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Abstract: Glaesserella parasuis (GPS) can cause severe systemic inflammation in pigs, resulting in huge
economic losses to the pig industry. At present, no effective method is available for the prevention and
control of GPS infection. Molecular breeding for disease resistance is imminent, but disease-resistance
genes have not been identified. To study the mechanism of systemic acute inflammation caused
by GPS, we established three in vitro infection models (3D4/21 cells, PK15 cells, and PAVEC cells)
according to its infection path. There was no significant difference in apoptosis among the three
kinds of cells after 12 h of continuous GPS stimulation, while inflammatory factors were signifi-
cantly upregulated. Subsequent transcriptome analysis revealed 1969, 1207, and 3564 differentially
expressed genes (DEGs) in 3D4/21 cells, PK15 cells, and PAVEC cells, respectively, after GPS infection.
Many of the DEGs were predicted to be associated with inflammatory responses (C3, CD44, etc.); cell
proliferation, growth and apoptosis; gene expression; and protein phosphorylation. Key signaling
pathways, including S100 family signaling, bacteria and virus recognition, and pathogen-induced
cytokine storm signaling, were enriched based on Ingenuity Pathway Analysis (IPA). Furthermore,
a total of three putative transmembrane receptors and two putative G-protein-coupled receptors,
namely F3, ICAM1, PLAUR, ACKR3, and GPRC5A, were identified by IPA among the three types of
cells. ACKR3 and GPRC5A play pivotal roles in bacterial adhesion, invasion, host immune response
and inflammatory response through the S100 family signaling pathway. Our findings provide new
insights into the pathological mechanisms underlying systemic inflammation caused by GPS infection
in pigs, and they lay a foundation for further research on disease-resistance breeding to GPS.

Keywords: Glaesserella parasuis; transcriptome sequencing; systemic inflammatory response; cell
response; disease-resistance breeding

1. Introduction

Pork is one of the most important sources of meat. Health has become one determinant
of productivity, profitability, and animal welfare in pig production [1]. Glaesserella parasuis
(GPS) is an important bacterial causative agent of Glässer’s disease in pigs. This disease
has a variety of pathological features, including fibrinous polyserositis, arthritis, pleurisy,
and meningitis [2], and it causes severe post-weaning morbidity and mortality in pig herds
worldwide [2,3], resulting in significant economic losses.
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Specifically, GPS invades the host through the respiratory tract, wherein it expresses
IgA protease during the colonization of the upper respiratory tract, thus evades host
mucosal immunity via destroying the IgA heavy chain structure [3]. Breaking through
the pulmonary defense has been recognized as the other major way for GPS systematic
diffusion [4], in which the immunity of porcine alveolar macrophages, the first line of
pulmonary defense, could be weakened [5]. Then, the bacterium will cause blood vessel
damage and sepsis once it invades into the bloodstream [6]. Eventually, it will spread
throughout the body, such as the kidneys and brain, leading to intense inflammations and
even the death of the host [7].

Therefore, the control and prevention of GPS infection are urgently needed [8]. At
present, there are many disadvantages in the prevention and control of GPS infection,
such as a high dependence on antibiotics and inadequate protection of vaccines [9], which
affects the sustainable development of the pig industry. It is essential to propose alternative
strategies that can prevent GPS infection efficiently. Breeding disease-resistant pigs through
molecular breeding has been considered as an effective alternative [9]. Achieving molecular
breeding through gene editing is feasible and valuable in improving livestock traits; for
example, the CD163 receptor knockout pigs will have complete resistance to the highly
pathogenic porcine reproductive and respiratory syndrome virus (PRRSV) [10].

The key of disease-resistance breeding lies in mining porcine disease-resistant genes.
So far, studies on the pathogenesis of GPS mainly focus on bacterial immune escape and
virulence factors, and the mechanisms related to inflammatory response and inflamma-
tory injury that play an important role in the pathogenesis of Glässer’s disease are still
unclear [11]. If we can fully understand the mechanism of systemic acute inflammation
caused by GPS infection and carry out molecular breeding, then we can increase the
possibility of preventing and successfully treating GPS.

Therefore, in this study, three different in vitro GPS infection models were established
under the same challenge conditions and subjected to transcriptome analysis. Specifically,
we fully considered the in vivo invasion pathway of the bacteria and selected porcine alve-
olar macrophages 3D4/21, porcine aortic vascular endothelial cells (PAVECs) and porcine
renal epithelial cells (PK-15) as the study models, which are important models for studying
immune escape, tissue inflammation and the vascular injury of GPS infection, respec-
tively [12–14]. We then screened for common biological processes and inflammation-related
genes and pathways in three comparisons. Our findings will improve our understanding
of the mechanism underlying the systemic inflammatory response induced by GPS while
providing guidance for the control and prevention of GPS infection.

2. Materials and Methods
2.1. Bacterial Strain Culture

The GPS SH0165 strain, a highly virulent strain of serovar 5, was used in this study. It
was cultured in tryptic soy broth (Difco Laboratories, BD, Radnor Township, PA, USA) sup-
plemented with 0.01% nicotinamide adenine dinucleotide (Sigma-Aldrich®, Taufkirchen,
Germany) and 10% fetal bovine serum (Gibco, NY, USA) under 37 ◦C. The selected single
colony was cultured overnight in tryptic soy broth at 37 ◦C and 225 rpm until OD600
reached approximately 0.7.

2.2. Cell Culture

The 3D4/21 cell line and PK15 cell line were provided by Dr. Zhao from Huazhong
Agricultural University [15,16]. PAVEC cells were previously successfully isolated and
identified in our laboratory [17]. The 3D4/21 cells were cultured in complete growth media
containing RPMI 1640 medium (Gibco, USA) supplemented with 10% fetal bovine serum
(Gibco, NY, USA). The PAVEC cells were cultured in complete growth media containing
M-199 medium (Gibco, NY, USA) containing 10% fetal bovine serum (Gibco, NY, USA). The
PK15 cells were cultured in complete growth media containing Dulbecco’s Modified Eagle
Medium (DMEM)/high-glucose medium (HyClone, UT, USA) containing 10% fetal bovine
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serum (Gibco, NY, USA). All kinds of cells were cultured in a humidified cell incubator at
37 ◦C and 5% CO2.

2.3. Cell Infection

3D4/21 cells, PAVEC cells, and PK15 cells were seeded into 12-well plates and infected
with GPS SH0165 strain with a multiplicity of infection (MOI) of 100. After co-culture for
12 h at 37 ◦C with 5% CO2, the supernatant was removed. The cells were collected and
washed three times with 1% sterile phosphate-buffered saline for transcriptomic analysis.
Each control cell line was infected with its own culture medium and treated in the same
way. There were four separate replicates for 3D4/21 cells and three separate replicates for
PAVEC and PK15 cells in each group.

2.4. Detection of Apoptosis

Apoptosis was analyzed using a Calcein-AM/PI kit (Beyotime, Shanghai, China).
After 12 h of bacterial infection, the cells were treated according to the manufacturer’s
protocol. The samples were analyzed using an inverted fluorescence microscope (Olympus
Inc., Tokyo, Japan) and fluorescent enzyme labeling instrument (Molecular Devices, SJ,
USA). Four individual replicates were utilized in these experiments.

2.5. Cytokines Analysis

Cytokines expression at the mRNA level was carried out with the qRT-PCR method.
Total RNA was extracted from cells with Trizol reagent (Tiangen, Beijing, China) and then
reverse-transcribed to cDNA using reverse transcriptase (TaKaRa, Osaka, Japan). The
cDNA was amplified and measured using TB Green® Premix Ex TaqTM (TaKaRa, Osaka,
Japan) on a QuantStudio 6 Flex Real-time PCR System (Thermo Fisher Scientific, Waltham,
USA). The reaction conditions were 95 ◦C for 30 s; followed by 40 cycles of 95 ◦C for 10 s,
60 ◦C for 30 s; and ended with a melting curve analysis. The 2−∆∆Ct method was used
to calculate the relative expression levels between the treatment and control groups. The
reference gene RPL32 was used for data normalization in mRNA analysis. The primer
sequences for inflammatory cytokines are listed in Supplementary Table S1. The bar chart
was made using Graphpad Prism 9.

2.6. Transcriptome Sequencing and Differentially Expressed Gene (DEG) Analysis

RNA was extracted from cells and sent to the Genergy Biotechnology Corporation
(Shanghai, China) for mRNA purification, library preparation and sequencing. A total of
20 samples (three replicates for PAVEC and PK15 cells in each group, four replicates for
3D4/21 cells in each group) were sequenced on the Illumina Hiseq 2500 platform. Raw
sequencing data were filtered and quality controlled to obtain clean reads. These reads were
mapped to the pig reference genome (Sscrofa11.1) using HISAT2 [18]. Then, gene fragments
were estimated using Stringtie [19]. Expression levels for mRNAs were performed by
calculating FPKMs (fragments per kilobase of exon model per million reads mapped). Next,
differentially expressed genes (DEGs) were analyzed using the DESeq2 R package. Genes
with a p-value < 0.05 and |log2 fold change| > 1 were considered differentially expressed.
The associated volcano maps and Venn maps were produced using R packages. We used
Ingenuity Pathway Analysis (IPA) (Ingenuity Systems, Qiagen, California, USA) software to
perform molecular functional analysis of the differential expression gene code. To estimate
the reliability of RNA-seq results, six DEGs were randomly selected and validated by
qRT-PCR. The primer sequences for transcriptome validation are listed in Supplementary
Table S1.

2.7. Enrichment Analysis of DEGs

Gene Ontology (GO) enrichment analysis was performed using the Database for An-
notation, Visualization and Integrated Discovery (DAVID) website (https://david.ncifcrf.
gov/, accessed on 27 June 2021). DEGs were uploaded to IPA software for canonical
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pathway analysis, network discovery, etc. For canonical pathway analysis, disease, and
function, a z-score > 2 was defined as the significant activation threshold, and a z-score < −2
was defined as the significant inhibition threshold. All terms with a p-value < 0.05 were
considered significantly enriched by DEGs. Putative receptor-associated network maps
were made using IPA software, and putative receptor-related Sankey plots were made
using Origin 7.

2.8. Statistical Analysis

Results were presented as mean ± standard deviation (SD). The statistical significance
between the control and treated groups was analyzed with Student’s t-test in GraphPad
Prism 9. p-value < 0.05 was considered statistically significant. * p < 0.05; ** p < 0.01; and
ns = not significant.

3. Results
3.1. Constructions of the In Vitro GPS Infection Models

In our previous study, 3D4/21 cells and GPS (MOI 100:1) were co-cultured in a
humidified cell incubator at 37 ◦C and 5% CO2 for 6 h, and the bacterial adhesion assays
were conducted after cleaning. The number of bacteria that adhered to each 3D4/21 cell
was approximately one per cell [20]. Compared with control cells, there was no significant
difference in the incidence of apoptosis of 3D4/21 cells after 12 h of continuous GPS
stimulation (Figure 1a). The apoptosis of 3D4/21 cells was not significant until 12 h
following GPS infection (Figure 1b). After infecting 3D4/21 with GPS bacteria, a large
zone of cell death was evident at 48 h, but no significant change was evident in the cell
phenotype in the first 8 h (Figure S1).

Genes 2024, 15, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 1. Constructions and verification of the in vitro GPS infection model. (a) The fluorescence 
(lower) and phase contrast microscopy images of 3D4/21 cells in the experimental and control 
groups. The green, fluorescent marks were Calcein-stained live cells, and the red fluorescent marks 
were PI-stained dead cells. (b) The difference in the relative fluorescence (RFU) values of 3D4/21 cell 
apoptosis between the experimental and control groups. (c) The difference in the RFU values of 
PK15 cell apoptosis between the experimental and control groups. (d) The difference in the RFU 
values of PAVEC cell apoptosis between the experimental and control groups. (e) Analysis of the 
difference in the expression levels of inflammatory cytokines in 3D4/21 cells between the experi-
mental and control groups. (f) Analysis of the difference in the expression levels of inflammatory 
cytokines in PK15 cells between the experimental and control groups. (g) Analysis of the difference 
in the expression levels of inflammatory cytokines in PAVEC cells between the experimental and 
control groups. * p < 0.05; ** p < 0.01; and ns = not significant. 
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Figure 1. Constructions and verification of the in vitro GPS infection model. (a) The fluorescence
(lower) and phase contrast microscopy images of 3D4/21 cells in the experimental and control groups.
The green, fluorescent marks were Calcein-stained live cells, and the red fluorescent marks were
PI-stained dead cells. (b) The difference in the relative fluorescence (RFU) values of 3D4/21 cell
apoptosis between the experimental and control groups. (c) The difference in the RFU values of PK15
cell apoptosis between the experimental and control groups. (d) The difference in the RFU values of
PAVEC cell apoptosis between the experimental and control groups. (e) Analysis of the difference in
the expression levels of inflammatory cytokines in 3D4/21 cells between the experimental and control
groups. (f) Analysis of the difference in the expression levels of inflammatory cytokines in PK15 cells
between the experimental and control groups. (g) Analysis of the difference in the expression levels
of inflammatory cytokines in PAVEC cells between the experimental and control groups. * p < 0.05;
** p < 0.01; and ns = not significant.

Consistent with 3D4/21 cells, there was no significant difference in the incidence of
apoptosis between the experimental group and the control group in PK15 and PAVEC cells
(Figure 1c,d). The expression of the GPS-induced inflammatory response was detected by
qRT-PCR. As shown in Figure 1f,g, the mRNA levels of some inflammatory factors (IL6,
IL8, and TNF-α) were significantly upregulated in the treatment group compared with the
control group in three cell lines (p < 0.05). Previous studies of GPS-challenged 3D4/21 and
PAVEC cells have also proved that 12 h is the promising time point [13,21]. Thus, we chose
12 h as the ideal time point and conducted follow-up transcriptome analysis.

3.2. Differentially Expressed Genes (DEGs) after GPS Infection

RNA-Seq was used to detect the mRNA expression profiles of GPS-infected cells and
control cells. A total of 20 RNA libraries were constructed with the total RNA extracted
from the following groups: the 3D4/21_WT group, the 3D4/21_GPS group (four replicates
in each group), the PK15_WT group, the PK15_GPS group, the PAVEC_WT group, and the
PAVEC_GPS group (three replicates in each group). Approximately 950 million clean reads
were generated for all of the libraries, and more than 95% of the clean reads per sample
could be mapped to the pig reference genome (Sscrofa11.1), suggesting a good sequence
quality. Principal components analysis (PCA) was consistent among the group replicates
(Figure S2).

Upon comparison of the 3D4/21_WT cells, a total of 1969 significantly DEGs, includ-
ing 1131 upregulated and 838 downregulated genes, were revealed in the 3D4/21_GPS
samples (Figure 2a, Table S2). Differential gene expression analysis between PK15_GPS and
PK15_WT showed 1207 significantly DEGs, including 692 upregulated genes and 515 down-
regulated genes (Figure 2b, Table S2). Differential gene expression analysis between
PAVEC_GPS and PAVEC_WT showed 3564 significantly DEGs, including 1785 upregulated
genes and 1779 downregulated genes (Figure 2c, Table S2). The Venn diagram in Figure 2d
shows that 194 DEGs are shared among the three cells. IPA analysis also provides a refer-
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ence for the molecular function of differential genes. The protein types corresponding to
DEGs mainly include transmembrane receptors, G protein-coupled receptors, translation
regulators, transcription factors, enzymes and kinases. Overall, 24, 19, and 28 putative
transmembrane receptors were upregulated in the 3D4/21_GPS vs. 3D4/21_WT group,
PK15_GPS vs. PK15_WT group, and PAVEC_GPS vs. PAVEC_WT group, respectively
(Figure S3a, Table S3). In addition, a total of 20, 10, and 19 putative G-protein-coupled recep-
tors were upregulated in the 3D4/21_GPS vs. 3D4/21_WT group, PK15_GPS vs. PK15_WT
group, and PAVEC_GPS vs. PAVEC_WT group, respectively (Figure S3b, Table S4).
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Figure 2. Differentially expressed genes (DEGs) analysis. (a) Volcano plot reveals significant DEGs
in the comparison of 3D4/21_GPS vs. 3D4/21_WT. (b) Volcano plot reveals significant DEGs in the
comparison of PK15_GPS vs. PK15_WT. (c) Volcano plot reveals significant DEGs in the compar-
ison of PAVEC_GPS vs. PAVEC _WT. (d) A Venn diagram showing the DEGs identified from the
three comparisons.

A total of six genes, including three receptor genes, were selected for transcriptome
validation. The results showed a consistent upregulation tendency in both the qRT-PCR
and RNA-seq results in three kinds of cells (Figure 3a). As shown in the Figure 3b, both
methods displayed a strong correlation (R2 = 0.76).
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3.3. Enrichment Analysis of DEGs

The DEG functions were identified using the DAVID website. Overall, 219, 204, and
306 significantly enriched entries were identified in the biological process category in the
3D4/21_GPS vs. 3D4/21_WT groups, PK15_GPS vs. PK15_WT groups, and PAVEC_GPS
vs. PAVEC _WT groups (Table S5). In all three comparisons, most of the enriched biological
processes were significantly associated with inflammatory responses, cell proliferation,
growth and apoptosis, gene expression, active oxygen metabolism, and protein phospho-
rylation (Figure 4). In the three comparisons, ten genes (PXK, CSF1, RELB, C3, NFKB2,
IL1A, NR4A1, REL, CD44, and EPHA2) were involved in inflammatory response and the
regulation of inflammatory response in the three comparisons.
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Based on Ingenuity Pathway Analysis (IPA), 177 pathways were significantly enriched
in the 3D4/21_GPS vs. 3D4/21_WT group, among which 16 pathways were downregulated
(Table S6). As shown in Figure 5a, the pulmonary fibrosis idiopathic signaling pathway,
pulmonary healing signaling pathway, cardiac hypertrophy signaling pathway, and S100
family signaling pathway were significantly upregulated. In contrast, signaling pathways,
such as PPAR, were significantly downregulated. A total of 183 significant pathways were
identified in PK15_GPS vs. PK15_WT. Among them, five signaling pathways, such as
PPAR and PPARα/RXRα activation, were significantly downregulated, and the cardiac
hypertrophy signaling, pulmonary fibrosis idiopathic signaling pathway, and S100 family
signaling pathway were significantly upregulated (Table S6, Figure 5b). In the PAVEC_GPS
vs. PAVEC_WT group, 67 significant pathways were identified, including the cachexia
signaling pathway, the pathogen-induced cytokine storm signaling pathway, the role of
pattern recognition receptors in the recognition of bacteria and viruses, the immunogenic
cell death signaling pathway, and the neuroinflammation signaling pathway. Among
them, seven signaling pathways, such as EIF2 signaling, were significantly downregulated
(Table S6, Figure 5c). In terms of diseases and function analysis, 267, 313, and 266 items
were enriched in each of the three cell types (Table S7). For example, the invasion of cells,
activation of cells, and other functions were significantly activated (Figure S4a–c).
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Figure 5. Top ten upregulated and downregulated pathways in three types of cells. If there are less
than 10 items, all of them are displayed. Categories are shown in terms of the z-score, as represented
by the left y-axis and the −log (p-value), represented by the right y-axis. (a) Top ten upregulated and
top ten downregulated pathways in the comparison of 3D4/21_GPS vs. 3D4/21_WT. (b) Top ten
upregulated and top ten downregulated pathways in the comparison of PK15_GPS vs. PK15_WT.
(c) Top ten upregulated and top ten downregulated pathways in the comparison of PAVEC_GPS vs.
PAVEC_WT.
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For interaction networks, there were 25 interaction networks per analysis (Table S8).
The network diagrams of putative common receptors participation are shown in Figure S5.
Run-through analysis with consideration of cell types, putative receptors, signaling path-
ways, and functions further discovered a clear diagram of the biological implications for the
five candidate receptors. As seen in Figure 6, roles of the five putative common receptors
by IPA are involved in cell invasion, adhesion, activation, as well as molecular delivery,
immune response, and organ death, implying the pivotal meanings in mediating GPS
infection. In addition, ICAM1 was involved in three pathways in all three types of cells:
the TREM1 signaling pathway, neuroinflammation signaling pathway, and dendritic cell
maturation. ACKR3 and GPRC5A participate in the S100 family signaling pathway in three
kinds of cells.
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4. Discussion

Pigs are important agricultural animals and provide abundant meat products for
humans [22]. GPS infection can elicit systemic acute inflammation and has been recognized
as one of the major pathogens causing economic losses in the global swine industry [23,24].
Based on the practical needs of the industry, realizing the control and treatment of GPS
through molecular breeding is necessary for disease resistance [9]. The key genes for
disease-resistance breeding remain to be explored. Inflammatory immune response and
inflammatory damage play an important role in the pathogenesis of Glässer’s disease, but
the relevant mechanisms are still unclear [11].

The present research incorporated transcriptome sequencing to analyze the DEGs
between GPS-infected and wild-type cells. The three comparisons showed that GPS in-
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fection of different cell types consistently affected biological processes, such as inflamma-
tory responses, cell proliferation, growth and apoptosis, gene expression, active oxygen
metabolism, and protein phosphorylation regardless of cell type. A series of genes, includ-
ing C3, PXK, CSF1, RELB, NFKB2, IL1A, NR4A1, REL, CD44 and EPHA2, were involved
in inflammation and inflammation regulation in all three cell types. Among these genes,
changes in the expression of acute-phase complement C3 and adhesion molecule CD44
have been previously reported in a study of GPS-infected pig spleens [25]. NR4A1 has been
identified as an important regulator of immune and inflammatory responses [26], while the
EphA2 gene has been shown to interfere with the response to infection in studies of host
interactions with Mycobacterium tuberculosis [27].

At present, the receptors involved in GPS bacterial adhesion and invasion remains
unclear. IPA analysis also gave us some clues about possible receptors. The common puta-
tive membrane receptors of the three cell types are F3, ICAM1, and PLAUR; the common
putative G-protein-coupled receptors are ACKR3 and GPRC5A. Among these five shared re-
ceptors, F3, PLAUR, ICAM1, and ACKR3 also appeared in previous transcriptome analysis
of GPS-infected 3D4/21 cells with different MOI challenges [21]. In studies of African swine
fever (AFV) virus infection, the inflammation in infected porcine alveolar macrophages was
significantly reduced upon inhibition of the F3 transcription [28]. Our study also found that
F3 is closely associated with immune response, antimicrobial response, immune disease
and inflammatory response in GPS infection. The upregulation of ICAM1 induced by E. coli
increased blood–brain barrier breakdown and neuroinflammatory response [29]. ICAM1
regulates the movement of white blood cells, adhesion to blood vessels, and inflammation;
in some viral infections, it has been recognized as the receptor to release virus RNA in the
patient’s host cells, thus exacerbating the infection [30]. Our interaction network analysis
revealed that ICAM1 is associated with GPS-infected immune diseases. ICAM1 functions
primarily through the TREM1 signaling pathway. In studies of acute Streptococcus suis
infection, TREM1 has immunomodulatory functions, which is protective to the occurrence
and development of pathogenic effects [31].

The putative common G protein-coupled receptors, ACKR3 and GPRC5A, play a
vital role in pathological inflammation [32,33]. ACKR3 is a core receptor candidate that
facilitates the entry of HIV-1 and HIV-2 in vitro [34]. It has been increasingly implicated
in neuroinflammation, and its induced disruption of the blood–brain barrier may be a
potential co-pathological mechanism [35]. GPRC5A, a novel putative receptor discovered in
this study, is essential in inflammation and immunity and has been recognized as a potential
new target for inflammation and immunotherapy [33]. GPRC5A knockdown leads to NF-κB
activation, which promotes lung inflammation [36]. The only signaling pathway in which
the two putative G protein-coupled receptors are involved in all three types of cells is the
S100 signaling pathway. The S100 protein family plays a vital role in host immune responses
to a variety of diseases and is involved in both intracellular and extracellular processes,
including apoptosis, migration, protein phosphorylation, differentiation, proliferation,
and inflammation [37]. The S100 calcium-binding protein A4 (S100A4) and S100 calcium-
binding protein A6 (S100A6) genes were significantly upregulated in the lungs, spleen,
and lymph nodes of GPS-infected pigs and GPS-infected PK15 cells [14]. Porcine S100
calcium-binding protein A8 (S100A8) and S100 calcium-binding protein A9 (S100A9) have
been shown to be molecular signatures of GPS responses [38]. In addition, the S100 calcium-
binding protein A12 (S100A12) gene is abundant in the immune tissue of pigs and is
significantly upregulated when infected with GPS [39].

Of the three cell types, 3D4/21, or macrophages, play an essential role as the effector of
the immune response and contribute the first line of pulmonary defense against invading
pathogens [14,40]. As the study points out, macrophages are highly heterogeneous and
plastic when faced with pathogens [41]. In our results, both classical and alternative
activation occurred in macrophages after GPS infection (because the z-score of classical
activation was 1.961, it was not shown in Table S6). Classical and alternative activation
pathways are related to the M1 and M2 polarization of macrophages, respectively. These
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results indicate that macrophages have a high degree of heterogeneity and plasticity when
facing GPS, which is worthy of further study.

This study also has some areas that can be improved. For example, a promised
negative control would be infection with the same serotype of the modified GPS strain that
is not virulent. But this will be challenging work, since the landscape of the virulent factors
for GPS has not been fully discovered. In addition, conducting the same test on cell lines
originating from the porcine respiratory tract might provide more information. In future
studies, we will take these two points into account to provide more definitive insights.

5. Conclusions

In this study, we constructed three types of in vitro GPS infection models and analyzed
the response of different cells to GPS. No significant difference in apoptosis was evident
after 12 h of continuous GPS stimulation in any of the three cell types, whereas inflammatory
factors were significantly upregulated. Subsequent transcriptome analysis revealed that
many genes (C3, CD44, ACKR3, GPRC5A, etc.) and the S100 signaling pathway were
involved in the inflammatory response. The activation of the S100 signaling pathway, along
with the upregulation of candidate receptors, ACKR3 and GPRC5A, are closely associated
with acute inflammation caused by GPS infection. Our findings provide new insights into
the pathological mechanisms underlying systemic inflammation induced caused by GPS
infection in pigs.
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