Analysis of the miR482 Gene Family in Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Preparation of miR482 Family Members for Bioinformatic Analysis
2.2. Molecular Characterization of miR482 Family Members
2.3. Sequence Alignment and Phylogenetic Tree Estimation
2.4. Expression Profiling of miR482
2.5. Target Gene Prediction and GO Enrichment Analysis
2.6. CeRNA Network Construction
3. Results
3.1. Statistical Analysis of Members of the miR482 Family in Plants
3.2. Molecular Characterization of the Mature and Precursor Sequences of the miR482 Family
3.3. Phylogenetic Analysis of the miR482 Family in Plants
3.4. Tissue-Specific Expression Analysis of miR482
3.5. Prediction and Function Annotation of the Targets
3.6. CeRNA Network of miR482
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 2004, 116, 281–297. [Google Scholar] [CrossRef] [PubMed]
- Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75, 843–854. [Google Scholar] [CrossRef] [PubMed]
- Llave, C.; Xie, Z.; Kasschau, K.D.; Carrington, J.C. Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 2002, 297, 2053–2056. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Xu, Y.Y.; Wang, L.J.; Zhai, L.L.; Zhu, X.W.; Gong, Y.Q.; Ye, S.; Liu, L.W. Identification and characterization of novel and conserved microRNAs in radish (Raphanus sativus L.) using high-throughput sequencing. Plant Sci. 2013, 201–202, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Q.Y.; Yang, C.Y.; Ma, Q.B.; Li, X.P.; Dong, W.W.; Nian, H. Identification of wild soybean miRNAs and their target genes responsive to aluminum stress. BMC Plant Biol. 2012, 12, 182. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.; Wu, Z.; Jiang, F.L.; Zhou, R.; Yang, Z.N. Identification of chilling stress-responsive tomato microRNAs and their target genes by high-throughput sequencing and degradome analysis. BMC Genom. 2014, 15, 1130. [Google Scholar] [CrossRef] [PubMed]
- Fabian, M.R.; Sonenberg, N.; Filipowicz, W. Regulation of mRNA translation and stability by microRNAs. Annu. Rev. Biochem. 2010, 79, 351–379. [Google Scholar] [CrossRef] [PubMed]
- Khan, Z.; Suthanthiran, M.; Muthukumar, T. MicroRNAs and transplantation. Clin. Lab. Med. 2019, 39, 125–143. [Google Scholar] [CrossRef] [PubMed]
- Fei, Q.; Xia, R.; Meyers, B.C. Phased, secondary, small interfering RNAs in posttranscriptional regulatory networks. Plant Cell 2013, 25, 2400–2415. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.Z.; Tao, Y.X.; Fu, X.K.; Guo, L.; Xing, H.T.; Li, C.F.; Yang, Z.W.; Su, H.L.; Wang, X.Q.; Hu, J.; et al. The microRNA476a-RFL module regulates adventitious root formation through a mitochondria-dependent pathway in Populus. New Phytol. 2021, 230, 2011–2028. [Google Scholar] [PubMed]
- Liu, Q.G.; Wang, Z.C.; Yu, S.; Li, W.L.; Zhang, M.Q.; Yang, J.; Li, D.D.; Yang, J.L.; Li, C.H. Pu-miR172d regulates stomatal density and water-use efficiency via targeting PuGTL1 in poplar. J. Exp. Bot. 2021, 72, 1370–1383. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.X.; He, J.Q.; Ping, Y.K.; Guo, J.X.; Hou, N.; Cao, F.G.; Li, X.W.; Geng, D.L.; Wang, S.C.; Chen, P.X.; et al. The positive feedback regulatory loop of miR160-Auxin Response Factor 17-HYPONASTIC LEAVES 1 mediates drought tolerance in apple trees. Plant Physiol. 2022, 188, 1686–1708. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Ma, J.J.; Zhang, Y.H.; Yang, S.X.; Feng, X.Z.; Yan, J. The miR166 mediated regulatory module controls plant height by regulating gibberellic acid biosynthesis and catabolism in soybean. J. Integr. Plant Biol. 2022, 64, 995–1006. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Song, Q.Q.; Zuo, Z.F.; Liu, L. MicroRNA398: A master regulator of plant development and stress responses. Int. J. Mol. Sci. 2022, 23, 10803. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Luan, Y.S. MiR482 mediates the biotic stress response of plant. J. Plant Physiol. 2014, 50, 741–748. [Google Scholar]
- An, Y.; Furber, K.L.; Ji, S.P. Pseudogenes regulate parental gene expression via ceRNA network. J. Cell. Mol. Med. 2017, 21, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Bosson, A.D.; Zamudio, J.R.; Sharp, P.A. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition. Mol. Cell 2014, 56, 347–359. [Google Scholar] [CrossRef] [PubMed]
- Yamamura, S.; Imai-Sumida, M.; Tanaka, Y.; Dahiya, R. Interaction and cross-talk between non-coding RNAs. Cell. Mol. Life Sci. 2018, 75, 467–484. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.F.; Sun, Y.H.; Shi, R.; Clark, C.; Li, L.G.; Chiang, V.L. Novel and mechanical stress-responsive MicroRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 2005, 17, 2186–2203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Waseem, M.; Zeng, Z.H.; Xu, J.; Chen, C.J.; Liu, Y.L.; Zhai, J.X.; Xia, R. MicroRNA482/2118, a miRNA superfamily essential for both disease resistance and plant development. New Phytol. 2022, 233, 2047–2057. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Fu, Y.; Sunkar, R.; Barbazuk, W.B.; Zhu, J.K.; Yu, O. Novel and nodulation-regulated microRNAs in soybean roots. BMC Genom. 2008, 9, 160. [Google Scholar] [CrossRef] [PubMed]
- Arenas-Huertero, C.; Pérez, B.; Rabanal, F.; Blanco-Melo, D.; De la Rosa, C.; Estrada-Navarrete, G.; Sanchez, F.; Covarrubias, A.A.; Reyes, J.L. Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Mol. Biol. 2009, 70, 385–401. [Google Scholar] [CrossRef] [PubMed]
- Mohorianu, I.; Schwach, F.; Jing, R.C.; Lopez-Gomollon, S.; Moxon, S.; Szittya, G.; Sorefan, K.; Moulton, V.; Dalmay, T. Profiling of short RNAs during fleshy fruit development reveals stage-specific sRNAome expression patterns. Plant J. 2011, 67, 232–246. [Google Scholar] [CrossRef] [PubMed]
- Jiang, N.; Meng, J.; Cui, J.; Sun, G.X.; Luan, Y.S. Function identification of miR482b, a negative regulator during tomato resistance to Phytophthora infestans. Hortic. Res. 2018, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Q.H.; Jin, S.X.; Yuan, Y.M.; Liu, Q.; Zhang, X.L.; Wilson, I. CRISPR/Cas9-mediated saturated mutagenesis of the cotton MIR482 family for dissecting the functionality of individual members in disease response. Plant Direct 2022, 6, e410. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.Q.; Zeng, Z.H.; Hu, H.M.; Zhao, M.L.; Chen, C.J.; Ma, X.S.; Li, G.L.; Li, J.G.; Liu, Y.L.; Hao, Y.W.; et al. MicroRNA482/2118 is lineage-specifically involved in gibberellin signalling via the regulation of GID1 expression by targeting noncoding PHAS genes and subsequently instigated phasiRNAs. Plant Biotechnol. J. 2024, 22, 819–832. [Google Scholar] [CrossRef] [PubMed]
- Qi, J.Y. Research on Molecular Mechanism of Sly-miR482a Negatively Regulating Plant Fruit Development and Resistance to Botrytis cinerea. Master’s Thesis, Zhejiang Sci-Tech University, Hangzhou, China, 2021. [Google Scholar]
- Chen, K. Functional Characterization of the miR482/2118 Family and Its Target Genes in Cotton Resistance to Verticillium wilt. Master’s Thesis, Huazhong Agricultural University, Wuhan, China, 2023. [Google Scholar]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. miRBase: From microRNA sequences to function. Nucleic Acids Res. 2019, 47, D155–D162. [Google Scholar] [CrossRef] [PubMed]
- Bailey, T.L.; Johnson, J.; Grant, C.E.; Noble, W.S. The MEME suite. Nucleic Acids Res. 2015, 43, W39–W49. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular evolutionary genetics analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Nei, M.; Dudley, J.; Tamura, K. MEGA: A biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief. Bioinform. 2008, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Dai, X.; Zhuang, Z.; Zhao, P.X. psRNATarget: A plant small RNA target analysis server (2017 release). Nucleic Acids Res. 2018, 46, W49–W54. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Cui, J.; Luan, Y.S. Overexpression of lncRNA08489 enhances tomato immunity against Phytophthora infestans by decoying miR482e-3p. Biochem. Biophys. Res. Commun. 2022, 587, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.W.; Cui, J.; Luan, Y.S. SlmiR482e-5p regulates tomato resistance to Phytophthora infestans infection along with slmiR482e-3p via sllncRNA39298-mediated inhibition. Physiol. Mol. Plant Pathol. 2022, 121, 101875. [Google Scholar] [CrossRef]
- Xu, P.; Li, H.; Wang, X.H.; Zhao, G.; Lu, X.F.; Dai, S.J.; Cui, X.Y.; Yuan, M.; Liu, Z.N. Integrated analysis of the lncRNA/circRNA-miRNA-mRNA expression profiles reveals novel insights into potential mechanisms in response to root-knot nematodes in peanut. BMC Genom. 2022, 23, 239. [Google Scholar] [CrossRef] [PubMed]
- Si, X.Y.; Liu, H.Y.; Cheng, X.; Xu, C.C.; Han, Z.H.; Dai, Z.R.; Wang, R.Q.; Pan, C.T.; Lu, G. Integrative transcriptomic analysis unveils lncRNA-miRNA-mRNA interplay in tomato plants responding to Ralstonia solanacearum. Int. J. Biol. Macromol. 2023, 253, 126891. [Google Scholar] [CrossRef] [PubMed]
- Li, B.Q.; Feng, C.; Zhang, W.H.; Sun, S.M.; Yue, D.D.; Zhang, X.L.; Yang, X.Y. Comprehensive non-coding RNA analysis reveals specific lncRNA/circRNA-miRNA-mRNA regulatory networks in the cotton response to drought stress. Int. J. Biol. Macromol. 2023, 253, 126558. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.; Lu, C.Z.; Wang, B.T.; Zhang, F.Y.; Shi, L.F.; Xu, Y.J.; Chen, A.M.; Si, H.J.; Su, J.J.; Wu, J.H. Cotton RSG2 mediates plant resistance against Verticillium dahliae by miR482b regulation. Biology 2023, 12, 898. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.Y.; Tang, J.Q.; Li, T.Z.; Zhang, Q.L. The microRNA miR482 regulates NBS-LRR genes in response to ALT1 infection in apple. Plant Sci. 2024, 343, 112078. [Google Scholar] [CrossRef] [PubMed]
- Nai, J.F.; Ma, T.M.; Liu, Y.J.; Zhou, Y.W. Identification of small RNAs associated with salt stress in Chrysanthemums through high-throughput sequencing and bioinformatics analysis. Genes 2023, 14, 561. [Google Scholar] [CrossRef] [PubMed]
- Cai, C.P.; Li, C.; Sun, R.R.; Zhang, B.H.; Nichols, R.L.; Hake, K.D.; Pan, X.P. Small RNA and degradome deep sequencing reveals important roles of microRNAs in cotton (Gossypium hirsutum L.) response to root-knot nematode Meloidogyne incognita infection. Genomics 2021, 113, 1146–1156. [Google Scholar] [CrossRef]
- Li, X.K.; Liu, H.F.; Liu, J.L.; Zheng, M.; Hua, W. Sequence identification and bioinformatics of bna-miR156 gene family and target genes in rapeseed (Brassica napus L.). Chin. J. Oil Crop Sci. 2018, 40, 162. [Google Scholar]
- Li, H.; Dai, X.R.; Huang, X.; Xu, M.X.; Wang, Q.; Yan, X.J.; Sederoff, R.R.; Li, Q.Z. Single-cell RNA sequencing reveals a high-resolution cell atlas of xylem in Populus. J. Integr. Plant Biol. 2021, 63, 1906–1921. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.F.; Chen, Y.L.; Peng, M.Y.; Yang, C.; Yang, Z.M.; Gong, M.J.; Yin, Y.Q.; Zeng, Y. Identification of microRNA and analysis of target genes in Panax ginseng. Chin. Herb. Med. 2022, 15, 69–75. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.K.; Yin, Z.J.; Wang, J.J.; Chen, X.G.; Wang, D.L.; Wang, S.; Guo, L.X.; Fan, W.L.; Chen, C.; Wang, X.G.; et al. Identification and function analysis of drought-specific small RNAs in Gossypium hirsutum L. Plant Sci. 2019, 280, 187–196. [Google Scholar] [CrossRef] [PubMed]
- Li, G.P.; Wang, Y.; Lou, X.M.; Li, H.L.; Zhang, C.Q. Identification of Blueberry miRNAs and their targets based on high-throughput sequencing and degradome analyses. Int. J. Mol. Sci. 2018, 19, 983. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.M.; Zhu, P.P.; Kang, H.; Liu, L.; Cao, Q.H.; Sun, J.; Dong, T.T.; Zhu, M.K.; Li, Z.Y.; Xu, T. High-throughput deep sequencing reveals the important role that microRNAs play in the salt response in sweet potato (Ipomoea batatas L.). BMC Genom. 2020, 21, 164. [Google Scholar] [CrossRef] [PubMed]
- Jeyaraj, A.; Liu, S.R.; Zhang, X.; Zhang, R.; Shangguan, M.Z.; Wei, C.L. Genome-wide identification of microRNAs responsive to Ectropis oblique feeding in tea plant (Camellia sinensis L.). Sci. Rep. 2017, 7, 13634. [Google Scholar] [CrossRef] [PubMed]
- Brodersen, P.; Voinnet, O. The diversity of RNA silencing pathways in plants. Trends Genet. 2006, 22, 268–280. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Zhou, H.Y.; Zhang, Q.Q.; Zhang, J.G.; Ni, F.R.; Liu, C.; Qi, Y.J. DNA methylation mediated by a microRNA pathway. Mol. Cell. 2010, 38, 465–475. [Google Scholar] [PubMed]
- Jiang, N.; Cui, J.; Hou, X.X.; Yang, G.L.; Xiao, Y.; Han, L.; Meng, J.; Luan, Y.S. Sl-lncRNA15492 interacts with Sl-miR482a and affects Solanum lycopersicum immunity against Phytophthora infestans. Plant J. 2020, 103, 1561–1574. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.Q.; Xie, Q.; Yan, J.H.; Chen, J.Q.; Chen, Q.X. Genome-wide identification and characterization of the abiotic-stress-responsive GRF gene family in diploid woodland strawberry (Fragaria vesca). Plants 2021, 10, 1916. [Google Scholar] [CrossRef] [PubMed]
- Pirone, C.; Gurrieri, L.; Gaiba, I.; Adamiano, A.; Valle, F.; Trost, P.; Sparla, F. The analysis of the different functions of starch-phosphorylating enzymes during the development of Arabidopsis thaliana plants discloses an unexpected role for the cytosolic isoform GWD2. Physiol. Plant 2017, 160, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Yano, R.; Nakamura, M.; Yoneyama, T.; Nishida, I. Starch-related α-glucan/water dikinase is involved in the cold-induced development of freezing tolerance in Arabidopsis. Plant Physiol. 2005, 138, 837–846. [Google Scholar] [CrossRef] [PubMed]
Families | Species | Name | Number of 5′ End | Number of 3′ End | Evidence |
---|---|---|---|---|---|
Liliaceae | Asparagus officinalis | aof-miR482 | 0 | 3 | 3 (experimental) |
Myrtaceae | Aquilegia caerulea | aqc-miR482 | 0 | 3 | 0 |
Rutaceae | C. sinensis | csi-miR482 | 7 | 7 | 14 (experimental) |
Myrtaceae | Eugenia uniflora | eun-miR482 | 3 | 3 | 6 (experimental) |
Rosaceae | F. vesca | fve-miR482 | 0 | 4 | 4 (experimental) |
Malvaceae | Gossypium hirsutum | ghr-miR482 | 0 | 2 | 2 (experimental) |
Fabaceae | G. max | gma-miR482 | 4 | 5 | 9 (experimental) |
Malvaceae | Gossypium raimondii | gra-miR482 | 0 | 3 | 3 (experimental) |
Fabaceae | Glycine soja | gso-miR482 | 0 | 2 | 2 (experimental) |
Euphorbiaceae | Hevea brasiliensis | hbr-miR482 | 2 | 0 | 2 (experimental) |
Rosaceae | Malus domestica | mdm-miR482 | 1 | 4 | 4 (experimental) |
Euphorbiaceae | M. esculenta | mes-miR482 | 0 | 5 | 4 (experimental) |
Fabaceae | M. truncatula | mtr-miR482 | 1 | 1 | 2 (experimental) |
Solanaceae | N. tabacum | nta-miR482 | 1 | 4 | 3 (experimental) |
Pinaceae | P. abies | pab-miR482 | 1 | 24 | 25 (experimental) |
Pinaceae | Pinus densata | pde-miR482 | 0 | 4 | 4 (experimental) |
Araliaceae | Panax ginseng | pgi-miR482 | 1 | 1 | 2 (experimental) |
Rosaceae | P. persica | ppe-miR482 | 4 | 6 | 10 (experimental) |
Pinaceae | Pinus taeda | pta-miR482 | 0 | 4 | 4 (by similarity) |
Salicaceae | P. trichocarpa | ptc-miR482 | 3 | 5 | 8 (experimental) |
Fabaceae | P. vulgaris | pvu-miR482 | 1 | 1 | 2 (experimental) |
Solanaceae | S. lycopersicum | sly-miR482 | 2 | 5 | 5 (experimental) |
Solanaceae | Solanum tuberosum | stu-miR482 | 4 | 5 | 8 (experimental) |
Fabaceae | V. unguiculata | vun-miR482 | 0 | 1 | 0 |
Vitaceae | V. vinifera | vvi-miR482 | 0 | 1 | 1 (experimental) |
Poaceae | Z. mays | zma-miR482 | 1 | 1 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuang, W.; Qin, D.; Huang, Y.; Liu, Y.; Cao, X.; Xu, M. Analysis of the miR482 Gene Family in Plants. Genes 2024, 15, 1043. https://doi.org/10.3390/genes15081043
Kuang W, Qin D, Huang Y, Liu Y, Cao X, Xu M. Analysis of the miR482 Gene Family in Plants. Genes. 2024; 15(8):1043. https://doi.org/10.3390/genes15081043
Chicago/Turabian StyleKuang, Wei, Danfeng Qin, Ying Huang, Yihua Liu, Xue Cao, and Meng Xu. 2024. "Analysis of the miR482 Gene Family in Plants" Genes 15, no. 8: 1043. https://doi.org/10.3390/genes15081043
APA StyleKuang, W., Qin, D., Huang, Y., Liu, Y., Cao, X., & Xu, M. (2024). Analysis of the miR482 Gene Family in Plants. Genes, 15(8), 1043. https://doi.org/10.3390/genes15081043