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Abstract: Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease. Its accu-
rate pathogenic mechanisms are incompletely clarified, and effective therapeutic treatments are
still inadequate. Autophagy is closely associated with AD and plays multiple roles in eliminating
harmful aggregated proteins and maintaining cell homeostasis. This study identified 1191 differen-
tially expressed genes (DEGs) based on the GSE5281 dataset from the GEO database, intersected
them with 325 autophagy-related genes from GeneCards, and screened 26 differentially expressed
autophagy-related genes (DEAGs). Subsequently, GO and KEGG enrichment analysis was performed
and indicated that these DEAGs were primarily involved in autophagy–lysosomal biological pro-
cess. Further, eight hub genes were determined by PPI construction, and experimental validation
was performed by qRT-PCR on a SH-SY5Y cell model. Finally, three hub genes (TFEB, TOMM20,
GABARAPL1) were confirmed to have potential application for biomarkers. A multigenic prediction
model with good predictability (AUC = 0.871) was constructed in GSE5281 and validated in the
GSE132903 dataset. Hub gene-targeted miRNAs closely associated with AD were also retrieved
through the miRDB and HDMM database, predicting potential therapeutic agents for AD. This study
provides new insights into autophagy-related genes in brain tissues of AD patients and offers more
candidate biomarkers for AD mechanistic research as well as clinical diagnosis.

Keywords: Alzheimer’s disease; differentially expressed autophagy genes; PPI construction; hub
genes; biomarker; diagnostic model

1. Introduction

Alzheimer’s disease (AD) is currently the most prevalent neurodegenerative dis-
ease [1]. Various hallmarks of AD indicate its multifactorial nature, such as hyperphos-
phorylated tau protein, deposits of amyloid-β (Aβ) around neurons, dyshomeostasis of
biometals, oxidative stress, chronic nerve inflammation, and so on [2,3]. Although a great
deal of investigation has been carried out, the accurate pathogenic mechanisms of AD have
not been completely clarified, and effective therapeutic treatment is still inadequate. The
number of AD patients aged 65 and older is predicted to reach 7.2 million by 2025 [4].

A number of studies have found that autophagy plays an important role in neuro-
logical disorders such as Alzheimer’s. As a catabolic process that delivers and degrades
intracellular b, autophagy maintains cellular homeostasis by degrading non-essential pro-
teins and organelles and recycling components. Additionally, starvation, oxidative stress,
and a variety of diseases can induce it [5–8]. There are three main types of autophagy in
mammalian cells: macroautophagy, microautophagy, and chaperon-mediated autophagy.
Of these, macroautophagy is the predominant and best-studied type, and is generally
referred to as “autophagy” [9]. Misfolded proteins, including Aβ and Tau, are accumulated
and aggregated in AD, and they are degraded by autophagy and the ubiquitinproteasome
system (UPS). When the UPS is overloaded or damaged in AD, autophagy is used to clear
excessive misfolded proteins [10,11].
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Aβ and phosphorylated Tau appear to cause abnormal autophagy and mitophagy
in AD [12]. When the hippocampus or ventral tegmental area (VTA) is aging or affected
by AD, neuronal autophagy activity is decreased, resulting in Aβ accumulation. Restor-
ing autophagy reduces Aβ levels and reverses cognitive decline and neuronal degenera-
tion [13,14]. It has been shown that activation of autophagy in AD leads to a decrease in the
accumulation of Aβ and Tau proteins in the cytoplasm [15,16]. In addition, neuroinflam-
mation contributes significantly to AD, and anti-inflammatory therapy represents a viable
treatment option [17,18]. It has been reported that inflammation mediated by microglia
is thought to affect neurodegenerative diseases through autophagy [19–22]. Altogether,
autophagy is closely associated with AD and plays multiple roles in eliminating harm-
ful aggregated proteins and maintaining cell homeostasis. Exploring autophagy-related
gene expression in AD may provide us with new insights into pathological mechanism,
diagnosis, and treatment for this disease.

AD-related phenotypes are increasingly utilized to identify differentially expressed genes
(DEGs) using bioinformatics methods. Phenotype-associated DEGs in AD have provided
many potential biomarkers for mechanistic research and clinical diagnosis. Zhao et al. [23]
identified 18 ferroptosis-related hub genes in AD and explored their potential as diagnostic
markers. Yan et al. [24] screened two mitochondrial-related candidate genes as diagnostic
markers for late-onset Alzheimer’s disease (LOAD) as well as mild cognitive impairment
(MCI), and constructed a LOAD diagnostic prediction model. Zhang et al. [25] identified
five hub genes related to the oxidative stress (OS) process in AD, constructed a diagnostic
model, and predicted hub gene-targeted drugs as well as miRNAs as potential treatments. Du
et al. [26] identified five blood biomarkers and constructed a copper metabolism-associated
polygenic prediction model. Gu et al. [27] screened nine genes linking AD and iron metabolism
from brain issues, and constructed a multigenic prediction model that was further validated in
blood samples. Qin et al. [28] identified nine differentially expressed autophagy-related genes
(DEAGs) in peripheral blood based on GSE63060 and GSE63061 datasets, and developed
a personalized nomogram model by combining with age and sex. Li et al. [29] found 10
DEAGs based on GSE63061 and GSE140831 datasets, and evaluated their potentiality for AD
biomarkers. However, the two investigations of DEAGs were both based on blood samples,
and how autophagy-related genes varies in brain issues is worth exploring.

This study investigated differentially expressed autophagy-related genes (DEAGs)
from brain issues based on GEO database GSE5281, explored their biological function,
detected hub genes using bioinformatics methods, and validated them by qRT-PCR on a
cell model. Finally, a diagnostic model was established and validated in an external dataset
(Figure 1). Our findings provide new insights into autophagy-related genes in brain tissues
of AD patients and offer more candidate biomarkers for AD mechanistic research as well
as clinical diagnosis.
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2. Materials and Methods
2.1. Data Acquisition

AD-associated microarray datasets were obtained from the GEO database (http://
www.ncbi.nlm.nih.gov/geo/, accessed on 11 February 2024). The GSE5281 gene expression
profile contained 87 AD samples and 74 healthy controls. The GSE132903 gene expression
profile was used for validation, which included 97 AD samples and 98 healthy controls.
All samples in the two datasets were extracted from brain tissue. Autophagy-related gene
sets were downloaded from the GeneCards (https://www.genecards.org/, accessed on
11 February 2024) database. Genes with a relevance score > 4 were selected as the highly
associated genes for autophagy to facilitate subsequent difference analysis.

2.2. Identification of DEGs and DEAGs

The Limma package in R (4.2.1) was applied for standardization and analysis of DEGs
between AD samples and control subjects [30]. The screening condition was predetermined
as logFC values > 1 and adjusted p-values < 0.05. Volcano plots were performed to visualize
the expression of DEGs using the ggplot2 (3.3.6) package in R (4.2.1) software. Additionally,
a Venn diagram and heatmap were created to describe the DEAGs, which were obtained
from the intersection of DEGs in GSE5281 and 325 autophagy-related genes.

2.3. Biological Functional and Enrichment Analysis of DEAGs

To clarify the potential biological processes and molecular functions of DEAGs, Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrich-
ment were performed using the R clusterProfiler (4.4.4) package [31], and the results were
visualized using the ggplot2 (3.3.6) package in R (4.2.1) software.

2.4. PPI Network Construction and Hub Gene Identification

A protein–protein interaction (PPI) network was constructed to predict the interaction
among the DEAGs using the STRING database (https://string-db.org/, accessed on 11
February 2024) [32]. Cytoscape software (Version 3.10.2) was involved to detect PPI pairs
(confidence score > 0.4) and visualize the results. The hub genes were screened by a
MCODE analysis module using the default parameters (degree cutoff = 2, node score
cutoff = 0.2, K-core = 2, max. depth = 100). The interaction relationships among hub genes
were analyzed based on Pearson correlation statistics, and the results were drawn as a
heatmap using the ggplot2 (3.3.6) package in R (4.2.1) software.

2.5. Diagnostic ROC Curve Construction

Logistic regression was performed to evaluate the diagnostic significance of the hub
genes. A response variable was assigned 1 for AD samples and 0 for ND (non-demented)
controls. Receiver operating characteristic (ROC) analysis was performed using the pROC
(1.18.0) package in R (4.2.1) software, and the results were visualized by ggplot2 [3.3.6].
The diagnostic efficacy was assessed by the area under the curve (AUC).

2.6. Cell Culture and qRT-PCR

The SH-SY5Y neuronal cell line was used as the validated cell model by quantitative
real-time PCR (qRT-PCR) analysis. SH-SY5Y cells were cultured in DMEM supplemented
with 10% heat-inactivated fetal calf serum, 100 IU/mL penicillin, and 100 µg/mL strepto-
mycin at 37 ◦C in humidified 5% CO2 air. Then, Aβ1–42 with a final concentration of 8 µM
were added to induce SH-SY5Y cells for 12 h. Trizol Reagent (Takara, Japan) was used to
extract total RNA, and then cDNA was reversed-transcribed with PrimeScript RT Master
Mix (Takara, Japan) according to the manufacturer’s instructions.

Real-time PCR was performed with the following procedure: denaturation at 95 ◦C for
30 s followed by 40 cycles of denaturation (95 ◦C, 5 s), annealing (55 ◦C, 30 s), and extension
(72 ◦C, 30 s). Relative expression changes were calculated using the 2−∆∆CT formula,
and GAPDH was used as the internal control for normalization. Statistical analysis was
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performed using the Welch t-test on GraphPad Prism 8.0.0. The significance levels were
given as follows: *** p < 0.001; ** p < 0.01; * p < 0.05.

2.7. External Dataset Validation

The differential expression of qRT-PCR-validated hub genes was further verified in
external dataset GSE132903. Statistical analyses were performed using the Mann–Whitney
U test, and the results was visualized as violin plots using ggplot2 (3.3.6), stats (4.2.1), and
the car (3.1-0) R package in R (4.2.1) software.

2.8. Exploration of microRNAs Targeting the Hub Genes

Potential miRNAs targeting the qRT-PCR-validated hub genes were obtained by
the miRDB database (https://mirdb.org/cgi-bin/search.cgi/, accessed on 11 February
2024). The target score was set above 85 to screen the miRNAs of higher relevance. The
Human microRNA Disease Database (HMDD) [33] was used to investigate and validate
the association between these screened miRNAs and AD.

3. Results
3.1. Identification of DEAGs

Through differential gene analysis performed in the GSE5281 dataset, 1191 DEGs were
distinguished, which are shown in a volcano plot (Figure 2a). When the relevance score
was above 4, 325 autophagy-related genes were screened out from the autophagy database.
Finally, 26 DEAGs were obtained when comparing 1191 DEGs and 325 ATGs, as exhibited
in the Venn diagram (Figure 2b). The expression levels of the 26 DEAGs presented an
obvious difference between the AD patients and the normal persons (Figure 2c, Table S1).
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3.2. GO and KEGG Enrichment Analysis of DEAGs

To clarify the potential biological functions of DEAGs, enrichment analyses were
performed. According to the results, DEAGs were mainly involved in the biological process
(BP) of “regulation of autophagy”, “positive regulation of autophagy”, “macroautophagy”,
“cellular response to starvation”, and “positive regulation of cellular catabolic process”
(Figure 3a). Cellular component (CC) enrichment revealed that DEAGs played a role in the
vacuolar membrane, lysosomal membrane, lytic vacuole membrane, and autophagosome
membrane (Figure 3b). Molecular function (MF) mainly comprises ubiquitin protein
ligase binding, ubiquitin-like protein ligase binding, protein phosphatase 2A binding, and
magnesium ion binding (Figure 3c). KEGG analysis indicated the involved pathways,
including autophagy (autophagy—animal), shigellosis, FoxO signaling pathway, NOD-like
receptor signaling pathway, and longevity-regulating pathway (Figure 3d). The overall
results of GO and KEGG enrichment analysis are shown in Table S2.
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3.3. PPI Network Construction and Hub DEAG Detection

The PPI network of the 26 DEAGs was established using STRING (Figure 4a). The top
eight highest-scored genes were selected as the hub genes in two cluster networks using the
MCODE analysis module of Cytoscape, such as BAG3, GABARAPL1, PKM, TOMM20, and
VDAC1 in MCODE-1, as well as ATG16L1, LAMP2, and TFEB in MCODE-2 (Figure 4b,c;
Table 1). The relationships among the eight hub genes are shown in Figure 5 and Tables S3
and S4. TOMM20 showed the highest positive correlation with GABARAPL1 (PCC = 0.94),
while BAG3 exhibited the highest negative correlation with TFEB (PCC = −0.25).
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Table 1. Eight hub genes selected from DEAGs.

Gene Symbol logFC p.adj Description

TFEB 1.80 1.75 × 10−14 Transcription factor EB
BAG3 1.39 2.25 × 10−11 BAG cochaperone 3
LAMP2 1.24 5.57 × 10−13 Lysosomal-associated membrane protein 2
VDAC1 −1.26 3.96 × 10−7 Voltage-dependent anion channel 1
PKM −1.06 3.05 × 10−5 Pyruvate kinase M1/2
ATG16L1 −1.02 1.60 × 10−4 Autophagy-related 16 like 1

TOMM20 −1.01 1.77 × 10−6 Translocase of outer mitochondrial
membrane 20

GABARAPL1 −1.01 1.57 × 10−9 GABA type A receptor-associated
protein-like 1

3.4. Diagnostic ROC Model for Hub Genes

The ROC curve was used to evaluate the potential diagnostic application of each hub
gene. The AUC values range from 0.5 to 1, and being closer to 1 suggests more accuracy.
Models with a value of 0.7 were considered reasonable and those with values > 0.8 were
considered strong. The results indicate that the AUC values of all hub genes were above
0.6. The values of TFEB, BAG3, and VDAC1 were above 0.7, and those of TOMM20 and
GABARAPL1 were above 0.8 (Figure 6). The ROC curves suggest a potential diagnostic
value for these five hub genes.
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3.5. Validation of Hub Genes by qRT-PCR and External Dataset

To further confirm the reliability of the prediction results, five hub genes with AUC > 0.7
were selected to be validated on the SH-SY5Y cell model. qRT-PCR was performed to moni-
tor their mRNA expression level (Table 2), and the results demonstrated that three genes of
the five showed a significant differential expression level between the AD cell model and the
control group (Figure 7a–c). TFEB exhibited an obviously higher mRNA expression level in
the AD cell model compared with the control group, while TOMM20 and GABARAPL1
showed a distinctly lower mRNA expression level. Next, GSE132903 was involved as the
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external verifying dataset to further validate the three genes above. The analysis indicated
that all of them displayed a significant expression difference between the AD patient and
control groups (Figure 7d–f). The changing trends of TFEB, TOMM20, and GABARAPL1 in
the qRT-PCR experiment and the external dataset were all consistent with the tendency in
the GSE5281 dataset (Table 1), suggesting the three genes possessed potential values to be
candidate biomarkers for AD mechanism research and clinical diagnosis.

Table 2. Primer sequences of mRNA for qRT-PCR.

Gene Symbol
Primer Sequence

Forward Reverse

TFEB 5′-ACCTGTCCGAGACCTATGGG-3′ 5′-CGTCCAGACGCATAATGTTGTC-3′

TOMM20 5′-GGTACTGCATCTACTTCGACCG-3′ 5′-TGGTCTACGCCCTTCTCATATTC-3′

GABARAPL1 5′-ATGAAGTTCCAGTACAAGGAGGA-3′ 5′-GCTTTTGGAGCCTTCTCTACAAT-3′

GAPDH 5′-CCAGCCCAGCAAGGATACTG-3′ 5′-GGTATTCGAGAGAAGGGAGGGC-3′
Genes 2024, 15, x FOR PEER REVIEW 9 of 15 
 

 

 
Figure 7. qRT-PCR validation (a–c) and external dataset validation in GSE132903 (d–f) of the three 
hub genes. Significance levels were given as follows: *** p < 0.001; ** p <0.01. 

3.6. Multigenic Prediction Model Construction and Validation 
A multigenic prediction model was constructed based on TFEB, TOMM20, and 

GABARAPL1 in the GSE5281 dataset. The results show that the AUC value of the ROC 
curves was 0.871, demonstrating the good predictive ability of the model (Figure 8a). Next, 
we further validated this model in the GSE132903 dataset and the AUC was 0.794, which 
confirmed the predictive accuracy of this diagnostic model (Figure 8b). 

 
Figure 8. Multigenic prediction model constructed by three qRT-PCR-validated genes in the 
GSE5281 dataset (a) and validated in the GSE132903 dataset (b). 

3.7. Identification of miRNAs Targeting Autophagy-Related Biomarkers 
We utilized the miRDB database to investigate the potential miRNAs targeting TFEB, 

TOMM20, and GABARAPL1. When the target score was set above 85, a total of 54 miRNAs 
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3.6. Multigenic Prediction Model Construction and Validation

A multigenic prediction model was constructed based on TFEB, TOMM20, and
GABARAPL1 in the GSE5281 dataset. The results show that the AUC value of the ROC
curves was 0.871, demonstrating the good predictive ability of the model (Figure 8a). Next,
we further validated this model in the GSE132903 dataset and the AUC was 0.794, which
confirmed the predictive accuracy of this diagnostic model (Figure 8b).
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3.7. Identification of miRNAs Targeting Autophagy-Related Biomarkers

We utilized the miRDB database to investigate the potential miRNAs targeting TFEB,
TOMM20, and GABARAPL1. When the target score was set above 85, a total of 54 miRNAs
were screened out. Then, the HMDD database was involved to further validate the associ-
ation between these detected miRNAs and AD. The results show that 13 miRNAs were
closely relevant to AD (Table 3), which suggests that they may hold promise as potential
therapeutic agents for this disease.

Table 3. Hub gene-targeted miRNAs and the associations between AD.

Gene Symbol miRNA Name Description

TFEB hsa-miR-29a-3p Slightly dysregulated in plasma; potential biomarkers of AD [34].

TFEB hsa-miR-124-3p
Colocalization with microglia in AD patient hippocampi; reshapes
microglia plasticity; relevant with inflammation in AD-associated
neurodegeneration [35].

TFEB hsa-miR-29b-3p Has diagnostic potential as minimally invasive AD biomarker [36].

TFEB hsa-miR-29c-3p Inhibits BACE1 expression; activates the Wnt/β-catenin pathway;
plays a therapeutic role in AD [37].

TOMM20 hsa-let-7a-2-3p Related to cognitive impairment [38].
TOMM20 hsa-miR-204-3p Controls the timing of the dopaminergic differentiation [39].
GABARAPL1 hsa-miR-195-5p Upregulated in the AD process [40].

GABARAPL1 hsa-miR-16-5p Consistently downregulated in late-stage AD by meta-analysis across
the literature [41].

GABARAPL1 hsa-miR-155-5p Regulate inflammatory responses in the pathogenesis of AD [42].

GABARAPL1 hsa-miR-497-5p
The MEM/LINC00094/miR-224-5p (miR-497-5p)/endophilin-1 axis
exerts a key role in regulating the BBB permeability in the AD
microenvironment [43].

GABARAPL1 hsa-miR-15b-5p Involved in platelet reactivity in AD [44].

GABARAPL1 hsa-miR-143-3p
Upregulated in the serum of AD patients; miR-143-3p inhibition
promotes neuronal survival; the miR-143-3p/NRG1 axis is a potential
therapeutic target and candidate biomarker for AD [45].

GABARAPL1 hsa-miR-133b A novel promising diagnostic biomarker for AD; may have a
neuroprotective role in AD and targets EGFR [46].

4. Discussion

Alzheimer’s disease is a progressive brain disease and the most common cause of
dementia. The accumulation of Aβ outside neurons as well as tau of unusual form inside
neurons are two main brain changes in AD [4]. The autophagy process plays a key role in
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cell and tissue homeostasis, as well as in aging and many diseases, including Alzheimer’s
and neurodegenerative diseases [47,48]. In mild autophagy, damaged organelles and
aggregates of proteins are removed from the cell, thus limiting the spread of toxins [19].
Therefore, exploring differentially expressed autophagy-related genes (DEAGs) in AD by
informatics methods would facilitate the understanding of the mechanism and finding
novel biomarkers for this disease.

In this study, we identified 1191 DEGs based on brain issues of 87 AD and 74 healthy
controls obtained from GSE5281 dataset. Then, these DEGs were intersected with
325 autophagy-related genes from GeneCards and 26 DEAGs were screened, including
13 upregulated genes and 13 downregulated ones. Subsequently, GO and KEGG enrich-
ment analysis was performed, and the results indicate that DEAGs were primarily involved
in the autophagy–lysosomal biological process, which confirmed a close relationship be-
tween autophagy and AD. Further, eight hub genes were detected by PPI construction,
and their diagnostic value was evaluated by ROC curve. Experimental validation was
performed by qRT-PCR to further confirm the differential expression of five genes with
AUC > 0.7. Finally, three genes (TFEB, TOMM20, GABARAPL1) were determined to be
potential candidate AD biomarkers.

PPI network construction of DEAGs detected eight hub genes that formed two cluster
networks. One included TFEB, LAMP2, and ATG16L1. TFEB (transcription factor EB) is a
key transcriptional regulator of autophagy and lysosomal biogenesis [49]. A dysfunctional
autophagy–lysosomal pathway contributes to AD progression in both patients and animal
models [15,50]. LAMP2 (lysosomal associated membrane protein 2) is an important com-
ponent of the lysosomal membrane [51]. Activation of its isoform LAMP2A ameliorates
proteotoxicity-driven neurodegeneration and improves neuronal function when it is ex-
pressed on lysosomes [52]. The ATG (autophagy related) protein plays an essential role
in proper recruitment of lysosomes and the prevention of aberrant degradation of cellular
contents. ATG16L1 is a key player at various stages of autophagy due to its interaction
with proteins and lipids [53].

The other cluster network contained five hub genes. BAG3 is a multifunctional protein
involved in a range of cellular processes, such as apoptosis, development, cytoskeleton
arrangement, and selective macroautophagy [54]. The selective macroautophagy pathway
facilitated by BAG3 plays a crucial role in maintaining cellular protein quality by breaking
down potentially harmful aggregating proteins [55,56]. GABARAP subfamily proteins
(GABARAPs) belong to mammalian autophagy-related protein Atg8. GABARAPL1 is a
primary mediator for selective autophagy, including glycophagy and mitophagy [57,58].
The dysfunction of mitochondria can be a sign of oxidative stress, inflammation, aging, and
chronic degenerative diseases [59]. VDAC1 (voltage-dependent anion-selective channel
protein 1) is an important regulator of mitochondrial function. It regulates the transport of
proteins and metabolites, and coordinates apoptosis as well as other cellular stress-related
processes [60]. TOMM is the translocase of the outer mitochondrial membrane, which
mediates the entry of most mitochondrial proteins into the mitochondrial interior [61].
TOMM20 is an important receptor subunit of the TOMM complex and serves by recognizing
mitochondrial precursor proteins with cleavable N-terminal presequences [62]. PKM
(pyruvate kinase M1/2) is the main catalytic enzyme in the rate-limiting step in glycolysis
for energy production [63], and PKM2 has been shown to be involved in the regulation of
cognitive dysfunction via related signaling pathways [64].

Many miRNAs have been reported to be closely associated with AD. In this study, we
also explored AD-related miRNAs targeting the three experimental validated biomarkers
(TFEB, TOMM20, and GABARAPL1) by the miRDB database and the HMDD database. Of
the miRNAs we retrieved, hsa-miR-29a-3p [34], hsa-miR-29b-3p [36], hsa-miR-143-3p [45],
and hsa-miR-133b [46] were reported to be promising biomarkers for AD, which were
validated either by cell model or clinical plasma samples. Some other miRNAs were found
to be key factors involved in many pathological processes of AD. For example, hsa-miR-195-
5p [40] and hsa-miR-155-5p [42] were implicated to play roles in regulating inflammatory
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responses in AD. hsa-miR-497-5p [43] was relevant to alleviating BBB permeability in AD
microenvironment. hsa-miR-29c-3p [35] participated in inhibiting BACE1 expression and
activating the Wnt/β-catenin pathway. Since these miRNAs were shown to target TFEB,
TOMM20, or GABARAPL1, their underlying regulatory mechanism could be multiple and
complicated. It is worth further exploring their potential to be therapeutic targets for
AD treatment.

As integrating multiple biomarkers can provide comprehensive information to im-
prove the diagnostic accuracy and specificity of AD [65], a multigenic prediction model
was further established based on the three key genes. The results demonstrated good pre-
dictability (AUC = 0.871) and were verified in the GSE132903 dataset (AUC = 0.794). In the
preclinical phase, although individuals have not yet developed symptoms such as memory
loss, they may have measurable brain changes, which indicate the earliest signs of AD
(biomarkers) [4]. Our study provides more potential biomarkers for early diagnosis of AD,
which are also supplements for previous studies of DEAGs. In future, more experimental
research could be performed to further explore their application, such as Western blot and
immunochemistry on animal model and clinical samples. Since blood samples have easy
accessibility and broad application prospects [66,67], the biomarkers detected in our study
could be further verified in the clinical plasma of AD patient in future investigations.

5. Conclusions

In this study, a bioinformatics approach was used to identify and evaluate poten-
tial biomarkers related to autophagy in AD. Enrichment analysis indicated 26 DEAGs
mainly focused on the autophagy–lysosomal biological process. PPI analysis detected eight
hub genes, and ROC curves indicated that five of them had better diagnostic accuracy
(AUC > 0.7). Molecular validation of qRT-PCR suggested that three hub genes (TFEB,
TOMM20, GABARAPL1) exhibited a significant differential expression in cell model and
could be potential candidate AD biomarkers. Finally, the potential miRNAs targeting these
three gene were investigated, and 13 miRNAs were found to be closely relevant to AD.
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