PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities
Abstract
:1. Introduction
2. Materials and Methods
2.1. Library Preparation and Next-Generation Sequencing (NGS)
2.2. Data Analysis
3. Results
3.1. Clinical Report
3.2. Next Generation Sequencing (NGS)
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nagae, L.M.; Hoon, A.H.; Stashinko, E.; Lin, D.; Zhang, W.; Levey, E.; Wakana, S.; Jiang, H.; Leite, C.C.; Lucato, L.T.; et al. Diffusion Tensor Imaging in Children with Periventricular Leukomalacia: Variability of Injuries to White Matter Tracts. Am. J. Neuroradiol. 2007, 28, 1213–1222. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Confusions in Nomenclature: “Periventricular Leukomalacia” and “White Matter Injury”—Identical, Distinct, or Overlapping? Pediatr. Neurol. 2017, 73, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Neurobiology of Periventricular Leukomalacia in the Premature Infant. Pediatr. Res. 2001, 50, 553–562. [Google Scholar] [CrossRef] [PubMed]
- Folkerth, R.D. Periventricular Leukomalacia: Overview and Recent Findings. Pediatr. Dev. Pathol. 2006, 9, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Pleasure, J.; Pleasure, D. Progress in Periventricular Leukomalacia. Arch. Neurol. 2008, 65, 1291–1295. [Google Scholar] [CrossRef] [PubMed]
- Reddy, N.; Doyle, M.; Hanagandi, P.; Taranath, A.; Dahmoush, H.; Krishnan, P.; Oztekin, O.; Boltshauser, E.; Shroff, M.; Mankad, K. Neuroradiological Mimics of Periventricular Leukomalacia. J. Child Neurol. 2022, 37, 151–167. [Google Scholar] [CrossRef] [PubMed]
- Pascal, A.; de Bruyn, N.; Naulaers, G.; Ortibus, E.; Hanssen, B.; Oostra, A.; de Coen, K.; Sonnaert, M.; Cloet, E.; Casaer, A.; et al. The Impact of Intraventricular Hemorrhage and Periventricular Leukomalacia on Mortality and Neurodevelopmental Outcome in Very Preterm and Very Low Birthweight Infants: A Prospective Population-Based Cohort Study. J. Pediatr. 2023, 262, 113600. [Google Scholar] [CrossRef] [PubMed]
- Dinomais, M.; Hertz-Pannier, L.; Groeschel, S.; Chabrier, S.; Delion, M.; Husson, B.; Kossorotoff, M.; Renaud, C.; Nguyen The Tich, S. Long Term Motor Function after Neonatal Stroke: Lesion Localization above All. Hum. Brain Mapp. 2015, 36, 4793–4807. [Google Scholar] [CrossRef]
- Dalby, R.B.; Chakravarty, M.M.; Ahdidan, J.; Sørensen, L.; Frandsen, J.; Jonsdottir, K.Y.; Tehrani, E.; Rosenberg, R.; Østergaard, L.; Videbech, P. Localization of White-Matter Lesions and Effect of Vascular Risk Factors in Late-Onset Major Depression. Psychol. Med. 2010, 40, 1389–1399. [Google Scholar] [CrossRef]
- Fornage, M.; Beecham, A.H. The Emerging Genetic Landscape of Cerebral White Matter Hyperintensities. Neurology 2019, 92, 355–356. [Google Scholar] [CrossRef]
- Ishikawa, Y.; Katoh, H.; Nakamura, K.; Mori, K.; Negishi, M. Developmental Changes in Expression of Small GTPase RhoG MRNA in the Rat Brain. Mol. Brain Res. 2002, 106, 145–150. [Google Scholar] [CrossRef]
- Ulc, A.; Zeug, A.; Bauch, J.; van Leeuwen, S.; Kuhlmann, T.; ffrench-Constant, C.; Ponimaskin, E.; Faissner, A. The Guanine Nucleotide Exchange Factor Vav3 Modulates Oligodendrocyte Precursor Differentiation and Supports Remyelination in White Matter Lesions. Glia 2019, 67, 376–392. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Villarreal, O.D.; Chen, X.; Zandee, S.; Young, Y.K.; Torok, C.; Lamarche-Vane, N.; Prat, A.; Rivest, S.; Gosselin, D.; et al. QUAKING Regulates Microexon Alternative Splicing of the Rho GTPase Pathway and Controls Microglia Homeostasis. Cell Rep. 2020, 33, 108560. [Google Scholar] [CrossRef] [PubMed]
- Abiko, H.; Fujiwara, S.; Ohashi, K.; Hiatari, R.; Mashiko, T.; Sakamoto, N.; Sato, M.; Mizuno, K. Rho-Guanine Nucleotide Exchange Factors Involved in Cyclic Stretch-Induced Reorientation of Vascular Endothelial Cells. J. Cell Sci. 2015. [CrossRef]
- Nakano, S.; Nishikawa, M.; Kobayashi, T.; Harlin, E.W.; Ito, T.; Sato, K.; Sugiyama, T.; Yamakawa, H.; Nagase, T.; Ueda, H. The Rho Guanine Nucleotide Exchange Factor PLEKHG1 Is Activated by Interaction with and Phosphorylation by Src Family Kinase Member FYN. J. Biol. Chem. 2022, 298, 101579. [Google Scholar] [CrossRef]
- Reinhard, N.R.; Van Der Niet, S.; Chertkova, A.; Postma, M.; Hordijk, P.L.; Gadella, T.W.J., Jr.; Goedhart, J. Identification of Guanine Nucleotide Exchange Factors That Increase Cdc42 Activity in Primary Human Endothelial Cells. Small GTPases 2021, 12, 226–240. [Google Scholar] [CrossRef]
- Traylor, M.; Tozer, D.J.; Croall, I.D.; Lisiecka Ford, D.M.; Olorunda, A.O.; Boncoraglio, G.; Dichgans, M.; Lemmens, R.; Rosand, J.; Rost, N.S.; et al. Genetic Variation in PLEKHG1 Is Associated with White Matter Hyperintensities (n = 11,226). Neurology 2019, 92, e749–e757. [Google Scholar] [CrossRef] [PubMed]
- Gray, K.J.; Kovacheva, V.P.; Mirzakhani, H.; Bjonnes, A.C.; Almoguera, B.; DeWan, A.T.; Triche, E.W.; Saftlas, A.F.; Hoh, J.; Bodian, D.L.; et al. Gene-Centric Analysis of Preeclampsia Identifies Maternal Association at PLEKHG1. Hypertension 2018, 72, 408–416. [Google Scholar] [CrossRef]
- Lahiri, D.K.; Bye, S.; Nurnberger, J.I.; Hodes, M.E.; Crisp, M. A Non-Organic and Non-Enzymatic Extraction Method Gives Higher Yields of Genomic DNA from Whole-Blood Samples than Do Nine Other Methods Tested. J. Biochem. Biophys. Methods 1992, 25, 193–205. [Google Scholar] [CrossRef]
- Treccarichi, S.; Failla, P.; Vinci, M.; Musumeci, A.; Gloria, A.; Vasta, A.; Calabrese, G.; Papa, C.; Federico, C.; Saccone, S.; et al. UNC5C: Novel Gene Associated with Psychiatric Disorders Impacts Dysregulation of Axon Guidance Pathways. Genes 2024, 15, 306. [Google Scholar] [CrossRef]
- Vinci, M.; Costanza, C.; Galati Rando, R.; Treccarichi, S.; Saccone, S.; Carotenuto, M.; Roccella, M.; Calì, F.; Elia, M.; Vetri, L. STXBP6 Gene Mutation: A New Form of SNAREopathy Leads to Developmental Epileptic Encephalopathy. Int. J. Mol. Sci. 2023, 24, 16436. [Google Scholar] [CrossRef] [PubMed]
- Calì, F.; Forster, P.; Kersting, C.; Mirisola, M.G.; D’Anna, R.; De Leo, G.; Romano, V. DXYS156: A Multi-Purpose Short Tandem Repeat Locus for Determination of Sex, Paternal and Maternal Geographic Origins and DNA Fingerprinting. Int. J. Legal Med. 2002, 116, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Desvignes, J.-P.; Bartoli, M.; Delague, V.; Krahn, M.; Miltgen, M.; Béroud, C.; Salgado, D. VarAFT: A Variant Annotation and Filtration System for Human next Generation Sequencing Data. Nucleic Acids Res. 2018, 46, W545–W553. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed]
- Kopanos, C.; Tsiolkas, V.; Kouris, A.; Chapple, C.E.; Albarca Aguilera, M.; Meyer, R.; Massouras, A. VarSome: The Human Genomic Variant Search Engine. Bioinformatics 2019, 35, 1978–1980. [Google Scholar] [CrossRef] [PubMed]
- Cheng, J.; Randall, A.; Baldi, P. Prediction of Protein Stability Changes for Single-site Mutations Using Support Vector Machines. Proteins: Struct. Funct. Bioinform. 2006, 62, 1125–1132. [Google Scholar] [CrossRef]
- Bell, E.W.; Schwartz, J.H.; Freddolino, P.L.; Zhang, Y. PEPPI: Whole-Proteome Protein-Protein Interaction Prediction through Structure and Sequence Similarity, Functional Association, and Machine Learning. J. Mol. Biol. 2022, 434, 167530. [Google Scholar] [CrossRef]
- Amato, F.; Bellia, C.; Cardillo, G.; Castaldo, G.; Ciaccio, M.; Elce, A.; Lembo, F.; Tomaiuolo, R. Extensive Molecular Analysis of Patients Bearing CFTR-Related Disorders. J. Mol. Diagn. 2012, 14, 81–89. [Google Scholar] [CrossRef] [PubMed]
- Similuk, M.N.; Yan, J.; Ghosh, R.; Oler, A.J.; Franco, L.M.; Setzer, M.R.; Kamen, M.; Jodarski, C.; DiMaggio, T.; Davis, J.; et al. Clinical Exome Sequencing of 1000 Families with Complex Immune Phenotypes: Toward Comprehensive Genomic Evaluations. J. Allergy Clin. Immunol. 2022, 150, 947–954. [Google Scholar] [CrossRef] [PubMed]
- Pharoah, P.; Adi, Y. Consequences of In-Utero Death in a Twin Pregnancy. Lancet 2000, 355, 1597–1602. [Google Scholar] [CrossRef]
- Ong, S.; Zamora, J.; Khan, K.; Kilby, M. Prognosis for the Co-twin Following Single-twin Death: A Systematic Review. BJOG Int. J. Obstet. Gynaecol. 2006, 113, 992–998. [Google Scholar] [CrossRef]
- Ichinomiya, K.; Maruyama, K.; Koizumi, A.; Inoue, F.; Fukuda, K.; Kaburagi, K.; Miyakawa, Y. Comparison of Neurodevelopmental Outcomes between Monochorionic and Dichorionic Twins with Birth Weight ≤ 1500 g in Japan: A Register-Based Cohort Study. J. Perinatol. 2018, 38, 1407–1413. [Google Scholar] [CrossRef]
- Taylor, C.L.; de Groot, J.; Blair, E.M.; Stanley, F.J. The Risk of Cerebral Palsy in Survivors of Multiple Pregnancies with Cofetal Loss or Death. Am. J. Obstet. Gynecol. 2009, 201, 41.e1–41.e6. [Google Scholar] [CrossRef]
- Hack, K.E.A.; Koopman-Esseboom, C.; Derks, J.B.; Elias, S.G.; de Kleine, M.J.K.; Baerts, W.; Go, A.T.J.I.; Schaap, A.H.P.; van der Hoeven, M.A.H.B.M.; Eggink, A.J.; et al. Long-Term Neurodevelopmental Outcome of Monochorionic and Matched Dichorionic Twins. PLoS ONE 2009, 4, e6815. [Google Scholar] [CrossRef]
- Hatzidaki, E.; Giahnakis, E.; Maraka, S.; Korakaki, E.; Manoura, A.; Saitakis, E.; Papamastoraki, I.; Margari, K.; Giannakopoulou, C. Risk Factors for Periventricular Leukomalacia. Acta Obs. Gynecol Scand 2009, 88, 110–115. [Google Scholar] [CrossRef]
- Gotardo, J.W.; de Volkmer, N.F.V.; Stangler, G.P.; Dornelles, A.D.; de Athayde Bohrer, B.B.; Carvalho, C.G. Impact of Peri-Intraventricular Haemorrhage and Periventricular Leukomalacia in the Neurodevelopment of Preterms: A Systematic Review and Meta-Analysis. PLoS ONE 2019, 14, e0223427. [Google Scholar] [CrossRef]
- Volpe, J.J. Brain Injury in Premature Infants: A Complex Amalgam of Destructive and Developmental Disturbances. Lancet Neurol. 2009, 8, 110–124. [Google Scholar] [CrossRef]
- Rezaie, P.; Dean, A. Periventricular Leukomalacia, Inflammation and White Matter Lesions within the Developing Nervous System. Neuropathology 2002, 22, 106–132. [Google Scholar] [CrossRef] [PubMed]
- Kinney, H.C.; Haynes, R.L.; Xu, G.; Andiman, S.E.; Folkerth, R.D.; Sleeper, L.A.; Volpe, J.J. Neuron Deficit in the White Matter and Subplate in Periventricular Leukomalacia. Ann. Neurol. 2012, 71, 397–406. [Google Scholar] [CrossRef]
- Trojani, A.; Greco, A.; Tedeschi, A.; Lodola, M.; Di Camillo, B.; Ricci, F.; Turrini, M.; Varettoni, M.; Rattotti, S.; Morra, E. Microarray Demonstrates Different Gene Expression Profiling Signatures Between Waldenström Macroglobulinemia and IgM Monoclonal Gammopathy of Undetermined Significance. Clin. Lymphoma Myeloma Leuk. 2013, 13, 208–210. [Google Scholar] [CrossRef]
- Dupuis, A.; Hamilton, D.; Cole, D.E.C.; Corey, M. Cystic Fibrosis Birth Rates in Canada: A Decreasing Trend since the Onset of Genetic Testing. J. Pediatr. 2005, 147, 312–315. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-C.; Keenan, K.; Gong, J.; Panjwani, N.; Avolio, J.; Lin, F.; Adam, D.; Barrett, P.; Bégin, S.; Berthiaume, Y.; et al. Cystic Fibrosis–Related Diabetes Onset Can Be Predicted Using Biomarkers Measured at Birth. Genet. Med. 2021, 23, 927–933. [Google Scholar] [CrossRef]
- Hoffman, G.R.; Cerione, R.A. Signaling to the Rho GTPases: Networking with the DH Domain. FEBS Lett. 2002, 513, 85–91. [Google Scholar] [CrossRef]
- Rossman, K.L.; Der, C.J.; Sondek, J. GEF Means Go: Turning on RHO GTPases with Guanine Nucleotide-Exchange Factors. Nat. Rev. Mol. Cell Biol. 2005, 6, 167–180. [Google Scholar] [CrossRef]
- Jaiswal, M.; Dvorsky, R.; Ahmadian, M.R. Deciphering the Molecular and Functional Basis of Dbl Family Proteins. J. Biol. Chem. 2013, 288, 4486–4500. [Google Scholar] [CrossRef]
- Jaiswal, M.; Gremer, L.; Dvorsky, R.; Haeusler, L.C.; Cirstea, I.C.; Uhlenbrock, K.; Ahmadian, M.R. Mechanistic Insights into Specificity, Activity, and Regulatory Elements of the Regulator of G-Protein Signaling (RGS)-Containing Rho-Specific Guanine Nucleotide Exchange Factors (GEFs) P115, PDZ-RhoGEF (PRG), and Leukemia-Associated RhoGEF (LARG). J. Biol. Chem. 2011, 286, 18202–18212. [Google Scholar] [CrossRef]
- Mosaddeghzadeh, N.; Ahmadian, M.R. The RHO Family GTPases: Mechanisms of Regulation and Signaling. Cells 2021, 10, 1831. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.M.; Arndt, K.M. Coiled Coil Domains: Stability, Specificity, and Biological Implications. ChemBioChem 2004, 5, 170–176. [Google Scholar] [CrossRef]
- Grigoryan, G.; Keating, A. Structural Specificity in Coiled-Coil Interactions. Curr. Opin. Struct. Biol. 2008, 18, 477–483. [Google Scholar] [CrossRef] [PubMed]
- Weinkam, P.; Chen, Y.C.; Pons, J.; Sali, A. Impact of Mutations on the Allosteric Conformational Equilibrium. J. Mol. Biol. 2013, 425, 647–661. [Google Scholar] [CrossRef]
- Leander, M.; Yuan, Y.; Meger, A.; Cui, Q.; Raman, S. Functional Plasticity and Evolutionary Adaptation of Allosteric Regulation. Proc. Natl. Acad. Sci. USA 2020, 117, 25445–25454. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, D.; Tang, W.; An, H.; Zhang, Y. Discovery of Plasma Messenger RNA as Novel Biomarker for Gastric Cancer Identified through Bioinformatics Analysis and Clinical Validation. PeerJ 2019, 7, e7025. [Google Scholar] [CrossRef]
- Zhao, S.; Li, J.; Zhang, H.; Qi, L.; Du, Y.; Kogiso, M.; Braun, F.K.; Xiao, S.; Huang, Y.; Li, J.; et al. Epigenetic Alterations of Repeated Relapses in Patient-Matched Childhood Ependymomas. Nat. Commun. 2022, 13, 6689. [Google Scholar] [CrossRef]
- Martinelli, S.; Krumbach, O.H.F.; Pantaleoni, F.; Coppola, S.; Amin, E.; Pannone, L.; Nouri, K.; Farina, L.; Dvorsky, R.; Lepri, F.; et al. Functional Dysregulation of CDC42 Causes Diverse Developmental Phenotypes. Am. J. Hum. Genet. 2018, 102, 309–320. [Google Scholar] [CrossRef]
- Kadhim, H.; Khalifa, M.; Deltenre, P.; Casimir, G.; Sébire, G. Molecular Mechanisms of Cell Death in Periventricular Leukomalacia. Neurology 2006, 67, 293–299. [Google Scholar] [CrossRef] [PubMed]
- Kaur, C.; Ling, E.A. Periventricular White Matter Damage in the Hypoxic Neonatal Brain: Role of Microglial Cells. Prog. Neurobiol. 2009, 87, 264–280. [Google Scholar] [CrossRef]
- Yuan, Q.; Jiang, L.; Zhu, L.; Yu, D. Impacts of Erythropoietin on Vascular Endothelial Growth Factor Receptor 2 by the Extracellular Signal-Regulated Kinase Signaling Pathway in a Neonatal Rat Model of Periventricular White Matter Damage. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2016, 38, 217–221. [Google Scholar] [CrossRef]
- Oettinghaus, B.; Licci, M.; Scorrano, L.; Frank, S. Less than Perfect Divorces: Dysregulated Mitochondrial Fission and Neurodegeneration. Acta Neuropathol. 2012, 123, 189–203. [Google Scholar] [CrossRef] [PubMed]
- Serdar, M.; Herz, J.; Kempe, K.; Winterhager, E.; Jastrow, H.; Heumann, R.; Felderhoff-Müser, U.; Bendix, I. Protection of Oligodendrocytes Through Neuronal Overexpression of the Small GTPase Ras in Hyperoxia-Induced Neonatal Brain Injury. Front. Neurol. 2018, 9. [Google Scholar] [CrossRef]
- Koop, K.; Yuan, W.; Tessadori, F.; Rodriguez-Polanco, W.R.; Grubbs, J.; Zhang, B.; Osmond, M.; Graham, G.; Sawyer, S.; Conboy, E.; et al. Macrocephaly and Developmental Delay Caused by Missense Variants in RAB5C. Hum. Mol. Genet. 2023, 32, 3063–3077. [Google Scholar] [CrossRef]
- Barlow, H.R.; Cleaver, O. Building Blood Vessels—One Rho GTPase at a Time. Cells 2019, 8, 545. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.-K.; Kim, J.-G.; Kim, H.-J.; Cho, J.-Y.; Jeong, H.; Park, Y.; Islam, R.; Cap, C.K.; Park, J.-B. Regulation of RhoA GTPase and Novel Target Proteins for ROCK. Small GTPases 2020, 11, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Aspenström, P. Fast-Cycling Rho GTPases. Small GTPases 2020, 11, 248–255. [Google Scholar] [CrossRef] [PubMed]
- Yigit, G.; Saida, K.; DeMarzo, D.; Miyake, N.; Fujita, A.; Yang Tan, T.; White, S.M.; Wadley, A.; Toliat, M.R.; Motameny, S.; et al. The Recurrent Postzygotic Pathogenic Variant p.Glu47Lys in RHOA Causes a Novel Recognizable Neuroectodermal Phenotype. Hum. Mutat. 2020, 41, 591–599. [Google Scholar] [CrossRef] [PubMed]
Tool | Significance | Score |
---|---|---|
MetaRNN | Pathogenic Strong | 0.9629 |
BayesDeladdAF | Pathogenic Moderate | 0.3782 |
BayesDelnoAF | Pathogenic Moderate | 0.3055 |
REVEL | Pathogenic Moderate | 0.906 |
MetaLR | Uncertain | 0.7318 |
MetaSVM | Uncertain | 0.7608 |
CADD | Pathogenic Supporting | 27.3 |
EIGEN | Pathogenic Moderate | 0.9774 |
EIGEN PC | Pathogenic Moderate | 0.8997 |
Mutation assessor | Pathogenic Moderate | 3.705 |
MutPred | Pathogenic Moderate | 0.855 |
FATHMM-MKL | Pathogenic Supporting | 0.9912 |
LIST-S2 | Pathogenic Supporting | 0.9889 |
LRT | Pathogenic Supporting | 0 |
MVP | Pathogenic Supporting | 0.9612 |
PolyPhen2 | Probably Damaging | 0.998 |
SIFT | Pathogenic Supporting | 0.001 |
DEOGEN2 | Benign Supporting | 0.3109 |
BLOSUM | Uncertain | −1 |
DANN | Damaging | 0.9981 |
FATHMM | Tolerated | −1.1 |
FATHMM-XF | Damaging | 0.8462 |
M-CAP | Damaging | 0.1503 |
MutationTaster | Disease causing | 0.9999 |
PrimateAI | Tolerated | 0.7779 |
PROVEAN | Damaging | −4.37 |
SIFT4G | Damaging | 0.007 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Calì, F.; Vinci, M.; Treccarichi, S.; Papa, C.; Gloria, A.; Musumeci, A.; Federico, C.; Vitello, G.A.; Nicotera, A.G.; Di Rosa, G.; et al. PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities. Genes 2024, 15, 1096. https://doi.org/10.3390/genes15081096
Calì F, Vinci M, Treccarichi S, Papa C, Gloria A, Musumeci A, Federico C, Vitello GA, Nicotera AG, Di Rosa G, et al. PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities. Genes. 2024; 15(8):1096. https://doi.org/10.3390/genes15081096
Chicago/Turabian StyleCalì, Francesco, Mirella Vinci, Simone Treccarichi, Carla Papa, Angelo Gloria, Antonino Musumeci, Concetta Federico, Girolamo Aurelio Vitello, Antonio Gennaro Nicotera, Gabriella Di Rosa, and et al. 2024. "PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities" Genes 15, no. 8: 1096. https://doi.org/10.3390/genes15081096
APA StyleCalì, F., Vinci, M., Treccarichi, S., Papa, C., Gloria, A., Musumeci, A., Federico, C., Vitello, G. A., Nicotera, A. G., Di Rosa, G., Vetri, L., Saccone, S., & Elia, M. (2024). PLEKHG1: New Potential Candidate Gene for Periventricular White Matter Abnormalities. Genes, 15(8), 1096. https://doi.org/10.3390/genes15081096