Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Eligibility Criteria
2.3. Information Sources
2.4. Search
2.5. Study Selection
2.6. Data Collection Process
2.7. Bioinformatical Analysis
3. Results
3.1. Study Selection
3.2. Study Characteristics
Study | Country | Biological Model | Sample (n) | THz Exposure Parameters | RNA Extraction Time Post-Exposure | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
f (THz) | Pulse Rate | Pulse Duration | I Average (mW/cm2) | I Peak (mW/cm2) | T (°C) | Δ (°C) Increase | Exposure Duration | |||||
In vitro studies | ||||||||||||
Bock et al. [10] | USA | Mouse stem cells | Duplicates | ~10 | 1 kHz | 35 fs | 1 | ~30 | 21.61 | NC (0.28) | 9 h | NA |
Alexandrov et al. [16] | USA | Mouse stem cells | Triplicates | 2.52 | 1 kHz | 35 fs | ~0 | 2 | 26–27 | NC | 12 h | Immediat. |
Tivota et al. [32] | Canada | Artificial human skin tissue | Quadruplicates | 0.2–2.5 | 1 kHz | NA | 57 | 33 | 21 | <0.7 | 10 min | 30 min |
Bogomazova et al. [35] | Russia | Human embryonic stem cells | Duplicates | 2.3 | CW | NA | 110 | NA | 24 | ~1 | 1 h | 2 h |
Echchgadda et al. [36] | USA | Human jurkat T lymphocytes cell line | Triplicates | 2.52 | CW | NA | 532 | NA | 37 | ~6 | 40 min | 4 h |
Hough et al. [37,38] | Canada | 3D human skin tissue | Quadruplicates | 0.6 | >1 kHz | 50 fs | 74 | 73.8 | 37 | <1 | 10 min | 30 min |
Zhao et al. [39] | China | RPE cells, HCE cells, Müller cells | Quadruplicates | 0.7 | 1 kHz | 0.5 ps | ~1 | 2 | ~37 | <0.2 | 6 h | 15 h |
Shang et al. [31] | China | Rat primary hippocampal neurons | Triplicates | 0.1 | NA | NA | 33 | NA | 37 | NC | 20 min | 2 h |
Peltek et al. [33] | Russia | E. coli | Duplicates | 1.25–3.75 | 5.6–22.4 | 40–100 ps | 0.14 | 0.8 | 37 | 2 | 15 min | 10 min |
Zhao et al. [40] | China | Mouse cortical neurons and oligodendrocytes precursor cells | Quadruplicates | 3.1 | 1 kHz | NA | 70 μW/cm2 | NA | 35 | NC | 15 mn (x3)/day–3 h/day | NA |
Cheon et al. [34] | South Korea | Melanoma cells | Triplicates | 1.6 | 1 kHz | 35 fs | 750 | NA | 38 | NA | 30 min | 0–48 h |
Animal model studies | ||||||||||||
Kim et al. [8] | South Korea | C57BL/6J and BALB/c | Triplicates | 2.50 | 1 kHz | 310 | 0.32 μW/cm2 | NA | 22 | NC | 1 h | 24 h |
Xu et al. [22] | China | Female C57BL/6 | 5–5 | 0.14 | NA | NA | 90 | NA | RT | NC | 10 min | 28 days |
4. Discussion
4.1. Risk of Bias Assessment
4.2. Summary of Evidence
4.3. Exposure Parameters
4.4. Gene Expression Technology
4.5. Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagatsuma, T. Terahertz technologies: Present and future. IEICE Electron. Express 2011, 8, 1127–1142. [Google Scholar] [CrossRef]
- Sun, L.; Zhao, L.; Peng, R.-Y. Research progress in the effects of terahertz waves on biomacromolecules. Mil. Med. Res. 2021, 8, 28. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Liu, J.; Liang, W.; Lu, B.; Fan, P.; Song, Y.; Wang, M.; Wu, Y.; Cai, X. Recent advances and research progress on microsystems and bioeffects of terahertz neuromodulation. Microsyst. Nanoeng. 2023, 9, 143. [Google Scholar] [CrossRef] [PubMed]
- Romanenko, S.; Begley, R.; Harvey, A.R.; Hool, L.; Wallace, V.P. The interaction between electromagnetic fields at megahertz, gigahertz and terahertz frequencies with cells, tissues and organisms: Risks and potential. J. R. Soc. Interface 2017, 14, 20170585. [Google Scholar] [CrossRef] [PubMed]
- Hintzsche, H.; Jastrow, C.; Kleine-Ostmann, T.; Kärst, U.; Schrader, T.; Stopper, H. Terahertz electromagnetic fields (0.106 THz) do not induce manifest genomic damage in vitro. PLoS ONE 2012, 7, e46397. [Google Scholar] [CrossRef] [PubMed]
- Cherkasova, O.P.; Serdyukov, D.S.; Nemova, E.F.; Ratushnyak, A.S.; Kucheryavenko, A.S.; Dolganova, I.N.; Xu, G.; Skorobogatiy, M.; Reshetov, I.V.; Timashev, P.S.; et al. Cellular effects of terahertz waves. J. Biomed. Opt. 2021, 26, 090902. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, S.S.; Vitiello, M.S.; Linfield, E.H.; Davies, A.G.; Hoffmann, M.C.; Booske, J.; Paoloni, C.; Gensch, M.; Weightman, P.; Williams, G.P.; et al. The 2017 terahertz science and technology roadmap. J. Phys. Appl. Phys. 2017, 50, 043001. [Google Scholar] [CrossRef]
- Kim, K.-T.; Park, J.; Jo, S.J.; Jung, S.; Kwon, O.S.; Gallerano, G.P.; Park, W.-Y.; Park, G.-S. High-power femtosecond-terahertz pulse induces a wound response in mouse skin. Sci. Rep. 2013, 3, 2296. [Google Scholar] [CrossRef]
- Ayyalasomayajula, S.; Willows, S.; Hough, C.; Hegmann, F.; Kulka, M. Terahertz radiation may not alter rat basophilic leukemia cell membrane permeability to propidium iodide. Spectrum 2021, 1–11. [Google Scholar] [CrossRef]
- Bock, J.; Fukuyo, Y.; Kang, S.; Phipps, M.L.; Alexandrov, L.B.; Rasmussen, K.Ø.; Bishop, A.R.; Rosen, E.D.; Martinez, J.S.; Chen, H.-T.; et al. Mammalian Stem Cells Reprogramming in Response to Terahertz Radiation. PLoS ONE 2010, 5, e15806. [Google Scholar] [CrossRef]
- Zeni, O.; Gallerano, G.P.; Perrotta, A.; Romanò, M.; Sannino, A.; Sarti, M.; D’Arienzo, M.; Doria, A.; Giovenale, E.; Lai, A.; et al. Cytogenetic Observations in Human Peripheral Blood Leukocytes following In Vitro Exposure to Thz Radiation: A Pilot Study. Health Phys. 2007, 92, 349. [Google Scholar] [CrossRef] [PubMed]
- Korenstein-Ilan, A.; Barbul, A.; Hasin, P.; Eliran, A.; Gover, A.; Korenstein, R. Terahertz Radiation Increases Genomic Instability in Human Lymphocytes. Radiat. Res. 2008, 170, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Sasaki, K.; Watanabe, S.; Shirai, H. Relationship between power density and surface temperature elevation for human skin exposure to electromagnetic waves with oblique incidence angle from 6 GHz to 1 THz. Phys. Med. Biol. 2019, 64, 065016. [Google Scholar] [CrossRef] [PubMed]
- Wilmink, G.J.; Grundt, J.E. Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation. J. Infrared Millim. Terahertz Waves 2011, 32, 1074–1122. [Google Scholar] [CrossRef]
- Dalzell, D.R.; McQuade, J.; Vincelette, R.; Ibey, B.; Payne, J.; Thomas, R.; Roach, W.P.; Roth, C.L.; Wilmink, G.J. Damage thresholds for terahertz radiation. In Proceedings of the Optical Interactions with Tissues and Cells XXI, San Francisco, CA, USA, 25–27 January 2010; Jansen, E.D., Thomas, R.J., Eds.; SPIE: Bellingham, WA, USA, 2010; p. 75620M. [Google Scholar] [CrossRef]
- Alexandrov, B.S.; Phipps, M.L.; Alexandrov, L.B.; Booshehri, L.G.; Erat, A.; Zabolotny, J.; Mielke, C.H.; Chen, H.-T.; Rodriguez, G.; Rasmussen, K.Ø.; et al. Specificity and heterogeneity of terahertz radiation effect on gene expression in mouse mesenchymal stem cells. Sci. Rep. 2013, 3, 1184. [Google Scholar] [CrossRef] [PubMed]
- Havas, M. When theory and observation collide: Can non-ionizing radiation cause cancer? Environ. Pollut. 2017, 221, 501–505. [Google Scholar] [CrossRef] [PubMed]
- Amicis, A.D.; Sanctis, S.D.; Cristofaro, S.D.; Franchini, V.; Lista, F.; Regalbuto, E.; Giovenale, E.; Gallerano, G.P.; Nenzi, P.; Bei, R.; et al. Biological effects of in vitro THz radiation exposure in human foetal fibroblasts. Mutat. Res. Toxicol. Environ. Mutagen. 2015, 793, 150–160. [Google Scholar] [CrossRef] [PubMed]
- Sitnikov, D.S.; Ilina, I.V.; Revkova, V.A.; Rodionov, S.A.; Gurova, S.A.; Shatalova, R.O.; Kovalev, A.V.; Ovchinnikov, A.V.; Chefonov, O.V.; Konoplyannikov, M.A.; et al. Effects of high intensity non-ionizing terahertz radiation on human skin fibroblasts. Biomed. Opt. Express 2021, 12, 7122–7138. [Google Scholar] [CrossRef] [PubMed]
- Amini, T.; Jahangiri, F.; Ameri, Z.; Hemmatian, M.A. A Review of Feasible Applications of THz Waves in Medical Diagnostics and Treatments. J. Lasers Med. Sci. 2021, 12, e92. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Fogen, D.; Rodriguez-Juarez, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue. Biomed. Opt. Express 2013, 4, 559. [Google Scholar] [CrossRef]
- Xu, D.; Liu, R.; Li, B.; Zhang, H.; Yang, Y. Effect and mechanism of terahertz irradiation in repairing spinal cord injury in mice. Gene 2023, 860, 147218. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Edgar, R. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 2002, 30, 207–210. [Google Scholar] [CrossRef] [PubMed]
- Davis, S.; Meltzer, P.S. GEOquery: A bridge between the Gene Expression Omnibus (GEO) and BioConductor. Bioinformatics 2007, 23, 1846–1847. [Google Scholar] [CrossRef]
- Gentleman, R.C.; Carey, V.J.; Bates, D.M.; Bolstad, B.; Dettling, M.; Dudoit, S.; Ellis, B.; Gautier, L.; Ge, Y.; Gentry, J.; et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 2004, 5, R80. [Google Scholar] [CrossRef]
- McCall, M.N.; Jaffee, H.A.; Irizarry, R.A. fRMA ST: Frozen robust multiarray analysis for Affymetrix Exon and Gene ST arrays. Bioinformatics 2012, 28, 3153–3154. [Google Scholar] [CrossRef]
- Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015, 43, e47. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R Package for Comparing Biological Themes Among Gene Clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdóttir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef]
- Shang, S.; Wu, X.; Zhang, Q.; Zhao, J.; Hu, E.; Wang, L.; Lu, X. 0.1 THz exposure affects primary hippocampus neuron gene expression via alternating transcription factor binding. Biomed. Opt. Express 2021, 12, 3729. [Google Scholar] [CrossRef]
- Titova, L.V.; Ayesheshim, A.K.; Golubov, A.; Rodriguez-Juarez, R.; Woycicki, R.; Hegmann, F.A.; Kovalchuk, O. Intense THz pulses down-regulate genes associated with skin cancer and psoriasis: A new therapeutic avenue? Sci. Rep. 2013, 3, 2363. [Google Scholar] [CrossRef] [PubMed]
- Peltek, S.; Meshcheryakova, I.; Kiseleva, E.; Oshchepkov, D.; Rozanov, A.; Serdyukov, D.; Demidov, E.; Vasiliev, G.; Vinokurov, N.; Bryanskaya, A.; et al. E. coli aggregation and impaired cell division after terahertz irradiation. Sci. Rep. 2021, 11, 20464. [Google Scholar] [CrossRef] [PubMed]
- Cheon, H.; Hur, J.K.; Hwang, W.; Yang, H.-J.; Son, J.-H. Epigenetic modification of gene expression in cancer cells by terahertz demethylation. Sci. Rep. 2023, 13, 4930. [Google Scholar] [CrossRef]
- Bogomazova, A.N.; Vassina, E.M.; Goryachkovskaya, T.N.; Popik, V.M.; Sokolov, A.S.; Kolchanov, N.A.; Lagarkova, M.A.; Kiselev, S.L.; Peltek, S.E. No DNA damage response and negligible genome-wide transcriptional changes in human embryonic stem cells exposed to terahertz radiation. Sci. Rep. 2015, 5, 7749. [Google Scholar] [CrossRef] [PubMed]
- Echchgadda, I.; Grundt, J.E.; Cerna, C.Z.; Roth, C.C.; Payne, J.A.; Ibey, B.L.; Wilmink, G.J. Terahertz Radiation: A Non-contact Tool for the Selective Stimulation of Biological Responses in Human Cells. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 54–68. [Google Scholar] [CrossRef]
- Hough, C.M.; Purschke, D.N.; Huang, C.; Titova, L.V.; Kovalchuk, O.; Warkentin, B.J.; Hegmann, F.A. Topology-Based Prediction of Pathway Dysregulation Induced by Intense Terahertz Pulses in Human Skin Tissue Models. J. Infrared Millim. Terahertz Waves 2018, 39, 887–898. [Google Scholar] [CrossRef]
- Hough, C.M.; Purschke, D.N.; Huang, C.; Titova, L.V.; Kovalchuk, O.V.; Warkentin, B.J.; Hegmann, F.A. Intense terahertz pulses inhibit Ras signaling and other cancer-associated signaling pathways in human skin tissue models. J. Phys. Photonics 2021, 3, 034004. [Google Scholar] [CrossRef]
- Zhao, J.-W.; He, M.-X.; Dong, L.-J.; Li, S.-X.; Liu, L.-Y.; Bu, S.-C.; Ouyang, C.-M.; Wang, P.-F.; Sun, L.-L. Effect of terahertz pulse on gene expression in human eye cells. Chin. Phys. B 2019, 28, 048703. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, M.; Liu, Y.; Liu, H.; Ren, K.; Xue, Q.; Zhang, H.; Zhi, N.; Wang, W.; Wu, S. Terahertz exposure enhances neuronal synaptic transmission and oligodendrocyte differentiation in vitro. iScience 2021, 24, 103485. [Google Scholar] [CrossRef]
- Bucur-Portase, R.-C. Introduction to the Biological Effects of Terahertz Radiation. In Trends in Terahertz Technology; Meziani, Y.M., Velázquez-Pérez, J.E., Eds.; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Zakrzewski, W.; Dobrzyński, M.; Szymonowicz, M.; Rybak, Z. Stem cells: Past, present, and future. Stem Cell Res. Ther. 2019, 10, 68. [Google Scholar] [CrossRef]
- Alexandrov, B.S.; Rasmussen, K.Ø.; Bishop, A.R.; Usheva, A.; Alexandrov, L.B.; Chong, S.; Dagon, Y.; Booshehri, L.G.; Mielke, C.H.; Phipps, M.L.; et al. Non-thermal effects of terahertz radiation on gene expression in mouse stem cells. Biomed. Opt. Express 2011, 2, 2679. [Google Scholar] [CrossRef] [PubMed]
- Nikitkina, A.I.; Bikmulina, P.Y.; Gafarova, E.R.; Kosheleva, N.V.; Efremov, Y.M.; Bezrukov, E.A.; Butnaru, D.V.; Dolganova, I.N.; Chernomyrdin, N.V.; Cherkasova, O.P.; et al. Terahertz radiation and the skin: A review. J. Biomed. Opt. 2021, 26, 043005. [Google Scholar] [CrossRef] [PubMed]
- Vilagosh, Z.; Lajevardipour, A.; Wood, A.W. Computational phantom study of frozen melanoma imaging at 0.45 terahertz. Bioelectromagnetics 2019, 40, 118–127. [Google Scholar] [CrossRef] [PubMed]
- Corchete, L.A.; Rojas, E.A.; Alonso-López, D.; De Las Rivas, J.; Gutiérrez, N.C.; Burguillo, F.J. Systematic comparison and assessment of RNA-seq procedures for gene expression quantitative analysis. Sci. Rep. 2020, 10, 19737. [Google Scholar] [CrossRef]
- Mathur, R.; Rotroff, D.; Ma, J.; Shojaie, A.; Motsinger-Reif, A. Gene set analysis methods: A systematic comparison. BioData Min. 2018, 11, 8. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Fung-Leung, W.-P.; Bittner, A.; Ngo, K.; Liu, X. Comparison of RNA-Seq and microarray in transcriptome profiling of activated T cells. PLoS ONE 2014, 9, e78644. [Google Scholar] [CrossRef]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef]
- McCarthy, D.J.; Smyth, G.K. Testing significance relative to a fold-change threshold is a TREAT. Bioinformatics 2009, 25, 765–771. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef]
- Kanehisa, M.; Goto, S.; Sato, Y.; Kawashima, M.; Furumichi, M.; Tanabe, M. Data, information, knowledge and principle: Back to metabolism in KEGG. Nucleic Acids Res. 2014, 42, D199–D205. [Google Scholar] [CrossRef]
- Knowledge and Databases, Bioinforma. Softw. QIAGEN Digit. Insights (n.d.). Available online: https://digitalinsights.qiagen.com/knowledge-and-databases/ (accessed on 14 June 2024).
- Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; et al. The reactome pathway knowledgebase. Nucleic Acids Res. 2019, 48, D498–D503. [Google Scholar] [CrossRef] [PubMed]
- Leszczynski, D.; De Pomerai, D.; Koczan, D.; Stoll, D.; Franke, H.; Albar, J.P. Five years later: The current status of the use of proteomics and transcriptomics in EMF research. Proteomics 2012, 12, 2493–2509. [Google Scholar] [CrossRef] [PubMed]
Study | Gene Expression Profile Method | Log 2 Fold Change | Numbers of DEGs | Pathways | Biological Outcomes |
---|---|---|---|---|---|
Bock et al. [10] | Microarray | NA | 2204 | NA | Gene related to the following: Adiponectin ↑; GLUT 4 ↑; FABP4 ↑; PPARG ↑; PPARA ↓; LXR ↓; Cyclin B ↓; TBP ↓ |
Alexandrov et al. [16] | Microarray | 0 | 20 | GO | Gene related to the following: Adiponectin ↑; FABP4 ↑; PPARG ↑; Nfe2l2 ↓; Gem-; Slco4a1 ↓ Gem ↓; Slco4a1 ↓; Arg2 ↓; Ifitm6 ↓; Hspa1a ↓; Hspa1b ↓; Hipk1 ↓; Slc6a12 ↓; 4921509J17Rik ↓; Hspa4l ↓; Rhpn2 ↓; Akr1b3 ↓; Flrt3 ↓; Tet2+; Ctgf ↑; Skil ↓; Fgd3 ↓; Nfe2l2 ↑; Dclre1b ↓; Fn1↓ |
Kim et al. [8] | Microarray | 1.5 | 149 | IPA | Gene related to the following: inflammation (TGF- β ↑); wound healing response (Bmp2 ↑, Cd44 ↑, Thbs1 ↑, Serpine1 ↑, Krt6a ↑, Lep ↑, Sprrb1 ↑) |
Tivota et al. [32] | Microarray | 0.6 | 442 | Gene related to the following: psoriasis (S100 family: S100A11 ↓, S100A15 ↓, S100A12 ↓; Small Proline Rich Region: SPRR1B ↓, SPRR2A ↓, SPRR3 ↓, SPRR2B ↓, SPRR2C ↓, LCE3D ↓, involucrin (IVL) ↓; Serine protease inhibitor: SerpinB3 ↓, SerpinB4 ↓, SerpinB7 ↓, SerpinB13 ↓); atopic dermatitis ↓; epidermal hyperplasia ↓; dermatitis ↓; cancer (DEFB103A ↓, DEFB4 ↓, DEFB1 ↓, LOC728454 ↓, CD24 ↓); apoptotic signaling pathways (S100A ↓, S100P ↓) | |
Echchgadda et al. [36] | Microarray | 2 | 531 | IPA | Gene related to the following: cytoplasm (ARSB ↓, CYP19A1 ↓, CYP2D6+, CYP2E1 ↓, CYP4X1 ↑, GOT1L1 ↑, MAOB ↑, PCYT1B ↑, PLD1 ↑, TAT ↑, ATP2A1 ↑, BHMT ↑, CAD ↓, CTPS2 ↑, SARDH ↑, ACTA1 ↑, ACTA2 ↑, MYH4 ↓, RHOB ↑, RHOJ ↑, WASL ↑, STON2 ↑, MAP2K5 ↑, PDE1A ↑, PIK3C2A ↑, PLCB4 ↓, PLD1 ↑, RAB11B ↑, RAB7A ↑, RGS7 ↓, SOS2 ↓); plasma membrane (CD44 ↓, ATP2B3 ↑, CDH19 ↑, DSP ↑, ITGB1 ↑, ITGB3 ↓, ADRA1D ↑, DRD1 ↓, FGFR3 ↑, GABBR2 ↑, GNA11 ↑, NPR3 ↑, NTRK2 ↑, PTGER3 ↑,); cell shape, adhesion and cytoskeleton organization; immune response (HLA-DPA1 ↓, HLA-DQA1 ↑, IGHG1 ↑, IL4 ↑); transcription (ATF2 ↑, APBB1 ↑, JUN ↑, TNL2 ↑, RGS12 ↑); extracellular space (CANT1 ↓, FGF10 ↓, FGF7 ↓, PLAU ↑, ALB ↓, APOE ↑) |
Echchgadda et al. [36] | Microarray | 2 | 531 | IPA | Gene related to the following: cytoplasm (ARSB ↓, CYP19A1 ↓, CYP2D6+, CYP2E1 ↓, CYP4X1 ↑, GOT1L1 ↑, MAOB ↑, PCYT1B ↑, PLD1 ↑, TAT ↑, ATP2A1 ↑, BHMT ↑, CAD ↓, CTPS2 ↑, SARDH ↑, ACTA1 ↑, ACTA2 ↑, MYH4 ↓, RHOB ↑, RHOJ ↑, WASL ↑, STON2 ↑, MAP2K5 ↑, PDE1A ↑, PIK3C2A ↑, PLCB4 ↓, PLD1 ↑, RAB11B ↑, RAB7A ↑, RGS7 ↓, SOS2 ↓); plasma membrane (CD44 ↓, ATP2B3 ↑, CDH19 ↑, DSP ↑, ITGB1 ↑, ITGB3 ↓, ADRA1D ↑, DRD1 ↓, FGFR3 ↑, GABBR2 ↑, GNA11 ↑, NPR3 ↑, NTRK2 ↑, PTGER3 ↑,); cell shape, adhesion and cytoskeleton organization; immune response (HLA-DPA1 ↓, HLA-DQA1 ↑, IGHG1 ↑, IL4 ↑); transcription (ATF2 ↑, APBB1 ↑, JUN ↑, TNL2 ↑, RGS12 ↑); extracellular space (CANT1 ↓, FGF10 ↓, FGF7 ↓, PLAU ↑, ALB ↓, APOE ↑) |
Bogomazova et al. [35] | Microarray | 1.5 | 73 | GO | Gene related to the following: mitochondrial ribosome (MRPL34 ↑, MRPL43 ↑, MRPL55 ↑, MRPS24 ↑) |
Hough et al. [37,38] | Microarray | 1.5 | 1681 | GO and KEGG | Gene related to the following: Ras–Raf–Mek–Erk Cascade (KRAS ↓, RAS ↓, MAPK3 ↓); apoptosis (AKT ↑); pro-inflammatory AND cytokine–cytokine receptor interaction (CXCL16 ↓, BMP7 ↓, CCL8 ↑, CXCL5 ↑, CCL20 ↑, Il-6 ↑, IL-24 ↑); glioma pathway (CXCL16 ↓, BMP7 ↓, CCL8 ↑, CXCL5 ↑, CCL20 ↑, Il-6 ↑, IL-24 ↑, HGF ↑, RAP1B ↑, FGF2 ↑, FGF7 ↑, RAC2 ↓, RRAS ↓, EFNA1 ↓, PGF ↓, calmodulin family: CALML5 ↓, CALML3 ↓, CALML1 ↓, CAMK families ↓), calmodulin (CaM ↓), calmodulin-like (CaLM ↓), and calmodulin-dependent kinase (CaMK) families, GNAI3 ↓, EDNRB ↑, PPP3CC ↑. |
Zhao et al. [39] | RNA-Seq | 1.5 | HCE+ Müller+ RPE = 766 | GO | Gene related to the following: cell growth, differentiation and migration (RET ↑, ALK ↑, ROS1 ↑); fibroblast growth factor (FGFR2 ↑); stable spindle microtubule (CENPE ↓); MUC16 ↓; COL1A2 ↑ |
Peltek et al. [33] | RNA-Seq | 2 (up) 1 (down) | 741 | KEGG | Gene related to the following: cell aggregation (tdcABCDEFGR, and matA-F genes); suppression of cell motility (gene yjjQ); suppression of cell division (dicABCF, FtsZ, and minCDE); adhesin synthesis (sfmACDHF); cell envelope stabilization (yjbEFGH, gfcA)|pilus ↑; molecular functions of fimbrial porins ↑; organization and assembli of pili ↑; cell adhesion ↑; cytoplasmic genes ↓; genes of the respiratory chain ↓; ribosomes ↓; processes of aerobic respiration ↓; translation ↓ |
Shang et al. [31] | RNA-Seq | 1 | 165 | GO and KEGG | Gene related to the following: ribosome (small subunit: Rps18, Rps28; large subunit: Rp136, Rp136A, Rp135; mitoribosomal: Mrps18c, Mrps15, Mrps11; Mrp114; Mrp118, Mrp158, Mrp121) ↑; calcium signaling pathway; axon guidance; insulin signaling pathway; GTPase MF: Rab GTPase binding; guanyl-nucleotide exchange factor activity; GTPase binding; small GTPase binding; Ras GTPase binding Aquaporin (Aqp5) ↑; matrix metallopeptidase (Mmp3) ↑; transcriptional factor (Erf) ↓; alipoprotein (Apof) ↓; plasma membrane calcium ATPase (Atp2b4) ↓; intracellular receptor for inositol (Itpr1)↓ |
Zhao et al. [40] | Microarray | 1.5 | 1249 | GO and KEGG | Gene related to the following: neuron projection ↑; synapse organization ↑; dendritic spine ↑; actin binding ↓; cytoskeleton organization ↓; response to stimulus ↓ Ppp1r2 ↑, Camk2b ↑, Fmr1 ↑, Nlgn1 ↑, Nrxn1 ↑, Rapgef ↑, Brwd3 ↓, Crx ↓, Olfr18 ↓, Svil ↓, Tas2r1 ↓, Tnf ↓ |
Cheon et al. [34] | Microarray | 2 | KEGG | Gene related to the following: cancer, apoptosis pathways, and inflammation related-gene (transcription factor for AP-1: JUN, FOS, CXCL8 ↓) | |
Xu et al. [22] | RNA-Seq | 1 | 137 | GO and KEGG | Gene related to the following: inflammation; immune regulation; IL-17 signaling pathway (alipoprotein C-I ↑; alipoprotein C-IV ↑; immunoglobulin lambda constant 1 ↑; immunoglobulin heavy constant γ 2B ↑) |
Dataset | Author | Year | GSE ID | Platform | Cell Type | Total Sample |
---|---|---|---|---|---|---|
Dataset_1 | Alexandrov et al. [16] | 2013 | GSE41083 | GPL1261 [Mouse430_2] Affymetrix | Mouse stem cells | 6 |
Dataset_2 | Alexandrov et al. [16] | 2013 | GSE41084 | GPL1261 [Mouse430_2] Affymetrix | Mouse stem cells | 6 |
Dataset_3 | Alexandrov et al. [16] | 2013 | GSE41085 | GPL1261 [Mouse430_2] Affymetrix | Mouse stem cells | 6 |
Dataset_4 | Kim et al. [8] | 2013 | GSE44671 | GPL6246 [MoGene-1_0-st] Affymetrix | C57BL/6J and BALB/c skin cell | 6 |
Dataset_5 | Zhao et al. [40] | 2021 | GSE178729 | GPL21163 Array Agilent-074809 | Mouse cortical neurons and oligodendrocytes precursor cells | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dione, M.N.; Shang, S.; Zhang, Q.; Zhao, S.; Lu, X. Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis. Genes 2024, 15, 1045. https://doi.org/10.3390/genes15081045
Dione MN, Shang S, Zhang Q, Zhao S, Lu X. Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis. Genes. 2024; 15(8):1045. https://doi.org/10.3390/genes15081045
Chicago/Turabian StyleDione, Mactar Ndiaga, Sen Shang, Qi Zhang, Sicheng Zhao, and Xiaoyun Lu. 2024. "Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis" Genes 15, no. 8: 1045. https://doi.org/10.3390/genes15081045
APA StyleDione, M. N., Shang, S., Zhang, Q., Zhao, S., & Lu, X. (2024). Non-Thermal Effects of Terahertz Radiation on Gene Expression: Systematic Review and Meta-Analysis. Genes, 15(8), 1045. https://doi.org/10.3390/genes15081045