gov/pubmed/30251275
https://doi.org/10.1038/s41467-021-25723-z
https://www.ncbi.nlm.nih.gov/pubmed/34521848
https://doi.org/10.1007/s40471-020-00233-6
https://www.ncbi.nlm.nih.gov/pubmed/33552841
https://doi.org/10.1093/bib/bbaa442
https://www.ncbi.nlm.nih.gov/pubmed/33497438
https://doi.org/10.1016/j.xhgg.2021.100041
https://www.ncbi.nlm.nih.gov/pubmed/34355204
https://doi.org/10.1093/bib/bbad407
https://doi.org/10.1093/hmg/ddv077
https://doi.org/10.1038/nn.4181
https://doi.org/10.1016/j.isci.2023.107497
https://doi.org/10.1038/s42003-021-02745-3
https://www.ncbi.nlm.nih.gov/pubmed/34675350
https://doi.org/10.1016/j.isci.2023.106590
https://doi.org/10.1002/ijc.34656
https://www.ncbi.nlm.nih.gov/pubmed/37449541
https://doi.org/10.1101/2020.06.16.146803
https://doi.org/10.1136/bmj.k601
https://doi.org/10.1002/gepi.22295


Genes 2024, 15, 939 17 of 18

79. Hemani, G.; Zheng, J.; Elsworth, B.; Wade, K.H.; Haberland, V.; Baird, D.; Laurin, C.; Burgess, S.; Bowden, J.; Langdon, R.; et al.
The MR-Base Platform Supports Systematic Causal Inference across the Human Phenome. eLife 2018, 7, e34408. [CrossRef]

80. Patel, A.; Ye, T.; Xue, H.; Lin, Z.; Xu, S.; Woolf, B.; Mason, A.M.; Burgess, S. MendelianRandomization v0.9.0: Updates to an R
Package for Performing Mendelian Randomization Analyses Using Summarized Data. Wellcome Open Res. 2023, 8, 449. [CrossRef]

81. Morrison, J.; Knoblauch, N.; Marcus, J.H.; Stephens, M.; He, X. Mendelian Randomization Accounting for Correlated and
Uncorrelated Pleiotropic Effects Using Genome-Wide Summary Statistics. Nat. Genet. 2020, 52, 740–747. [CrossRef] [PubMed]

82. TwoSampleMR: R Package for Performing 2-Sample MR Using MR-Base Database; Github: San Francisco, CA, USA, 2024.
83. Palmer, T. OneSampleMR: R Package of Useful Functions for One-Sample Mendelian Randomization and Instrumental Variable Analyses;

Github: San Francisco, CA, USA, 2024.
84. Bowden, J.; Davey Smith, G.; Burgess, S. Mendelian Randomization with Invalid Instruments: Effect Estimation and Bias

Detection through Egger Regression. Int. J. Epidemiol. 2015, 44, 512–525. [CrossRef]
85. Bowden, J.; Davey Smith, G.; Haycock, P.C.; Burgess, S. Consistent Estimation in Mendelian Randomization with Some Invalid

Instruments Using a Weighted Median Estimator. Genet. Epidemiol. 2016, 40, 304–314. [CrossRef]
86. Hartwig, F.P.; Davey Smith, G.; Bowden, J. Robust Inference in Summary Data Mendelian Randomization via the Zero Modal

Pleiotropy Assumption. Int. J. Epidemiol. 2017, 46, 1985–1998. [CrossRef]
87. Cheng, Q.; Yang, Y.; Shi, X.; Yeung, K.-F.; Yang, C.; Peng, H.; Liu, J. MR-LDP: A Two-Sample Mendelian Randomization for GWAS

Summary Statistics Accounting for Linkage Disequilibrium and Horizontal Pleiotropy. NAR Genom. Bioinform. 2020, 2, lqaa028.
[CrossRef] [PubMed]

88. Zhao, Q.; Chen, Y.; Wang, J.; Small, D.S. Powerful Three-Sample Genome-Wide Design and Robust Statistical Inference in
Summary-Data Mendelian Randomization. Int. J. Epidemiol. 2019, 48, 1478–1492. [CrossRef] [PubMed]

89. Zhu, Z.; Zheng, Z.; Zhang, F.; Wu, Y.; Trzaskowski, M.; Maier, R.; Robinson, M.R.; McGrath, J.J.; Visscher, P.M.; Wray, N.R.; et al.
Causal Associations between Risk Factors and Common Diseases Inferred from GWAS Summary Data. Nat. Commun. 2018, 9,
224. [CrossRef]

90. Wang, J.; Zhao, Q.; Bowden, J.; Hemani, G.; Davey Smith, G.; Small, D.S.; Zhang, N.R. Causal Inference for Heritable Phenotypic
Risk Factors Using Heterogeneous Genetic Instruments. PLoS Genet. 2021, 17, e1009575. [CrossRef]

91. Burgess, S.; Foley, C.N.; Allara, E.; Staley, J.R.; Howson, J.M.M. A Robust and Efficient Method for Mendelian Randomization
with Hundreds of Genetic Variants. Nat. Commun. 2020, 11, 376. [CrossRef]

92. Dimou, N.; Omiyale, W.; Biessy, C.; Viallon, V.; Kaaks, R.; O’Mara, T.A.; Aglago, E.K.; Ardanaz, E.; Bergmann, M.M.; Bondonno,
N.P.; et al. Cigarette Smoking and Endometrial Cancer Risk: Observational and Mendelian Randomization Analyses. Cancer
Epidemiol. Biomark. Prev. 2022, 31, 1839–1848. [CrossRef]

93. Wang, X.; Glubb, D.M.; O’Mara, T.A. Dietary Factors and Endometrial Cancer Risk: A Mendelian Randomization Study. Nutrients
2023, 15, 603. [CrossRef] [PubMed]

94. Niu, D.; Li, C.; Qu, H.; Zheng, Y. Does Cannabis Elevate Cancer Risk?: Evidence from Mendelian Randomization. Wien. Klin.
Wochenschr. 2023, 136, 311–318. [CrossRef] [PubMed]

95. Wei, Z.; Yang, B.; Tang, T.; Xiao, Z.; Ye, F.; Li, X.; Wu, S.; Huang, J.-G.; Jiang, S. Gut Microbiota and Risk of Five Common Cancers:
A Univariable and Multivariable Mendelian Randomization Study. Cancer Med. 2023, 12, 10393–10405. [CrossRef] [PubMed]

96. Long, Y.; Tang, L.; Zhou, Y.; Zhao, S.; Zhu, H. Causal Relationship between Gut Microbiota and Cancers: A Two-Sample
Mendelian Randomisation Study. BMC Med. 2023, 21, 66. [CrossRef] [PubMed]

97. Chen, Z.; Liu, C.; Wu, J.; Kong, F. Association of Coffee and Caffeine Consumption with Risk and Prognosis of Endometrial
Cancer and Its Subgroups: A Mendelian Randomization. Front. Nutr. 2023, 10, 1291355. [CrossRef] [PubMed]

98. Chen, J.; Yang, K.; Qiu, Y.; Lai, W.; Qi, S.; Wang, G.; Chen, L.; Li, K.; Zhou, D.; Liu, Q.; et al. Genetic Associations of Leisure
Sedentary Behaviors and the Risk of 15 Site-Specific Cancers: A Mendelian Randomization Study. Cancer Med. 2023, 12,
13623–13636. [CrossRef] [PubMed]

99. Larsson, S.C.; Lee, W.-H.; Kar, S.; Burgess, S.; Allara, E. Assessing the Role of Cortisol in Cancer: A Wide-Ranged Mendelian
Randomisation Study. Br. J. Cancer 2021, 125, 1025–1029. [CrossRef] [PubMed]

100. Painter, J.N.; O’Mara, T.A.; Marquart, L.; Webb, P.M.; Attia, J.; Medland, S.E.; Cheng, T.; Dennis, J.; Holliday, E.G.; McEvoy, M.;
et al. Genetic Risk Score Mendelian Randomization Shows That Obesity Measured as Body Mass Index, but Not Waist:Hip Ratio,
Is Causal for Endometrial Cancer. Cancer Epidemiol. Biomark. Prev. 2016, 25, 1503–1510. [CrossRef] [PubMed]

101. Prescott, J.; Setiawan, V.W.; Wentzensen, N.; Schumacher, F.; Yu, H.; Delahanty, R.; Bernstein, L.; Chanock, S.J.; Chen, C.; Cook,
L.S.; et al. Body Mass Index Genetic Risk Score and Endometrial Cancer Risk. PLoS ONE 2015, 10, e0143256. [CrossRef]

102. Nead, K.T.; Sharp, S.J.; Thompson, D.J.; Painter, J.N.; Savage, D.B.; Semple, R.K.; Barker, A.; Perry, J.R.B.; Attia, J.; Australian Na-
tional Endometrial Cancer Study Group (ANECS); et al. Evidence of a Causal Association Between Insulinemia and Endometrial
Cancer: A Mendelian Randomization Analysis. J. Natl. Cancer Inst. 2015, 107, djv178. [CrossRef]

103. Hazelwood, E.; Sanderson, E.; Tan, V.Y.; Ruth, K.S.; Frayling, T.M.; Dimou, N.; Gunter, M.J.; Dossus, L.; Newton, C.; Ryan, N.;
et al. Identifying Molecular Mediators of the Relationship between Body Mass Index and Endometrial Cancer Risk: A Mendelian
Randomization Analysis. BMC Med. 2022, 20, 125. [CrossRef] [PubMed]

104. Masuda, T.; Ogawa, K.; Kamatani, Y.; Murakami, Y.; Kimura, T.; Okada, Y. A Mendelian Randomization Study Identified Obesity
as a Causal Risk Factor of Uterine Endometrial Cancer in Japanese. Cancer Sci. 2020, 111, 4646–4651. [CrossRef] [PubMed]

https://doi.org/10.7554/eLife.34408
https://doi.org/10.12688/wellcomeopenres.19995.2
https://doi.org/10.1038/s41588-020-0631-4
https://www.ncbi.nlm.nih.gov/pubmed/32451458
https://doi.org/10.1093/ije/dyv080
https://doi.org/10.1002/gepi.21965
https://doi.org/10.1093/ije/dyx102
https://doi.org/10.1093/nargab/lqaa028
https://www.ncbi.nlm.nih.gov/pubmed/33575584
https://doi.org/10.1093/ije/dyz142
https://www.ncbi.nlm.nih.gov/pubmed/31298269
https://doi.org/10.1038/s41467-017-02317-2
https://doi.org/10.1371/journal.pgen.1009575
https://doi.org/10.1038/s41467-019-14156-4
https://doi.org/10.1158/1055-9965.EPI-21-1176
https://doi.org/10.3390/nu15030603
https://www.ncbi.nlm.nih.gov/pubmed/36771310
https://doi.org/10.1007/s00508-023-02303-3
https://www.ncbi.nlm.nih.gov/pubmed/37947877
https://doi.org/10.1002/cam4.5772
https://www.ncbi.nlm.nih.gov/pubmed/36880394
https://doi.org/10.1186/s12916-023-02761-6
https://www.ncbi.nlm.nih.gov/pubmed/36810112
https://doi.org/10.3389/fnut.2023.1291355
https://www.ncbi.nlm.nih.gov/pubmed/38035346
https://doi.org/10.1002/cam4.5974
https://www.ncbi.nlm.nih.gov/pubmed/37148539
https://doi.org/10.1038/s41416-021-01505-8
https://www.ncbi.nlm.nih.gov/pubmed/34316022
https://doi.org/10.1158/1055-9965.EPI-16-0147
https://www.ncbi.nlm.nih.gov/pubmed/27550749
https://doi.org/10.1371/journal.pone.0143256
https://doi.org/10.1093/jnci/djv178
https://doi.org/10.1186/s12916-022-02322-3
https://www.ncbi.nlm.nih.gov/pubmed/35436960
https://doi.org/10.1111/cas.14667
https://www.ncbi.nlm.nih.gov/pubmed/32981178


Genes 2024, 15, 939 18 of 18

105. Freuer, D.; Linseisen, J.; O’Mara, T.A.; Leitzmann, M.; Baurecht, H.; Baumeister, S.-E.; Meisinger, C. Body Fat Distribution and Risk
of Breast, Endometrial, and Ovarian Cancer: A Two-Sample Mendelian Randomization Study. Cancers 2021, 13, 5053. [CrossRef]
[PubMed]

106. Kennedy, O.J.; Bafligil, C.; O’Mara, T.A.; Wang, X.; Evans, D.G.; Kar, S.; Crosbie, E.J. Child and Adult Adiposity and Subtype-
Specific Endometrial Cancer Risk: A Multivariable Mendelian Randomisation Study. Int. J. Obes. 2023, 47, 87–90. [CrossRef]
[PubMed]

107. Mariosa, D.; Smith-Byrne, K.; Richardson, T.G.; Ferrari, P.; Gunter, M.J.; Papadimitriou, N.; Murphy, N.; Christakoudi, S.; Tsilidis,
K.K.; Riboli, E.; et al. Body Size at Different Ages and Risk of 6 Cancers: A Mendelian Randomization and Prospective Cohort
Study. J. Natl. Cancer Inst. 2022, 114, 1296–1300. [CrossRef] [PubMed]

108. de Leeuw, C.; Savage, J.; Bucur, I.G.; Heskes, T.; Posthuma, D. Understanding the Assumptions Underlying Mendelian Random-
ization. Eur. J. Hum. Genet. 2022, 30, 653–660. [CrossRef] [PubMed]

109. Bowden, J.; Del Greco M, F.; Minelli, C.; Davey Smith, G.; Sheehan, N.; Thompson, J. A Framework for the Investigation of
Pleiotropy in Two-Sample Summary Data Mendelian Randomization. Stat. Med. 2017, 36, 1783–1802. [CrossRef] [PubMed]

110. Verbanck, M.; Chen, C.-Y.; Neale, B.; Do, R. Detection of Widespread Horizontal Pleiotropy in Causal Relationships Inferred from
Mendelian Randomization between Complex Traits and Diseases. Nat. Genet. 2018, 50, 693–698. [CrossRef] [PubMed]

111. Zheng, J.; Baird, D.; Borges, M.-C.; Bowden, J.; Hemani, G.; Haycock, P.; Evans, D.M.; Smith, G.D. Recent Developments in
Mendelian Randomization Studies. Curr. Epidemiol. Rep. 2017, 4, 330–345. [CrossRef] [PubMed]

112. Smith, G.D.; Ebrahim, S. “Mendelian Randomization”: Can Genetic Epidemiology Contribute to Understanding Environmental
Determinants of Disease? Int. J. Epidemiol. 2003, 32, 1–22. [CrossRef]

113. Debat, V.; David, P. Mapping Phenotypes: Canalization, Plasticity and Developmental Stability. Trends Ecol. Evol. 2001, 16,
555–561. [CrossRef]

114. Hughes, R.A.; Davies, N.M.; Davey Smith, G.; Tilling, K. Selection Bias When Estimating Average Treatment Effects Using
One-Sample Instrumental Variable Analysis. Epidemiology 2019, 30, 350–357. [CrossRef] [PubMed]

115. Griffith, G.J.; Morris, T.T.; Tudball, M.J.; Herbert, A.; Mancano, G.; Pike, L.; Sharp, G.C.; Sterne, J.; Palmer, T.M.; Davey Smith,
G.; et al. Collider Bias Undermines Our Understanding of COVID-19 Disease Risk and Severity. Nat. Commun. 2020, 11, 5749.
[CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/cancers13205053
https://www.ncbi.nlm.nih.gov/pubmed/34680200
https://doi.org/10.1038/s41366-022-01231-y
https://www.ncbi.nlm.nih.gov/pubmed/36357562
https://doi.org/10.1093/jnci/djac061
https://www.ncbi.nlm.nih.gov/pubmed/35438160
https://doi.org/10.1038/s41431-022-01038-5
https://www.ncbi.nlm.nih.gov/pubmed/35082398
https://doi.org/10.1002/sim.7221
https://www.ncbi.nlm.nih.gov/pubmed/28114746
https://doi.org/10.1038/s41588-018-0099-7
https://www.ncbi.nlm.nih.gov/pubmed/29686387
https://doi.org/10.1007/s40471-017-0128-6
https://www.ncbi.nlm.nih.gov/pubmed/29226067
https://doi.org/10.1093/ije/dyg070
https://doi.org/10.1016/S0169-5347(01)02266-2
https://doi.org/10.1097/EDE.0000000000000972
https://www.ncbi.nlm.nih.gov/pubmed/30896457
https://doi.org/10.1038/s41467-020-19478-2
https://www.ncbi.nlm.nih.gov/pubmed/33184277

	Introduction 
	Endometrial Cancer 
	Genetic Correlation 
	Colocalization 
	Cross-Trait Locus Identification 
	Causal Inference Analysis 
	Conclusions 
	References

