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Abstract: Maize chitinases are involved in chitin hydrolysis. Chitinases are distributed across various
organisms including animals, plants, and fungi and are grouped into different glycosyl hydrolase
families and classes, depending on protein structure. However, many chitinase functions and their
interactions with other plant proteins remain unknown. The economic importance of maize (Zea
mays L.) makes it relevant for studying the function of plant chitinases and their biological roles.
This work aims to identify chitinase genes in the maize genome to study their gene structure, fam-
ily/class classification, cis-related elements, and gene expression under biotic stress, such as Fusarium
verticillioides infection. Thirty-nine chitinase genes were identified and found to be distributed in
three glycosyl hydrolase (GH) families (18, 19 and 20). Likewise, the conserved domains and motifs
were identified in each GH family member. The identified cis-regulatory elements are involved
in plant development, hormone response, defense, and abiotic stress response. Chitinase protein-
interaction network analysis predicted that they interact mainly with cell wall proteins. qRT-PCR
analysis confirmed in silico data showing that ten different maize chitinase genes are induced in the
presence of F. verticillioides, and that they could have several roles in pathogen infection depending
on chitinase structure and cell wall localization.
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1. Introduction

Chitin is the second most abundant polysaccharide in nature and can be found in
crustacean exoskeletons and fungal cell walls [1], in insects and animals [2]. A linear
polymer of β-1,4-N-acetylglucosamine (GlcNAC), chitin occurs in three forms: α, β and
γ. The most abundant form, α-chitin, can be found in the exoskeletons of insects and
crustaceans; this form exhibits adjacent sheets along the c axis (crystallographic orientation)
that are arranged in the same direction [3]. β-chitin has adjacent sheets along the c axis in
the same direction, resulting in the parallel orientation of sheets [4]. β-chitin is found in
squid pens [5] and insects [6]. γ-chitin has three chitin chains with alternating parallel and
antiparallel aligned polymer chains, making this type of chitin the most complicated in
structure [7].

Chitinases (EC 3.2.1.14) hydrolyze chitin glycosidic bonds, producing low-molecular-
weight compounds. Chitinase genes are required for growth and development in chitin-
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synthesizing species. Chitinases are classified according to their amino acid sequences
and belong to the GH18 (glycosyl hydrolase-18), GH19 and GH20 families, according to
previously proposed criteria [8] as well as the CAZy database. Chitinases can be grouped
into several classes: those that are within the GH19 family belong to classes I, II, IV, VI
and VII, while GH18 members belong to classes III and V. The GH20 family consists of
β-N-acetyl-D-hexosaminidases, which hydrolyze both GlcNAC and GalNAC [9].

Chitinases can also be classified according to the presence of specific modules (motifs)
or conserved domains such as a pre-sequence, a catalytic domain, a linker domain, or the
presence of a carbohydrate-binding domain [10]. Plant chitinases play an important role in
plant defense against fungi containing chitin in their cell walls [11]. Chitinases belonging to
classes I and IV possess a chitin-binding domain. In plants, this domain plays an important
role in generating the chitin-derived signaling molecules (chito-oligosaccharides) that are
typically released through binding of these enzymes to chitin in fungal cell walls, which
is subsequently followed by chitin hydrolysis [12]. Chito-oligosaccharides (CHOs) are
one of the main elicitors in plants that induce a series of defense mechanisms leading
to the production of pathogenesis-related proteins, reactive oxygen species (ROS) and
phytohormones [13–15].

Maize is an economically important crop worldwide, and it grows in a range of
environments in many countries including Mexico, from where it originated. Maize
is mainly used as human food, livestock feed, and in the production of bioethanol for
energy [16]. This crop is susceptible to various fungal diseases, including Fusarium stalk,
ear and root rot (SERR), a disease caused by F. verticillioides [17]. Different species of
Fusarium (F. verticillioides, F. nygamai and F. thapsinum) are reported to coexist in mixed
infections in a single maize plant [18]. Phytopathogenic fungi can induce the production of
plant antifungal compounds including enzymes such as chitinases. In maize, 27 putative
genes encoding endochitinases, including members of the GH18 (Class III) and GH19
families (classes I, II and IV), are induced by Trichoderma harzianum [19], Ustilago maydis [20]
and Aspergillus flavus [21] colonization.

F. verticillioides is an aggressive phytopathogen that has evolved a mechanism to
modify maize chitinases (ChitA and ChitB from the GH19 family) through the production
of an effector chitinase-modifying protein (Cmp) [22]. This modification cuts the chitin-
binding domain in the N-terminus upstream of a conserved polyglycine-rich site. Therefore,
maize chitinases lacking the chitin-binding domain, although still active, cannot bind to
the chitin substrate in the fungal cell wall. Cmp production has been confirmed in other
fungal phytopathogens such as Bipolaris zeicola [23], Stenocarpella maydis [24] and Fusarium
oxysporum [25]. The effect of Cmp activity is to limit fungal cell-wall chitin degradation and
the production of the chito-oligomer elicitors, resulting in the reduction in plant defenses
to allow these pathogens to infect maize cells.

Few studies have performed a genome-wide analysis of maize chitinases [19,21], and
this could be explained by the fact that we know very little about the role of chitinases and
their involvement in biotic and abiotic stresses, including maize–pathogen interactions.
This is especially true in root tissues, such as during F. verticillioides infection. The avail-
ability of maize transcriptome data now makes it feasible to assess gene expression under
different stress conditions. In the present study, we performed a genome-wide analysis to
identify maize chitinase genes in order to characterize them according to their classifica-
tion in GH families and classes. We examined the cis-elements present in their upstream
promoter sequences, the presence of conserved motifs and domains in their encoded pro-
teins, and their possible interaction with other maize proteins using co-expression network
analysis. We also used transcriptome data to understand the putative involvement in the
F. verticillioides-maize root interaction. Finally, this work provides insight and contributes
to our comprehension of the genome-wide regulation of maize chitinase expression.
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2. Materials and Methods
2.1. Identification of Putative Chitinase Gene

Nucleotide sequences of maize chitinase genes and their corresponding amino acid
sequences were obtained from the Maize Genetics and Genomics Database (MaizeGDB)
(https://www.maizegdb.org, accessed on 24 May 2023), using the B73 genome and “chitinase,
chitin, endochitinase, and exochitinase” as discovery terms [26]. A total of 202 gene models
were retrieved. From these, we removed all genes that were not annotated inside the Zm-B73-
REFERENCE-NAM-5.0 genome database, resulting in 39 gene models. Thirty-nine amino
acid sequences were analyzed using the Pfam database (https://www.ebi.ac.uk/interpro/)
to confirm the presence of the glycoside hydrolase domain. Chromosomic localization,
exon number, and transcript length were obtained from the Ensembl Plants database
(https://www.plants.ensembl.org/). The molecular weight (kDa) and isoelectric point of
chitinase amino acid sequences were obtained using the “Compute pI/MW” tool from
the ExPAsy database (https://www.expasy.org/tools). The physical locations of chitinase
genes were schematically drawn on their respective maize chromosomes using the online
server MG2C (https://mg2c.iask.in/mg2c_v2.0/).

2.2. Gene Structure, Multiple Alignment, and Phylogenetic Analysis

Gene structure (exon–intron) was analyzed based on the coding sequence (CDS) of
the chitinases at the Gene Structure Display Server (GSDS, https://gsds.gao-lab.org/) [27].
Evolutionary relationships among maize chitinase families were analyzed by performing
an unrooted Neighbor-Joining phylogenetic tree constructed with the MEGA 11.0 software
based on the Jones–Taylor–Thornton (JTT) model, using the MUSCLE alignment function
with 1000 bootstrap replicates and default parameters for each chitinase family. The
chitinase family tree was constructed for each chitinase class using orthologous genes from
Sorghum bicolor, Oryza sativa and Triticum aestivum.

2.3. Prediction of cis-Acting Elements, Conserved Domains and Transcription Factor Binding Sites

To predict the cis-acting regulatory elements in the promoter region of the 39 Z. mays
chitinase genes, a 2.0-kb sequence upstream of the translation initiation site (ATG) was ana-
lyzed, along with the 5′UTR region, using the PlantCARE website (http://bioinformatics.
psb.ugent.be/webtools/plantcare/html) [28]. All amino acid sequences were analyzed
using the NCBI-CDD database (https://www.ncbi.nlm.nih.gov/Structure/cdd/cdd.shtml)
to find conserved domains, and the MEME website (https://meme-suite.org/index.html)
to find conserved motifs [29]. The domains illustration was made using the Domain Il-
lustrator software 2.0 version [30]. Subcellular localization prediction of each chitinase
protein was obtained using WoLF PSORT (https://wolfpsort.hgc.jp/) [31], Plant-mSubP
(https://bioinfo.usu.edu/Plant-mSubP/) [32] and MULocDeep (https://www.mu-loc.
org/) [33], and signal peptide prediction was made by the SignalP 6.0 tool (https://services.
healthtech.dtu.dk/services/SignalP-6.0/) [34]. To identify the binding sites of transcrip-
tion factors in the promoter region of chitinases (2.0 kb upstream), the PlantRegMap
database was used (http://plantregmap.gao-lab.org/) [35] with the following parameters:
p-value ≤ 1 × 10−4 and a maximum number of 15.

2.4. In Silico Expression Analysis of Chitinase Genes Using RNA-Seq Data

In silico gene transcription analysis of the maize glycoside hydrolase family was
performed using RNA-seq data in order to retrieve the expression data in response to
abiotic stress. The fragment per kilobase of exon per million fragments mapped (FPKM)
was obtained from the B73 V5 genome through a gene ID (Zm00001) search using qTeller
in the MaizeGDB database [36]. Previous reports were used to study gene expression for
abiotic stress using seedling [37] and leaf [38] samples. The extracted data were then log2

transformed and used to generate heatmaps via the TBtools package [39].
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2.5. Quantitative Real-Time PCR Analysis

Previously, RNA-seq data were generated by our group from RNA samples of a
rolled paper-towel assay using roots of 7-day-old maize seedlings (Garañón hybrid from
Asgrow) inoculated with F. verticillioides P03 [40]. Differentially expressed genes (DEGs)
were defined as those genes with adjusted p-value < 0.01 and Log2 fold change ±1. The
differentially expressed genes (DEGs) obtained in the RNA-seq were analyzed and a list of
chitinase DEGs with gene expression presented as fold-change value was generated. To
confirm the induction of the maize root chitinase genes that respond to the Fv infection
in the RNA-seq, gene expression analysis of the chitinase DEG genes was performed by
RT-qPCR, using the SYBR Green Master Mix (Qiagen, Cat. No. 204074, Hilden, Germany)
in a Rotor Gene-Q real-time PCR system instrument (Qiagen, Cat. No. 9001550, Hilden,
Germany). The RNA used for RT-qPCR was the same as that used for RNA-seq. The
RT-qPCR reactions were performed using two biological replicates with three technical
replicates, and were run using 5 µL of SYBR Green Master Mix (2×), 10 µM of each primer
and 10 ng of cDNA in a 10 µL final volume. The PCR program included a pre-heating step
at 95 ◦C (5 min), followed by 40 cycles of 95 ◦C (30 s), 60 ◦C (30 s) and 72 ◦C (30 s). Relative
quantification of chitinase genes was normalized to the cyclin-dependent kinase (CDK)
gene [41], and the comparative threshold cycle method 2−∆∆Ct [42] was used to calculate
the fold-change (FC) values in gene expression. The set of primers used in this work are
listed in Supplementary Table S1.

2.6. Protein–Protein Interaction Network

To analyze protein–protein interactions, the STRING database (http://string-db.org) [43]
was used to generate a co-expression network. All maize chitinase proteins were submitted
to the STRING database. The minimum required score was set to medium confidence
(0.400). The maximum number of interactors showed no more than 20 on the first shell,
and no more than 10 on the second shell. The protein–protein network was obtained using
text mining and experiments, as well as database and co-expression interaction sources.

3. Results
3.1. Genome-Wide Identification of Chitinase Genes in Z. mays

A total of 39 chitinase genes were obtained from the Zm-B73-REFERENCE-NAM-5.0
genome. Gene name and ID, chromosomal position, exon and transcript count, glycoside
hydrolase family, molecular weight, and isoelectric point are presented in Table 1. The amino
acid sequence length of the maize chitinase genes ranged from 96 (Zm00001eb270440) to
599 (Zm00001eb008880) amino acids. We found 17 chitinase genes belonging to the GH18
family (PF00704), 18 genes belonging to the GH19 family (PF00182), and 4 genes belonging to
the GH20 (PF00728) family. Their predicted molecular weight (MW) ranged from 10.55 kDa
(Zm00001eb270440) to 66.12 kDa (Zm00001eb008880), and their predicted isoelectric points
ranged from 4.06 (Zm00001eb157820) to 10.35 (Zm00001eb272090). Most GH19 chitinases
presented a basic isoelectric point, specifically Zm00001eb078730 and Zm00001eb425600 (Cta1
and Ctb1) from class IV, as well as nine GH18 chitinases and one from the GH20 family. An
acidic isoelectric point was exhibited by GH19 family members of classes I, II, and IV; GH18
family members of class III; and three GH20 family members.

Table 1. Information for the 39 Z. mays chitinase genes obtained from the Zm-B73-REFERENCE-
NAM-5.0 genome.

Gene
Name Gene ID Chr. Gene Position Transcript

Length (bp)
Number of

Amino Acids
GH

Family
Isoelectric
Point (pI)

Chn1 Zm00001eb157820 3 217635788–217636989 1202 295 18 4.06
Chn7 Zm00001eb301500 7 10810239–10811584 1346 312 18 7.11
Chn12 Zm00001eb147120 3 181373589–181374970 1382 311 18 9.12
Chn13 Zm00001eb147140 3 181400773–81402109 1269 299 18 5.92

http://string-db.org
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Table 1. Cont.

Gene
Name Gene ID Chr. Gene Position Transcript

Length (bp)
Number of

Amino Acids
GH

Family
Isoelectric
Point (pI)

Chn14 Zm00001eb147150 3 181403132–181404390 1155 294 18 4.93
Chn15 Zm00001eb147160 3 181489354–181490403 924 307 18 8.54
Chn16 Zm00001eb301490 7 10733581–10735052 1472 307 18 9.21
Chn17 Zm00001eb047940 1 246418756–246419832 1077 308 18 4.11
Chn19 Zm00001eb420850 10 110156286–110158162 1807 484 18 8.88
Chn25 Zm00001eb283280 6 139958834–139960420 1587 368 18 5.72
Chn26 Zm00001eb283260 6 139888026–139889202 1177 315 18 6.95
Chn27 Zm00001eb167340 4 7657537–7658988 1452 301 18 8.69
Chn28 Zm00001eb250900 5 205495288–205496493 1206 286 18 4.99
Chn29 Zm00001eb168350 4 13184755–13185856 1102 286 18 4.97
Chn30 Zm00001d041426 3 120119356–120120333 978 325 18 6.17
Chn31 Zm00001eb358410 8 148327731–148334525 1690 430 18 8.42
Chn34 Zm00001eb169950 4 22152266–22154411 1889 399 18 4.81

Bk4 Zm00001eb317090 7 139523498–139528852 1974 328 19 8.16
Chn2 Zm00001eb272090 6 92474902–92476065 1164 261 19 10.35
Chn3 Zm00001eb228510 5 65159105–65160362 1258 193 19 9.46
Chn4 Zm00001eb340820 8 42175395–42176288 807 268 19 8.09
Chn5 Zm00001eb078720 2 35057479–35058766 1160 278 19 7.86
Chn8 Zm00001eb007850 1 23078494–23079090 597 198 19 5.92
Chn9 Zm00001eb270440 6 80869472–80869762 291 96 19 9.1
Chn10 Zm00001eb332350 8 1145764–1146951 1188 285 19 6.97
Chn11 Zm00001eb078740 2 35087711–35095502 926 227 19 7.57
Chn20 Zm00001eb228500 5 65072200–65073359 1160 282 19 5.1
Chn21 Zm00001eb346860 8 90582152–90583599 1350 357 19 8.04
Chn22 Zm00001eb002620 1 7344153–7348877 1087 258 19 9.1
Chn23 Zm00001eb354540 8 132934929–132936181 1253 311 19 5.97
Chn24 Zm00001eb022500 1 86493293–86494456 940 210 19 4.79
Cta1 Zm00001eb078730 2 35084623–35085927 1202 280 19 8.44
Ctb1 Zm00001eb425600 10 129884568–129885888 1195 281 19 8.92
EPR4 Zm00001eb246640 5 186238039–186239256 1150 271 19 5.14
Prp10 Zm00001eb272050 6 92426037–92427305 1269 379 19 4.82
Exo1 Zm00001eb266300 6 42318401–42331903 2511 545 20 5.78
Exo2 Zm00001eb008880 1 27253118–27255816 2619 599 20 6.47
Exo3 Zm00001eb288150 6 158303978–158308928 2332 529 20 5.94
Exo4 Zm00001eb365840 8 170849713–170855399 2161 525 20 5.36

3.2. Phylogenetic Analysis and Multiple Sequence Alignment

An unrooted phylogenic tree was constructed to study the evolutionary relationships
among the chitinase families in the maize genome. The chitinase protein phylogenetic tree
was constructed using proteins from S. bicolor (36 sequences), T. aestivum (37 sequences)
and O. sativa (32 sequences) (see Figure 1). The class classification revealed that chitinase
members of the GH18 family belong to class III (containing hevamine, narbonin-like and
SI-CLP protein sequences) and class V, and members of the GH19 family belong to classes
I, II and IV. Although the Zm00001eb317090 gene belongs to family 19 and is grouped in
the class IV clade, it does not contain a chitin-binding domain, and shares more protein
characteristics that make it closer to class II proteins.

3.3. Chromosomal Location and Intron–Exon Architecture

All 39 chitinase genes were assigned to nine out of ten maize chromosomes (Figure 2).
Chromosome number 6 contained the highest number of chitinase genes (seven), followed
by chromosomes 3 and 8 (six chitinase genes in each chromosome). No chitinase genes
were found in chromosome 9.
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To study the diversity of maize chitinase genes, we next analyzed the exon–intron
sequences. Among the thirty-nine chitinase genes in Z. mays, only four genes had more than
two introns; four genes had two introns; eleven genes had one intron; and twenty genes
did not have any introns. Zm000011eb266300 was the longest gene, containing 15 introns,
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followed by Zm000011eb365840 and Zm000011eb288150, with 14 and 13 introns, respectively,
and Zm000011eb358410, with 7 introns (Figure 3).

Genes 2024, 15, x FOR PEER REVIEW 7 of 21 
 

 

 
Figure 2. Chitinase gene distribution in maize chromosomes. Gene names are indicated on the left 
and right sides of the chromosome. The Y-axis represents the distance (Mb) between genes. Their 
locations may be close in each chromosome, but they are not contiguous with each other. 

To study the diversity of maize chitinase genes, we next analyzed the exon–intron 
sequences. Among the thirty-nine chitinase genes in Z. mays, only four genes had more 
than two introns; four genes had two introns; eleven genes had one intron; and twenty 
genes did not have any introns. Zm000011eb266300 was the longest gene, containing 15 
introns, followed by Zm000011eb365840 and Zm000011eb288150, with 14 and 13 introns, 
respectively, and Zm000011eb358410, with 7 introns (Figure 3). 

 
Figure 3. The intron–exon structure of the chitinase-coding gene families in Z. mays. The blue bars 
indicate the 5′ and 3′ UTR untranslated regions, the yellow bars indicate coding sequences (CDS), 
and the gray lines indicate intron sequences. 

Figure 3. The intron–exon structure of the chitinase-coding gene families in Z. mays. The blue bars
indicate the 5′ and 3′ UTR untranslated regions, the yellow bars indicate coding sequences (CDS),
and the gray lines indicate intron sequences.

Alternative splicing can occur in maize chitinase genes due to the presence of in-
trons; Zm00001eb358410 (four splice variants), Zm00001eb002620 (three splice variants),
Zm00001eb266300 (three splice variants), and Zm00001eb365840 (six splice variants) all
presented more than one splicing transcript (Table S2). Since most chitinase genes had only
one identified transcript, only one transcript (T001 from Table S2) from each gene was used
to analyze each glycosyl hydrolase family.

3.4. Conserved Domains and Motifs

In order to better understand the structural differences between members in the
chitinase gene families, we next identified the conserved domains and motifs (Figure 4).
Motifs 6, 7, 8, 10 and 17 were exclusive to the GH18 gene family members, whereas motifs
1, 2, 3, 4, 5, 9, 13 and 16 were mainly found in the GH19 gene family. Members of the
GH20 gene family contained conserved motifs 12, 14, 15, 18, 19 and 20 (Figure 4A, Table S3).
As shown in Figure 4B, all protein sequences possessed domains typical of the glycosyl
hydrolase families. According to their enzymatic activity, three different domains were
present in members of class III in the GH18 gene family: hevamine, narbonin, and SI-CLP;
other GH18 members had a domain typical of class V. However, GH18 family members did
not contain any chitin-binding domain, which was only found in GH19 family members
(ten out of eighteen). All GH20 family members presented the glycosyl hydrolase-20 and
glycosyl hexaminidase HexB-like domains.
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Additionally, almost all GH19 chitinase genes that presented chitin-binding domains
were predicted to be extracellular proteins. However, Zm00001eb272050 did not contain
a predicted signal peptide, but it had a chitin-binding domain and is predicted to be a
cytoplasmic protein, and Zm00001eb078720 contained one signal peptide, and is predicted
to be chloroplastic (Table S4).

3.5. Cis-Regulatory Elements and Transcription Factors in the Promoter Region

Cis-regulatory element analysis was performed to elucidate the possible regulatory
mechanisms/pathways/signals of maize chitinase genes when elicited in response to
hormones, abiotic stress, pathogen infections and plant development (Table S5). The hor-
mone and abiotic stress cis-acting regulatory elements were widely present in chitinase
genes. Defense-related elements had fewer repetitions among genes, and only a W-box
element (involved in WRKY transcription factor recognition) was repeatedly found. The
hormone-related elements ABRE (abscisic acid response), CGTCA-motif (methyl-jasmonate
response), MYC (jasmonate signaling), as-1 and TGACG-motif (response to pathogens and
methyl-jasmonate response) were the most abundant. We also found the abiotic stress cis-
elements ARE (anaerobic induction), G-box (response to light) and STRE (general stress) in
abundance. The AAGAA-motif (secondary xylem development) and CCGTCC-box (meris-
tem activation) were the most frequently detected cis-regulatory elements related to plant
developmental processes in chitinase upstream sequences. The methyl jasmonate response
cis-elements were present in most chitinase promoters, followed by abiotic-stress and light-
response elements. We also analyzed their gene expression (Supplementary Figure S1)
and found that some chitinase genes may be transcriptionally induced under differ-
ent stress conditions (cold, heat, salinity, UV light, and drought) (Table S6). The TF
binding-site prediction revealed a total of 6281 binding sites for 18 TFs (Table S7) includ-
ing AP2/ERF [44,45], B3 [46,47], BBR-BPC [48], bHLH [49], bZIP [50–52], C2H2 [53–55],
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Dof [56–58], G2-like [59–61], GATA [62], HD-ZIP [63–65], LBD [66,67], MIKC_MADS [68,69],
MYB and MYB-related [70,71], NAC [72,73], TALE [74,75], TCP [76,77] and WRKY [78–80].

3.6. In Silico Analysis of Maize Chitinase Gene Expression in 7-Day-Old F. verticillioide Infected Roots

RNA-seq data from maize roots infected for 7 days with F. verticillioides (Fv) [40] were
used to determine chitinase gene-expression patterns in maize roots (Table S8). Overall,
RNA-seq data showed that 15 out of 39 chitinase genes were differentially expressed
in maize roots in response to seven-day infection with Fv. All fifteen chitinase genes
were upregulated. During RT-qPCR analysis, it was only possible to amplify 14 out of
15 differentially expressed chitinase genes, due to the sequence similarity among chitinase
families. We were not able to amplify the Zm00001eb272050 gene by PCR, and therefore
this gene was not included in the RT-qPCR analysis. Table 2 shows the RT-qPCR expression
analysis of the 14 chitinase genes from maize roots identified in RNA-seq data under the Fv
infection condition.

Table 2. Chitinase gene-expression data obtained by RNA-seq and validated by qRT-PCR.

Gene ID Synonyms
FC (Fold Change)

RNA-Seq RT-qPCR

GH18
Zm00001eb157820 Chitinase chem 1 4.92 1.64 a

Zm00001eb047940 Chitinase 17 5.14 0.70 a

Zm00001eb167340 Chitinase 27 13.41 3.61
Zm00001eb250900 Chitinase 28 4.17 3.76
Zm00001eb168350 Chitinase 29 2.71 3.49
Zm00001eb169950 Chitinase 34 2.57 1.81 a

GH19
Zm00001eb317090 Brittle stalk4 2.31 2.75
Zm00001eb078740 Chitinase 11 9.58 0.67 a

Zm00001eb272090 Chitinase 2 5.16 2.35
Zm00001eb346860 Chitinase 21 7.27 2.51
Zm00001eb354540 Chitinase 23 6.69 4.99
Zm00001eb078730 Chitinase A1 4.44 2.03
Zm00001eb425600 Chitinase B1 4.11 4.02

GH20
Zm00001eb008880 Exochitinase 2 4.14 3.25

The cyclin-dependent kinase gene (Zm00001eb350890) was used for normalization. Genes with a Fold Change
(FC) value ≥ 2 in RT-qPCR analyses were considered as a validated gene. RT-qPCR values are presented as the
mean of the two biological replicates used for RNA-seq analysis with three technical replicates per each biological
replicate. a Gene expression was not validated.

Ten out of the fourteen chitinase genes analyzed by RT-qPCR showed the same induced
expression trend as observed in the RNA-seq data (Table 2). Three out of six GH18 gene
family members, six out of seven GH19 members, and one GH20 member were induced by
seven days of Fv infection.

3.7. Protein–Protein Interaction Network Analysis

Protein–protein interaction networks with the ten RT-qPCR validated chitinase genes
from the maize–Fv interaction at seven days’ infection predicted 20 functional maize pro-
tein partners, exhibiting 100 interactions (Figure 5; Table S9). Zm00001eb317090 showed
30 interactions, followed by Zm00001eb008880 with 13 interactions and Zm00001eb167340
with 10 interactions. GH18 chitinases (Zm00001eb167340 and Zm00001eb168350) were
predicted to interact with β-hexosaminidases, while GH19 (Zm00001eb272090) was the
main maize chitinase partner to interact with cellulose synthase proteins, and GH20
(Zm00001eb008880) was related to β-galactosidase proteins (Table S9). These results show
diverse patterns of maize chitinase co-expression with maize cell wall proteins.
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4. Discussion

In plants, glycosyl hydrolases are present as large gene families that are involved in
several biological and defense mechanisms, and they can be expressed in different cell
compartments [81]. The GH18 and GH19 chitinase families are some of the most studied
plant enzymes, due to their involvement in different metabolic processes, in addition
to their synergistic function in plant development and defense responses [82]. GH18
chitinases have been reported in fungi [83], bacteria [84] and plants [85]. GH19 chitinases
are predominantly found in plants (e.g., class I chitinases are found in Camellia sinensis [86],
class II in soybean [87] and class IV in grape [88]), while GH18 class III chitinases have
been reported in Rhododendron irroratum and Pteris ryukyuensis [89,90]. On the other hand,
GH20 chitinase family members are β-hexosaminidases; these enzymes have been detected
before maize seed germination and in scutellum in seedlings [91]. β-Hexosaminidases are
proposed to participate in N-glycan processing, depending on their subcellular localization:
N-glycan trimming occurs in the vacuole for vacuolar proteins, whereas N-glycans are
processed on secretory glycoproteins for plasma membrane proteins [92].

Several maize chitinase genes described here have more than two introns, and some
of these genes also presented alternative splicing (Table S2). Alternative splicing occurs
when there is a deviation from constitutive splicing, in which the removal of certain introns
is omitted, producing various forms of mature mRNA [93]. This process is involved in
mediating diverse biological processes [94] and has an important role in plant abiotic-stress
responses [95], as well as a direct effect on protein function, amino acid sequence, and
enzymatic properties [96].

Protein domains are short amino acid sequences that can be considered as a functional
site, or as structural and evolutionary units [97]. These units are considered important for
protein function [98], and proteins can acquire several domains over time through gene
fusion and exon recombination [99]. However, protein domains can suffer changes like
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mutations or deletions, and cause dramatic effects on gene function [100]. Plant chitinases
usually have different domains such as catalytic, chitin-binding, and linker domains [10].
In the present work, all maize chitinases had at least one domain belonging to a glycosyl
hydrolase family. GH18 sequences presented only one type of GH-conserved domain
per gene, and no chitin-binding-related domains. Gene members of the GH20 family
possess two domains: the glycosyl hydrolase-20 and the glycosyl hexaminidase HexB-like
domain. Most GH19 chitinases presented either a glycosyl hydrolase-19 domain and/or a
chitin-binding domain; the latter is able to bind and hydrolyze insoluble or soluble chitin
forms, such as the GH19 chitinase from Hevea brasiliensis [101] or Streptomyces griseus. The
chitin-binding domain of S. griseus differs slightly from those of plants, and it can also
bind to cellulose [102]. For example, inserting the chitin-binding domain from Serratia
marcescens into the structure of a chimeric chitinase from Trichoderma atroviride (Chit42)
resulted in increased enzymatic activity and colloidal chitin binding, as well as higher
antifungal activity against phytopathogenic fungi [103]. This demonstrates the importance
of the chitin-binding domain during chitin degradation.

In plants, the chitin-binding domain is important due to its relatedness to mecha-
nisms of avoidance of fungal phytopathogen infection, such as in the interactions between
Fusarium solani and Nicotiana tabacum [104], Candida albicans and Moringa oleifera [105], and
Trichoderma viride and Brassica juncea [106]. These studies suggest that chitinases with a
chitin-binding domain could potentially be used as antifungal enzymes, since they can
bind to chitin from the fungal cell wall and hydrolyze it to produce small chito-oligomers
that elicit the plant defense [107]. These may occur in GH19 class I and IV chitinases, due
to the presence of a chitin-binding domain [108].

Motifs are short amino acid sequences shared by protein family members that have
a specific structural function [109]. In our study, maize chitinases presented the NYNG
conserved motif (Motif 1, Table S3). This motif is generally located within a loop III structure
close to the amino acid catalytic triad of the GH19 family (Glu221, Arg361 and Glu234) [110]
that belongs to the lysozyme superfamily. GH19 maize family members, like most of the
GH22, 23, 24 and 46 families, have two other main elements: an α-helix and a β-hairpin
motif [111], which are important, since they contain glutamate residues acting as general
acid catalysts that allow proteins to perform chitin catalysis. Thirty-two chitinases have
signal peptides that localize them for their secretion. Likewise, the hevamine-type chitinase
from H. brasiliensis also contains a signal peptide sequence at the N-terminus [112] for its
vacuolar secretion. In maize, according to the WoLF PSORT (an extension of the PSORTII
program) in silico subcellular prediction software, one chitinase is targeted to the vacuole
(Zm00001eb167340), nine are targeted to the chloroplast, and eighteen are extracellular
proteins (Table S4). GH18 proteins are predicted to have a different subcellular distribution
as compared to GH19 proteins, where most chitinases are predicted to be extracellular.
Plant chitinases are proposed to be targeted to the chloroplast, endoplasmic reticulum and
vacuole, and these subcellular localizations have been tested in Arabidopsis thaliana [113].

Different cis-regulatory elements in maize chitinases have been found to be related to
plant defense, development, response to abiotic stress, and hormones. The plant develop-
ment elements AAGA-, CAT-box, CCGTCC, RY-element, HD-Zip1 and GCN-4 motifs were
present in maize chitinase genes. The GCN-4 motif is fundamental to specific meristem
gene expression [114]. Hormone-related elements such as ABRE, as-1, MYC, CGTCA-,
and TGACG-motifs were also present in most chitinase genes. These cis-elements, such as
ABRE (abscisic acid-response-related element), are related to several dehydration-response
genes that trigger ABA production [115]. Likewise, Chi2 and Chi14 induction in Cucumis
sativus L. was also observed in response to jasmonic acid, ethylene and salicylic acid treat-
ments [116], suggesting that maize chitinases could be involved in hormone signaling in
response to either abiotic or biotic stresses during development. ARE, G-box, STRE, Box4,
and DRE-core were the most abundant cis-elements in abiotic stress-related categories such
as general stress, as well as light and dehydration responses. These elements have also been
reported in chitinase genes from Allium sativum L. [117], Thalassiosira pseudonana [26] and
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B. juncea [118]. The W-box in chitinase genes plays a role in the induction of plant defense
genes against pathogenic fungi [119]. TC-rich repeat elements are also involved in the in-
duction of defense genes, and they have been reported in C. sativus L. [120]. The GH18 and
GH19 family members are induced under osmotic stress in Ammopiptanthus nanus [121] and
Solanum lycopersicum [122]. According to our in silico maize chitinase expression analysis
(Supplementary Figure S1), most GH18 genes are induced under cold, heat, UV, and salt
stresses, such as a class III gene from A. thaliana that is induced in response to different
environmental stress conditions [123]. Interestingly, most GH19 and GH20 genes are either
repressed or do not show induction under different types of stress (drought and cold).
This may be related to the activity of GH19 and GH20; GH19 genes are mainly induced in
the presence of phytopathogenic organisms [124,125], while GH20 genes are involved in
N-glycan processing [92].

Transcription factors (TFs) can be induced under abiotic or biotic stresses. TFs can be
regulated by phosphorylation, inhibitory factors or de novo synthesis [126]. Maize chitinase
genes exhibit target sites for several transcription factor families. These TFs are related to
hormone response, plant development, and defense, including the ERE and WRKY TFs
that are involved in the plant-pathogen defense response [127,128].

Previous studies have shown the induction of chitinases in maize plants infected
with F. verticillioides and A. flavus [129,130], which increase the plant resistance to fungal
pathogen infection. This effect may be related to the release of chito-oligosaccharides
acting as pathogen-associated molecular patterns (PAMPs), which are derived from fungal
cell wall degradation by chitinases [131]. Chitinases can accumulate in different plant
organelles such as the chloroplast, vacuole and nucleus, or they can be secreted into
the extracellular space [113]. The extracellular space, or apoplast, is considered to be
a cellular compartment that plays important roles such as nutrient metabolism, plant
growth, defense and signaling [132]. In the present study, we identified by RNA-seq
15 maize chitinase genes induced in response to a 7-day F. verticillioides infection; ad-
ditionally, we confirmed by qRT-PCR the induction of ten genes. Five GH19 chitinase
members (Zm00001eb317090, Zm00001eb272090, Zm00001eb346860, Zm00001eb078730 and
Zm00001eb425600) are predicted to be extracellular proteins. Four of these genes are indi-
cated in Figure 6: (a) Zm00001eb272090 [Chitinase 2], (b) Zm00001eb346860 [Chitinase 21],
(c) Zm00001eb078730 [Chitinase A1], and (d) Zm00001eb425600 [Chitinase B1]). These
genes possess a chitin-binding domain and motif 5, which are important for substrate
recognition and chitin binding. ChitA and ChitB were previously reported to be tar-
geted in a polyglycine-rich region by F. verticillioides chitinase modifying enzymes (Cmps)
(Figure 6) [23]. This suggests that (a) Zm00001eb272090 and (b) Zm00001eb346860 may also
be targets of Cmps, since they also possess a potential polyglycine site targeted by this
effector protein. Taken together, these results suggest that these four extracellular chiti-
nases could be targets of F. verticillioides Cmps, preventing them from (1) hydrolyzing the
chitin present in the fungal cell wall, and (2) inducing the presence of oligosaccharides
(PAMPs) that trigger the plant defense mechanisms. As a result, the maize root does not
perceive the invasion by the fungus, allowing for the F. verticillioides infection to proceed.
Zm00001eb317090 (Brittle stalk4; [g] in Figure 6) does not possess this Cmp region, and
our co-expression network analysis predicted its interaction with other cell wall proteins
(Table S9) that may be involved in cell wall strengthening [133], including two cytoplas-
mic/membrane GH18 members (Zm00001eb250900 [chitinase 28] and Zm00001eb168350
[chitinase 29]) (e and f in Figure 6, respectively).

The other induced chitinases may also participate in the response to pathogen at-
tack, playing different roles in the vacuole/apoplast ([j] Zm00001eb167340, chitinase 27
[pI = 8.69]). In addition, other intracellularly localized induced chitinases ([i] Zm00001eb354540
[chitinase 23] and [h] Zm00001eb008880 [Exochitinase 2]; chloroplastic/extracellular) may
play other functions in this particular interaction, such as BC15/OsCTL1 (chitinase-like 1),
which is necessary for cellulose biosynthesis in rice [134]. Chloroplastic chitinases may also
be regulated by the accumulation of ROS in response to fungus infection [135].
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Figure 6. A proposed model of maize chitinase induction in the presence of F. verticillioides.
Four chitinases (a–d) possess the chitin-binding domain and Cmp site (fungalysin); these proteins
may act synergistically to hydrolyze chitin in the fungal cell wall to produce chitin oligosaccharides
(elicitors). These enzymes may also be the target of fungalysin, and their binding capacity could
be eliminated; however, maize may produce other chitinases (i and j) that do not possess the chitin-
binding domain/Cmp site to hydrolyze chitin. Due to the absence of a carbohydrate-binding domain,
the chitin-binding capacity is low in these two chitinases, but their catalytic activity remains intact,
and the plant could be inducing these proteins as an alternative strategy to degrade fungal chitin.
On the other hand, proteins g and h, and e and f, may be induced in a coordinated mechanism
to interact with cellulose synthases and to promote cell wall biosynthesis in response to Fv infec-
tion, in order to reinforce the plant cell wall. Different letters represent different chitinase proteins.
Letters a–d: Zm00001eb272090, Zm00001eb346860, Zm00001eb078730, and Zm00001eb425600, respec-
tively; letters e and f: Zm00001eb250900 and Zm00001eb168350; letters g and h: Zm00001eb317090,
Zm00001eb008880; and letters i and j: Zm00001eb354540 and Zm00001eb167340.

Co-expression network analysis showed interactions with other maize proteins ac-
cording to text mining, experiments, databases, and co-expression. The most prominent
interactions were between β-hexosaminidase and cellulose synthase, which play a ma-
jor role in cell wall formation [136]. β-Hexosaminidase (HEXO) has been detected in
different plant tissues and has a role during seed germination. HEXOs also show dif-
ferent types of catalytic activity and substrate affinity to N-glycans [137], and they are
capable of hydrolyzing N-acetyl-hexosamine residues to produce low-molecular-weight
compounds [138]. However, their physiological and biological functions are not fully un-
derstood, and it has been hypothesized that they are mainly involved in chitin degradation.
On the other hand, cellulose synthase (generally found as an enzymatic complex) is respon-
sible for cellulose synthesis at the plasma membrane [139]. Zm00001eb317090 (GH19, Brittle
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stalk4 [g]) is related to Zm00001eb250900 (GH18, Chitinase 28 [e]) and Zm00001eb168350
(GH18, Chitinase 29 [f]), which are predicted to be cytoplasmic/membrane proteins of
class III narbonin chitinases. In addition, Zm00001eb317090 (g) possesses the GhCTL
(chitinase-like proteins) consensus [140], which differs from the classical GH19 consensus;
this difference in catalytic residues may allow this protein to participate in the synthesis
of primary and secondary cell walls. However, although chitinases are known to bind
to N-acetyl-D-glucosamine (GlcNAC) residues, plants do not produce chitin. Therefore,
there must be a mechanism by which chitinases can be induced in plants, even if they are
not under pathogen attack. For example, one previous study demonstrated that N-acetyl-
D-glucosamine-containing arabinogalactan proteins are sensitive to endochitinases, and
that they could be implicated in embryogenesis [141]. Since arabinogalactan proteins are
typically found in membranes or cell walls, these may be some of the few proteins that
contain GlcNAC, and they could explain why chitinases participate in cell wall biosynthesis

5. Conclusions

In summary, we analyzed maize chitinase genes in order to learn about their putative
function and possible role in fungal infection. Our findings suggest that they may partici-
pate in different plant biological pathways, even though we addressed their involvement
during fungal pathogen infection (e.g., F. verticillioides). We also found by qRT-PCR that
maize chitinases can participate in Fv infection, according to their domain type and subcel-
lular localization. This works opens new avenues to study novel biochemical mechanisms
in which chitinases may play a major role.
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