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Abstract: Consumer perception of beef is heavily influenced by overall meat quality, a critical factor
in the cattle industry. Genomics has the potential to improve important beef quality traits and
identify genetic markers and causal variants associated with these traits through genomic selection
(GS) and genome-wide association studies (GWAS) approaches. Transcriptomics, proteomics, and
metabolomics provide insights into underlying genetic mechanisms by identifying differentially
expressed genes, proteins, and metabolic pathways linked to quality traits, complementing GWAS
data. Leveraging these functional genomics techniques can optimize beef cattle breeding for enhanced
quality traits to meet high-quality beef demand. This paper provides a comprehensive overview of the
current state of applications of omics technologies in uncovering functional variants underlying beef
quality complexities. By highlighting the latest findings from GWAS, GS, transcriptomics, proteomics,
and metabolomics studies, this work seeks to serve as a valuable resource for fostering a deeper
understanding of the complex relationships between genetics, gene expression, protein dynamics,
and metabolic pathways in shaping beef quality.

Keywords: beef cattle; functional genomics; genomic selection; GWAS; meat quality; molecular
breeding; omics technologies

1. Introduction

Beef quality is defined by several traits that influence the eating experience and
desirability of the meat. Key traits include palatability factors such as tenderness, juiciness,
and flavor, which directly impact consumer satisfaction [1]. Tenderness refers to the
ease of chewing and breaking down the meat, while juiciness is the moisture released
during mastication [2]. Flavor encompasses the combined sensations of taste and aroma
that make the meat appealing [3]. Visual characteristics like meat color, fat color, and
marbling also play a crucial role in perceived quality [4]. The bright, desirable lean color,
white fat color, and intramuscular fat distribution (marbling) enhance the appearance
and contribute to flavor and juiciness [5]. Other traits like water-holding capacity, pH,
and intramuscular fat content further influence overall quality, shelf life, and sensory
properties [6,7]. This complex array of beef quality traits is shaped by the relationships
between genetic factors, breed influences, nutrition, management practices, and post-
harvest handling procedures [8]. These factors make beef quality a challenging target for
traditional breeding strategies. However, the availability of high-quality bovine genome
assemblies coupled with the advent of high-throughput sequencing technologies has paved
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the way for the integration of omics technologies, encompassing genomics, transcriptomics,
proteomics, and metabolomics, to unravel the complex mechanisms underlying beef quality.

The multi-omics approach has the power to resolve the meat quality research into
an image of what is being expressed, translated, and produced, which incorporates tech-
nologies characterizing various biological products, including DNA (genomics), RNA
(transcriptomics), protein (proteomics), and metabolites (metabolomics) in biological sam-
ples. Genomic approaches, such as genome-wide association studies (GWAS) and genomic
selection (GS), have provided valuable insights into the genetic architecture of beef quality
traits. While these methods have identified several genetic markers and regions associated
with these traits, their practical application in enhancing beef quality through selective
breeding remains limited and requires further research and validation. These techniques
enable the identification and utilization of functional variants associated with desirable
phenotypes, thereby accelerating genetic improvement and enhancing the efficiency of
breeding programs. Transcriptomics, which examines the expression patterns of genes,
provides insights into the molecular pathways and regulatory networks governing muscle
development, metabolism, and meat quality attributes. Proteomics, on the other hand,
offers a comprehensive view of the functional proteins involved in these processes, elucidat-
ing their roles and interactions. Complementing these approaches, metabolomics unveils
the complex metabolic landscapes that shape the biochemical composition and sensory
properties of beef. This article aims to summarize the latest findings from these advanced
scientific approaches in beef quality genetics. By exploring research from GWAS, genomic
selection, transcriptomics, proteomics, and metabolomics, we seek to provide a compre-
hensive understanding of how genetic factors, gene expression, proteins, and metabolic
processes influence beef quality. The goal is to offer valuable insights for researchers and
industry professionals, potentially improving breeding strategies and production methods
to enhance beef quality.

2. Functional Mutations and Commercialized DNA Tests for Beef Quality

At the beginning of the genomics era during the 1980s, the primary application of this
technology in livestock breeding revolved around developing standalone genome marker
tests, particularly for identifying inherited diseases and parentage testing. However, as the
field progressed, the focus shifted towards integrating quantitative and genomic approaches
to identify genomic variants with substantial effects on desirable traits of interest. These
DNA tests were then leveraged in breeding programs, enabling breeders to make more
informed decisions by selecting animals with favorable genetic profiles for specific traits,
thereby accelerating genetic improvement in livestock populations.

Kostusiak et al. [9] provided a comprehensive review of the effects of single nucleotide
polymorphisms (SNPs) in four key genes—myostatin (MSTN), thyroglobulin 5 (TG5), µ-
calpain (CAPN1), and calpastatin (CAST)—on beef cattle productivity and meat quality
traits. MSTN is a negative regulator of muscle growth. Inactivating mutations or suppres-
sion of the MSTN gene leads to a “double-muscled” phenotype with increased muscle mass
and reduced fat deposition in cattle breeds like Belgian Blue and Piedmontese [10]. Meat
from MSTN-null cattle exhibits improved tenderness across all cuts, including typically
tougher cuts like chuck and round. This is likely due to increased muscle fiber hyperplasia
rather than just hypertrophy [11]. While inactivating the MSTN gene can dramatically
increase muscle yields and tenderness in beef cattle, it comes at the cost of reduced marbling
and juiciness. An optimal approach leverages MSTN alongside other genes to strike a
balance between production efficiency, leanness, and eating quality traits like tenderness
and flavor. Esmailizadeh et al. [12] investigated the effects of a specific single nucleotide
polymorphism (SNP) in the myostatin (MSTN) gene, resulting in a phenylalanine to leucine
substitution at position 94 (F94L), on various beef production and quality traits. The F94L
variant of MSTN was found to provide a more desirable intermediate phenotype than the
severe double-muscling caused by complete MSTN inactivation, offering improved meat
yield while maintaining acceptable meat quality traits like tenderness [12].
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Polymorphisms in the thyroglobulin (TG5) gene can significantly impact beef quality,
particularly in terms of intramuscular fat (IMF) content and marbling. The TG5 gene is
located on bovine chromosome 14 and encodes the thyroglobulin protein, which plays
a role in fat metabolism. Wood et al. [13], in their meta-analysis, found that there was
a positive association between the polymorphic forms of TG5 and the degree of meat
marbling. A specific single nucleotide polymorphism (SNP) in the 5′ untranslated region of
TG5, characterized by a C > T transition at position −422 (X05380.1:g.−422 C > T), has been
widely studied [9]. The TG5 C allele has been associated with higher levels of IMF and
increased marbling scores in beef cattle across multiple breeds [13]. Highly marbled beef,
particularly from breeds such as Hanwoo and Wagyu, is valued for its tenderness, flavor,
and overall palatability, which are significantly influenced by intramuscular fat (IMF) and
marbling characteristics [14,15]. However, some consumers, especially those in developed
countries, prefer leaner beef with a lower fat content for health reasons, creating a conflict
with the preference for marbled, flavorful meat in blind taste tests. Research indicates that
higher levels of IMF, especially those enriched with monounsaturated fatty acids like oleic
acid, enhance sensory attributes such as juiciness and flavor, contributing to consumer
preference in markets like the U.S., Japan, and Korea [14]. Studies show that marbling fleck
characteristics, including their size and distribution, impact the sensory quality of beef,
with finer marbling generally preferred over coarser types [16]. Additionally, the genetic
predisposition of certain breeds, such as the Japanese Black, to produce high marbling
levels positions them as premium products, aligning with findings that suggest consuming
such beef does not elevate cardiovascular disease risk factors, thus promoting both flavor
and health benefits [14,17].

CAPN1 and CAST genes encode the calpain and calpastatin enzymes that regulate
protein degradation and meat tenderization post-mortem. CAPN1 encodes the enzyme µ-
calpain, which is a calcium-dependent cysteine protease that breaks down muscle proteins
during the meat tenderization process after slaughter. CAST encodes the protein calpastatin,
which is an endogenous inhibitor of µ-calpain and other calpain enzymes, thereby modu-
lating the extent of protein degradation and meat tenderization. Studies across multiple
breeds have validated SNP markers in CAPN1 (e.g., 316, 530, 4558, 4684) and CAST (e.g.,
282, 589) as useful for marker-assisted selection to improve beef tenderness [18–20].

Polymorphisms in CAPN1 that beneficially associate with beef tenderness are reported
to antagonistically associate with calving day in beef heifers [21] and post-partum interval
to estrus in beef cows [22]. However, the results of Cushman et al. [23] indicate that
molecular breeding for slice shear force, calculated based on CAPN1 and calpastatin (CAST)
genotypes, had minimal or no antagonistic association with reproductive performance
in heifers. Table 1 lists some of the commercially available DNA tests for beef quality,
although there are more tests in the literature that are being offered to farmers.

Table 1. A list of some of the commercialized DNA tests for beef quality.

Gene Symbol Beef Attribute Discovered by Commercialized by

TG Marbling CSIRO/MLA Genetic Solutions Pty Ltd. (Albion,
QLD, Australia)

CAST Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd.

CAPN1 Meat tenderness USDA/AgResearch NZ Open

GH1 Marbling NIAS, Japan Prescribe Genomics Co. (Ibaraki, Japan)

LEP Marbling/fat traits Univ. of Saskatchewan Merial, Inc. (Duluth, GA, USA)

Multiple tests Marbling - Genetic Solutions Pty Ltd.

CAPN3 Meat tenderness CSIRO/MLA/Beef CRC Genetic Solutions Pty Ltd.

SCD Fatty acid composition Kobe University Prescribe Genomics CO

The contents of the table were adopted from Hocquette et al. [24] and adjusted for beef quality traits.
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The integration of functional mutations in genes such as MSTN, TG5, CAPN1, and
CAST has led to the development of commercial DNA tests that enhance beef quality traits
like tenderness, marbling, and flavor. However, future research should focus on optimizing
these genetic advancements alongside animal welfare and environmental factors to ensure
sustainable production. Additionally, exploring the interactions between genetic traits and
management practices will be crucial for fully realizing the potential of these genomic tools
in the beef industry.

3. Genome-Wide Association Studies for Beef Quality Traits

Initial genome-wide scans to locate quantitative trait loci (QTL) for beef quality traits
were based on linkage analysis within families. For example, Esmailizadeh et al. [1] reported
a whole-genome scan to detect QTL for meat quality traits like tenderness (measured as a
shear force on two muscles), meat color, pH, and cooking loss, as well as metabolic traits
in cattle populations from New Zealand and Australia. The study used backcross calves
with Jersey and Limousin backgrounds, with the New Zealand cattle reared on pasture and
the Australian cattle finished on grain. A total of 18 significant QTL for meat quality traits
and 11 significant QTL for metabolic traits were detected across multiple chromosomes.
Genome-wide association studies (GWAS), available since 2005 in human genetics, are
based on linkage disequilibrium at the level of a population and involve scanning the entire
genome for single nucleotide polymorphisms (SNPs) that are statistically associated with
a particular phenotype of interest. GWAS have been successful in the identification of
numerous genetic variants associated with complex traits for uncovering novel biological
pathways and elucidating the genetic architecture of various traits [25].

Genome association studies provide knowledge about the genetic architecture of
beef-related traits that allows linking the target phenotype to genomic information, aid-
ing breeding decisions. GWAS in cattle breeds like Hanwoo (Korean native cattle) have
identified 107 significant SNPs on chromosome 14 and candidate genes associated with
economically important beef quality traits such as marbling, meat color, texture, and fat
color [26]. Nearby genes like SFT2 Domain Containing 3 (SFT2D3) and Ectonucleotide Py-
rophosphatase/Phosphodiesterase 2 (ENPP2) have been highlighted as potential candidate
genes affecting beef traits such as marbling and meat color [26].

GWAS results from the study of Forutan et al. [27] implicate some interesting candidate
genes (KIF13A and APOB) for eating quality. Kinesin Family 13A (KIF13A) is in a pathway
associated with skeletal muscle cells that increases insulin signaling, glucose uptake, and
maximal oxygen consumption [28]. Apolipoprotein B (APOB) is a building block of a type
of lipoprotein called chylomicron. As food is digested, chylomicrons form to carry fat and
cholesterol from the intestine into the bloodstream [27].

A recent study [29] performed genome-wide association analyses on Nellore cattle to
identify genomic regions and candidate genes influencing carcass traits and meat quality
traits (shear force, marbling score, and intramuscular fat content). The top 10 genomic
regions explained 8–22% of the additive genetic variance for these traits, harboring a
total of 119–155 positional candidate genes. Relevant genes like CAST, PLAG1, XKR4,
PLAGL2, AQP3/AQP7, MYLK2, WWOX, CARTPT, and PLA2G16 are involved in physiologi-
cal processes affecting muscle growth, lipid metabolism, adipose tissue development, and
signaling pathways like the insulin/IGF-1 pathway.

Mateescu et al. [30] explored the complexity of meat quality by combining GWAS with
gene network analysis to identify genes and pathways associated with meat quality traits
like tenderness, juiciness, and flavor in Angus cattle. They revealed several modules of
co-expressed genes associated with meat quality traits. Key genes identified included CAST
and CAPN1 for tenderness, FASN and SCD for marbling, and MYOZ1, MYOZ3, and CASQ1
for color score. The study highlights the utility of network analysis for identifying candidate
genes from GWAS results in beef cattle. Several beef cattle studies conducted GWAS to
identify genomic regions associated with marbling score, intramuscular fat deposition,
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and fatty acid composition and revealed several significant SNPs and candidate genes on
different chromosomes associated with specific fatty acids and fat content (Table 2).

Table 2. Some of the published significant GWAS results for beef quality traits.

Beef Attribute Population Sample
Size

Genotyping
Platform Significant Genomic Regions/Genes Reference

Tenderness Angus cattle 1833
Illumina

BovineSNP50
BeadChip

CAST and CAPN1 for tenderness [30]

Marbling score Simmental bulls 785
Illumina

BovineHD
BeadChip

TUBB1 and RPL27A for marbling
score [31]

Warner–Bratzler
Shear Force

(WBSF), marbling,
cooking loss,
tenderness,

juiciness,
connective tissue

and flavor

Multibreed
Angus–Brahman

steers
672

GGP Bovine
F-250 chip
containing

221,077 SNPs

LRP5, COL3A1, GRIP1, RECQL5,
ANO2, NTF3, CD36, GPR98, MMRN2

and GOSR2.
[32]

Marbling score,
meat texture, meat
color, and fat color

Hanwoo steers 2110

Illumina
Bovine SNP50

BeadChip
imputed to a

higher density
of 15,536,497

SNPs

SFT2D3 (marbling) located on BTA2,
ENPP2 (meat color) on BTA14,

CPAMD8 on BTA7 and RHCG on
BTA21 for fat color

[26]

Tenderness,
marbling, and

flavor, marbling,
Warner–Bratzler

shear force (WBSF),
tenderness, and

connective tissue

Angus-sired
population of

steers, bulls, and
cows progeny

2268

Bovine SNP50
Infinium II
BeadChip

imputed to 44.3
million SNPs

Tenderness: CAST and CAPN1;
WBSF: CAPN1, AGAP1, ANXA10,

CCDC80, Connective Tissue: UTRN,
TMX1, TMEM170B; Marbling: EGR2,

RNF130, C1QTNF8, SOX8, SSTR5,
TEKT4, SLC20A2

[33]

Meat color, purge
loss, cooking loss,

meat pH,
Warner–Bratzler

shear force.

Piedmontese
young bulls 1166

GeneSeek
Genomic

Profiler Bovine
LD’ (GGP

Bovine LD)
array

containing
30,111 SNPs

SNPs on BTA4 (at ~112.51 Mb),
BTA23 (at ~3.91 and ~7.25 Mb),

BTA24 (at ~19.87 Mb), and BTA25 (at
~11.96 Mb) for meat color. Water

holding capacity: one SNP located on
BTA9 (at ~48.33 Mb) for purge loss,
and two SNPs located on BTA6 (at

~29.23 Mb) and on BTA10 (at
~14.57 PMb) for cooking loss, one
SNP on BTA8 (at ~28.46 Mb) for

meat pH.

[34]

Color, aroma,
tenderness,

juiciness, and
palatability

Hanwoo steers 250

Affymetrix
Bovine Axiom

Array 640K
SNP chip

Three pleiotropic SNPs (AX-26703353
and AX-26742891 on BTA6, and

AX-18624743 on BTA10) influenced
multiple traits like tenderness,

juiciness, and palatability

[35]
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Table 2. Cont.

Beef Attribute Population Sample
Size

Genotyping
Platform Significant Genomic Regions/Genes Reference

Oleic acid (C18:1)
content in the

intramuscular fat

Japanese Black
cattle 160 BovineSNP50

BeadChip

A total of 32 SNPs, including the
FASN gene, had significant effects on

C18:1 levels, with 30 SNPs located
between 49 and 55 Mbp on

chromosome 19

[36]

Fatty acid
composition

Chinese Simmental
beef

cattle
723

Illumina
BovineHD
BeadChip

SNPs near the FASN gene on BTA19
for C14:0 and C14:1, and the ELOVL5

gene on BTA23 for C14:0.
[37]

Marbling score
and tenderness

Crossbred beef
cattle 747 BovineSNP50

BeadChip

One SNP (BTA-60019) on BTA25
accounted for 2.67% of the variation

in tenderness.
[38]

Fatty acid
composition

Japanese Black
cattle 461 BovineSNP50

BeadChip

FASN gene on BTA19, one SNP for
C18:1 on BTA23, two SNPs for C16:0
on BTA25, and two SNPs for C14:1

near the SCD gene on BTA26.

[39]

Fatty acid
composition

Angus beef
cattle 1713 BovineSNP50

BeadChip FASN, SCD and THRSP genes [40]

Intramuscular fat
deposition and

composition
Nellore steers 585

Illumina
BovineHD
BeadChip

SNPs near the FASN gene on BTA19
for C16:0 and C18:1 fatty acids, and
SNPs on BTA7 for intramuscular fat

percentage

[41]

Fatty acid
composition

American Black
Angus calves 2177

574,662 SNPs
imputed from
BovineSNP50
BeadChip and

BovineHD
BeadChip

Candidate genes FABP2, FASN,
FADS2, FADS3 and SCD [42]

Fatty acid
composition Nellore cattle 1057

Illumina
BovineHD
BeadChip

SNPs near the FASN gene on BTA19
for C16:0 and C18:1 and the SCD

gene on BTA26 for C14:1 and C16:1.,
THRSP, ELOVL6 and FADS2

[43]

Eating quality
traits: scores for

tenderness,
juiciness, flavor
overall liking

Steers, heifers, and
bulls from

Brahman, Angus,
Hereford,
Shorthorn,

Holstein, Jersey,
Belmont Red,

Santa Gertrudis
composite,
crossbred

unknown breed.

1701

709,068
Imputed SNPs

from the
Illumina HD

array

Tenderness: CAPN1, CAST genes;
juiciness and flavor: MOXD1 APOB,

KIF13A
[27]

Shear force,
marbling score,

and intramuscular
fat

Nellore cattle

6910 young
bulls
with

phenotypic
informa-
tion and
23,859

genotyped
animals

435,447
Imputed SNPs
from multiple

Bead chip
assay densities

Several candidate genes located on
chromosomes BTA1, 2, 5, 7, 9, 10, 19,
and 25 for Shear force, on BTA4, 7, 10,

11, 12, 13, 15, and 20 for marbling
score, and BTA8, 9, 10, 12, 13, and 28

for intramuscular fat

[29]

BTA: Bovine chromosome.
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Genome-wide association and gene enrichment analyses on 672 steers from a multi-
breed Angus-Brahman beef cattle population have identified membrane anchoring and
structural proteins (e.g., ANO2, NTF3, EVC2, ANXA10, PALLD, PKHD1) associated with
meat quality traits like tenderness, marbling, cooking loss, and sensory panel ratings for
tenderness, juiciness, connective tissue amount, and flavor [32]. A gene network analysis
identified EVC2, ANXA10, and PKHD1 as potentially harboring multiple QTL for meat
quality. The results of Leal-Gutiérrez et al. [32] suggest that polymorphisms in structural
proteins can modulate muscle fiber organization and postmortem proteolysis, directly
impacting meat quality.

Despite their remarkable success, GWAS have faced several challenges, including the
need for larger sample sizes to detect variants with smaller effect sizes and the limited rep-
resentation of diverse ancestral populations [44]. Additionally, many GWAS are descriptive
rather than functionally identifying causal variants. Efforts have been made to increase the
diversity of GWAS cohorts and to conduct meta-analyses combining data from multiple
studies to enhance statistical power in human genetics [25] and recently in beef cattle [45].
As GWAS continues to evolve, integrating complementary approaches such as functional
genomics, epigenomics, and proteomics will be crucial for translating genetic associations
into mechanistic insights and understanding the molecular mechanisms underlying beef
quality traits.

4. Genomic Prediction and Selection for Beef Quality

Genomic selection (GS), which was first introduced by Lande and Thompson [46] and
popularized by Meuwissen et al. [47], utilizes genome-wide marker data to predict the
so-called genome-enhanced or genomic estimated breeding values (GEBV) of the selection
candidates. It involves developing prediction models from a training population with both
genotypic and phenotypic data and then applying these models to predict the breeding
values of individuals in a separate population based solely on their genotypic information.
This approach enables more accurate selection of superior individuals at an early stage,
accelerating the rate of genetic gain compared to traditional phenotypic selection. GS
relies on capturing the effects of all QTL through linkage disequilibrium between markers
and QTL, as well as leveraging genetic relationships between the training and prediction
populations [48]. Key factors influencing the accuracy of genomic predictions include the
size and genetic diversity of the training population, the heritability of the trait, and the
extent of relatedness between the training and prediction sets [48,49]. GS holds the promise
to be particularly beneficial in selecting traits such as beef quality traits that are difficult
and expensive to measure.

Fernandes Júnior et al. [50] highlighted the long generation interval of beef cattle
and the importance of genomic selection in accelerating genetic gains for meat quality
traits. Beef tenderness is a significant challenge in the Zebu beef cattle industry. Reported
heritability estimates for meat tenderness ranged from 0.11 to 0.45 [51,52]. However,
selection for meat quality has only recently (last 10–15 years) been implemented, and due
to the long generation interval of beef cattle, substantial genetic improvement is yet to be
realized. Additionally, this trait is costly and difficult to measure, and slaughterhouses
do not offer differential payment for tender beef. Furthermore, breeding programs have
focused more on improving meat quantity over quality attributes. Considering various
methods (Bayesian ridge regression, Bayesian LASSO, Bayes A, Bayes B, and Bayes Cπ) and
a training population of 426 Nellore animals, Magnabosco et al. [53] reported prediction
accuracies for beef tenderness ranging from 0.52 to 0.59. Moderate accuracies for beef
tenderness (0.57 to 0.60) have also been reported considering GBLUP, LASSO, and Bayes
Cπ in a Nellore training population (n = 4500 animals) [50]. Accuracies between 0.23 and
0.73 were also described by the authors for lipid content, marbling, and meat color (Table 3).
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Table 3. Genomic prediction accuracies for beef quality traits 1.

Trait Accuracy N Reference

Meat tenderness 0.52 to 0.59 427 [53]

Meat tenderness 0.57 to 0.60 5062 [54]

Lipids 0.23 3812 [54]

Marbling 0.32 5039 [54]

Carcass intramuscular fat % 0.20 1031 [55]

Marbling score 0.08 to 0.56 4228 [56]

a * color 0.40 5052 [54]

b * color 0.49 to 0.53 5046 [54]

L * color 0.68 to 0.73 5071 [54]

Sum of SFA 0.04 to 0.24 868 [57]

Sum of MUFA 0.05 to 0.13 868 [57]

Sum of PUFA 0.15 to 0.56 868 [57]
1 The table was partially adopted from Fernandes Júnior et al. [50]. a *, b *, and L * color refer to the redness,
yellowness, and lightness of the meat, respectively. Sum of SFA: Sum of Saturated Fatty Acids, Sum of MUFA:
Sum of Monounsaturated Fatty Acids, Sum of PUFA: Sum of Polyunsaturated Fatty Acids.

The fatty acid profile is an important indicator of beef quality, and studies have
revealed the possibility of genetic improvement of fatty acid composition by selection of
both major candidate genes and genomic selection strategies in beef cattle [54,57].

Forutan et al. [27] discussed the use of genomic selection to improve meat quality
in beef cattle. They highlighted the shift from producer-driven to consumer-driven beef
production and the importance of consumer satisfaction with beef quality. Forutan et al. [27]
determined the most accurate method for predicting phenotypes of beef eating quality
traits from genotypes and other factors such as carcass weight and days aged. They found
that the accuracy of phenotype prediction for beef eating quality traits was sufficiently
high that such predictions could be useful in predicting eating quality from samples taken
from an animal/carcass as it enters the processing plant to sort for markets with different
quality. Forutan et al. [27] emphasized that future predictions should be expanded to
incorporate all the parameters in the Meat Standards Australia (MSA) models [58] as well
as genotype information.

It has been challenging to implement genomic selection in multi-breed tropical beef
cattle populations. If commercial (often crossbred) animals could be used in the reference
population for these genomic evaluations, this could allow for very large reference popula-
tions. In tropical beef systems, such animals often have no pedigree information. Hayes
et al. [59] addressed the challenges of implementing genomic selection in multi-breed
tropical beef cattle populations, especially when no pedigree information is available. They
evaluated potential models using marker heterozygosity and breed composition derived
from genetic markers. The study demonstrated that moderately accurate genomic esti-
mated breeding values (GEBV) can be calculated using these models, with BayesR resulting
in the highest accuracy.

The limitations, complexity, and loss of information associated with the multiple-
step genomic selection approach [60] have led to the development of single-step ap-
proaches [61,62]. Single-step genomic best linear unbiased prediction (ssGBLUP) is a
widely used method that combines the pedigree-based numerator relationship matrix
(A) and the genomic relationship matrix (G) to construct a combined relationship matrix
(H). This allows information from genotyped and non-genotyped individuals to be used
simultaneously in one step. The key advantage of single-step methods is that all available
information (phenotypic, pedigree, and genomic) is used optimally, leading to greater
accuracy and persistence of genomic predictions across generations. It avoids the need for
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separate evaluations for genotyped and non-genotyped individuals and accounts for po-
tential pre-selection biases. Adekale et al. [63] used the ssGBLUP approach and combined
pedigree, genomic, and phenotypic data into one evaluation, and genomic evaluations
increased the accuracy of estimated breeding values (EBVs) compared to pedigree-based
evaluations alone. They demonstrated the successful implementation of single-step ge-
nomic evaluations for improving the accuracy of EBVs in German beef cattle breeding
programs across multiple breeds [63].

In summary, challenges in obtaining high-quality and adequately detailed phenotype
data, along with frequently incomplete pedigree information, hamper traditional genetic
evaluations for beef quality traits. The challenges in collecting beef quality data for genetic
evaluations can be attributed to several factors, such as the complexity and variability of the
traits being measured, the need for specialized equipment or expertise, and the time and
resources required to gather data from a large number of individuals. Additionally, the lack
of standardized protocols and the potential for human error in data collection can contribute
to the challenges in obtaining high-quality phenotypic data for beef quality traits. Therefore,
GS has the potential to substantially increase genetic gain through increased selection
accuracy at an early age [64,65]. However, the heterogeneity of breeds, less developed
breeding programs and infrastructures, the predominance of natural services, and the
population substructures with frequent crossbreeding in commercial herds have restricted
the widespread implementation of GS in beef cattle. Multi-breed genomic evaluation and
single-step GS are the most recent developments in implementing GS in beef cattle breeding.
Challenges include access to large phenotypic datasets across breeds/environments and
low-cost genotyping for widespread adoption [66]. Extension of genomic predictions to
beef quality traits influencing consumer satisfaction will further require a focus on the
collection of reliable phenotypic information across the broad range of traits. Collecting
such information will likely rely on public funding efforts. The novel high-throughput
phenotyping technologies that facilitate the collection of phenotypes in large cohorts will
also be invaluable [66].

5. Transcriptomics of Beef Quality

Transcriptomics, one of the most developed fields in the post-genomic era, is the
genome-wide study of the complete set of transcribed sequences, including messenger
RNA (mRNA), ribosomal RNA (rRNA), transfer RNA (tRNA), and regulatory noncoding
RNA in a tissue or a specific cell type at a given time or under a specific physiological
condition. Transcriptomics focuses on RNA expression levels to reveal the molecular mech-
anisms involved in specific biological processes. High-throughput sequencing technologies
like bulk RNA-Seq and single-cell RNA-Seq (scRNA-Seq) have transformed transcrip-
tomics research, including studies related to beef quality. Bulk RNA-Seq characterizes
average gene expression profiles across samples, enabling the identification of differentially
expressed genes and splicing variants associated with meat traits. scRNA-Seq captures
cell-type-specific transcriptomes in muscle tissues, revealing cellular heterogeneity and
facilitating the discovery of novel cell populations linked to meat quality traits. Together,
these complementary high-throughput approaches provide comprehensive insights into
transcriptome landscapes and accelerate the development of transcriptome resources for
improving beef quality. In addition, the available transcriptomics datasets in cattle, such as
the transcriptome atlas [67], can serve as a primary source for biological interpretation and
functional validation of transcriptomics studies addressing beef quality complexities.

Intramuscular fat (IMF) deposition has been a central focus of numerous transcriptomics
investigations aimed at elucidating the molecular determinants of beef quality [68,69]. A signif-
icant proportion of transcriptome research in the realm of beef quality has concentrated on
unraveling the genetic and regulatory mechanisms underlying variations in intramuscular
fat content, given its pivotal role in influencing meat tenderness, juiciness, and flavor. The
study by Yu et al. [69] employed an integrated transcriptomics and metabolomics approach
to elucidate the regulatory mechanisms underlying intramuscular fat deposition in three
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cattle breeds—Qinchuan, Nanyang, and Japanese Black. The Japanese Black breed had
significantly higher IMF content compared to the Chinese indigenous breeds. Transcrip-
tomic analysis revealed genes like ITGB1 were enriched in pathways related to fatty acid
metabolism, suggesting their roles in regulating IMF content [69].

Several key regulatory genes have been identified that influence adipocyte differentia-
tion and intramuscular fat deposition, which are important for beef quality. For example,
transcription factors like C/EBPα and PPARγ play crucial roles in promoting adipocyte
development and fatty acid biosynthesis in beef cattle [68]. Krüppel-like factors (KLFs)
are a family of transcription factors that regulate adipogenesis in cattle. KLFs can act as
positive or negative regulators of adipocyte differentiation through crosstalk with C/EBP
and PPARγ [70]. Adipogenic genes like DGAT1, FABP3, FABP4, and FASN are upregulated
during early adipocyte differentiation in cattle [71]. In summary, transcription factors
like C/EBP, PPARγ, and KLFs, fatty acid metabolism genes, and growth-related genes
play key regulatory roles in controlling adipocyte differentiation and intramuscular fat
deposition, which are crucial determinants of beef quality. Identifying genetic markers in
these pathways can help improve meat quality through breeding programs.

A recent study [72] suggests that long non-coding RNAs (lncRNA) may have critical
functional roles in intramuscular fat accumulation. Zhang et al. [72] reported that a lncRNA
named long non-coding RNA BNIP3 (lncBNIP3) inhibited the proliferation of bovine
intramuscular preadipocytes through the cell cycle pathway, revealing potential new
strategies for improving beef quality.

Transcriptomics has been widely exploited to study the effects of diverse feeding
systems, production practices, and rearing conditions on beef quality. Researchers have
investigated the transcriptomic profiles associated with different dietary regimes, feed
restriction and compensatory growth, production systems, and environmental stressors
(heat, transportation). These studies aim to elucidate the molecular mechanisms underlying
variations in beef quality traits influenced by various production factors. For example,
the study by Zhao et al. [73] investigated the effects of acute stress on beef tenderness
and the underlying molecular mechanisms in Angus cattle using a functional genomics
approach. They found that acute stress significantly increased beef tenderness, as measured
by the Warner–Bratzler shear force (WBSF). Microarray analysis identified 147 differentially
expressed genes (DEGs) between the stressed and control groups, with the majority of
DEGs being downregulated in the stressed group. Functional annotation revealed that
these DEGs were enriched in pathways related to muscle structure and integrity, including
cytoskeletal organization, muscle contraction, and calcium signaling. Key DEGs included
CAPN1, CAPN2, CAST, and CALM, which are involved in the calpain-calpastatin system
regulating protein degradation and tenderization. The study also identified potential
transcriptional regulators, such as NFKB1, CREB1, and FOXO3, that may mediate the
stress response and influence beef tenderness. Overall, this functional genomics study
provided insights into the molecular mechanisms by which acute stress improves beef
tenderness, highlighting the role of the calpain system and related pathways [73]. Sweeney
et al. [74] identified 26 differentially expressed (DE) genes related to lipid metabolism
between pasture-fed and concentrate-fed cattle. The expression of ALAD, EIF4EBP1, and
NPNT could be used to classify the samples based on the production system with 95–
100% accuracy [74]. In addition, Deng et al. [75] analyzed the transcriptomes of cattle
under varied restricted feeding conditions to study compensatory growth effects on meat
quality. Compensatory growth was observed in the restricted groups, accompanied by
alterations in meat quality traits like pH, cooking loss, and fat content compared to the ad
libitum group. Transcriptome analysis identified DEGs unique to each feeding group as
well as shared DEGs involved in pathways related to muscle growth, lipid metabolism,
and nutrient utilization. Gene set enrichment analysis further highlighted pathways
associated with compensatory growth, such as protein synthesis, cell cycle regulation, and
energy metabolism.
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The study by Zhang et al. [76] employed comparative transcriptomics to character-
ize region-specific gene expression patterns across five different beef cuts (tenderloin,
longissimus lumborum, rump, neck, chuck) from cattle. They identified a total of 80
region-specific genes (RSGs) and 25 transcription factors regulating these RSGs. Through
co-expression network analysis, seven region-specific modules were detected, including
three positively and four negatively correlated modules. Their analysis revealed 91 can-
didate genes associated with meat quality traits, enriched in pathways related to muscle
fiber structure, fatty acid metabolism, amino acid metabolism, ion channel binding, pro-
tein processing, and energy production. Key genes identified included TNNI1, TNNT1
(muscle structure), SCD, LPL (fatty acid metabolism), ALDH2, IVD, ACADS (amino acid
metabolism), PHPT1, SNTA1, SUMO1, CNBP (ion binding), CDC37, GAPDH, NRBP1 (pro-
tein processing), and ATP8, COX8B, and NDUFB6 (energy metabolism) [76]. The differential
expression of these RSGs and candidate genes across beef cuts suggests they play a key role
in determining region-specific differences in nutrient profiles like fatty acid composition
and amino acid content, as well as meat quality traits like tenderness and flavor.

Transcriptomics can provide insights into the molecular mechanisms regulating beef
quality traits such as water-holding capacity (WHC). In this regard, Du et al. [77] in-
vestigated the molecular mechanisms underlying WHC in Chinese Simmental beef cat-
tle through transcriptome profiling. The longissimus dorsi muscles from 49 cattle were
evaluated for meat quality traits, including WHC, water loss, intramuscular fat content,
shear force, and pH. Eight individuals with extreme WHC values were selected for RNA-
sequencing analysis. A total of 865 DEGs were identified between the high and low
WHC groups. These DEGs were involved in pathways related to muscle structure, energy
metabolism, and protein folding. The study confirmed seven previously known genes
(HSPA12A, HSPA13, PPARγ, MYL2, MYPN, TPI, and ATP2A1) and identified six novel
candidate genes (ATP2B4, ACTN1, ITGAV, TGFBR1, THBS1, and TEK) potentially affecting
WHC [77].

In summary, the recent high-throughput transcriptomic studies have identified dif-
ferentially expressed genes and pathways involved in lipid metabolism, muscle fiber
properties, energy production, and other processes that influence beef quality traits like ten-
derness, fatty acid composition, and nutrient content across different production systems,
feeding regimes, and muscle cuts. This knowledge of the region-specific, breed-specific,
and production system-specific gene expression patterns that regulate various aspects of
beef quality can guide targeted breeding programs and optimized management practices
to improve beef quality.

6. Proteomics of Beef Quality

Although transcriptomics tools such as RNA-seq offer a massively parallel approach
to genome-wide mRNA expression analysis, there is often no direct relationship between
the in vivo concentration of an mRNA and its encoded protein. The association of protein
expression levels with biological changes is one of the most fundamental approaches to
understanding the functions of individual proteins in complex cellular processes. Pro-
teomics, a large-scale study of proteins, is a biomarker approach for the identification and
quantification of all proteins, the proteome, of a given biological system (cell, tissue, organ,
biological fluid, or organism) at a specific point in time. Mass spectrometry [78], coupled
with advanced separation techniques like two-dimensional gel electrophoresis and liquid
chromatography, is the technique most often used for proteomics. In the context of beef
quality, proteomics provides insights into the molecular mechanisms influencing meat
tenderness, flavor, and other quality attributes. By analyzing the proteome of beef muscles,
researchers can identify biomarkers associated with desirable traits, elucidate pathways
regulating meat characteristics, and develop strategies to improve beef quality through
breeding or processing methods.

Over the last two decades, proteomics has been employed to decipher the under-
lying factors contributing to variation in beef tenderness. Table 4 summarizes some
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of the published proteomic studies on beef quality. Functional proteomic analysis was
used to associate electrophoretic bands from the myofibrillar muscle fraction with meat
tenderness to understand the mechanisms controlling tenderness [79]. Six significant
electrophoretic bands were characterized and sequenced, revealing proteins involved in
structural, metabolic, chaperone, and developmental functions [79].

Table 4. Summary of some of the published proteomic studies on beef quality.

Beef Attribute Animal and Age at
Slaughter Sample Size Protein

Extracts
Proteomics

Platform
N. of Identified

Proteins Reference

Sensory attributes
(tenderness,
chewiness,

stringiness, and
flavor)

Limousin-sired bulls,
16 months 34 Total LD muscle

proteins LC-MS/MS 84 [80]

pH, instrumental
color, cooking loss,

and WBSF

Immunocastrated F1
Montana-Nellore,
heifers + steers,

15 months

16
Myofibrillar and

sarcoplasmic
proteins

2D-PAGE, MS
(ESI-MS/MS) 23 [81]

Tenderness (WBSF)
Nellore cattle, steers,

and bulls,
27.7 months

155 Whole LD muscle
proteins

2DE and mass
spectrometry,

MALDI-TOF/TOF
MS/MS

40 [82]

Tenderness (WBSF) Nellore bulls,
27 months

Cytoplasmatic
proteins

2D-PAGE, MS
(ESI-MS/MS) 29 [83]

pH, WBSF, and WHC
Angus × Simmental

beef cattle (USDA
Select; A maturity)

8 Whole muscle
protein

Western blots,
SDS-PAGE 14 [84]

Beef tenderness Angus Steers,
18 months 6 Myofibrillar

proteins
1DE +

nano-LC-MS/MS 19 [79]

Beef tenderness Angus Steers,
12 months 19

High salt and low
salt soluble

proteins
1DE + LC-MS/MS 8 [85]

Beef tenderness Angus Steers 15
Myofibrillar and

sarcoplasmic
proteins

2D-DiGE + Linear Ion
Trap MS 28 [86]

Beef tenderness and
intramuscular fat Nellore Bulls + Steers 12

Myofibrillar and
sarcoplasmic

proteins

2DE +
MALDI-TOF/TOF 9 [87]

Beef tenderness
Charolais × Aubrac

Heifers,
33 ± 3 months

10
Myofibrillar and

sarcoplasmic
proteins

Label-free +
Nano-LC-MS/MS 40 [88]

Beef tenderness Charolais Bulls,
17 months 8

Myofibrillar and
sarcoplasmic

proteins

2DE +
MALDI-TOF/TOF 23 [89]

Beef tenderness and
marbling

PDO Maine Anjou
Cows, 67.4 months 188

Myofibrillar and
sarcoplasmic

proteins
RPPA 10 [90]

Tenderness (shear
force)

Piedmontese bulls,
7 months 10 Cytoplasmatic

proteins SWATH-MS 43 [91]

Dark-cutting

6 dark-cutters and 6
normal-pH beef, other

information not
visible

12

Label-free
quantitative

proteomics using
LC-MS/MS

Total protein extract 57 [92]

Dark-cutting
Beef cattle, other
information not

visible
22

LD muscle
mitochondrial

proteins
LC-MS/MS 12 [93]

WHC: water-holding capacity, WBSF: Warner–Bratzler shear force, 2D-PAGE: Two-dimensional electrophoresis,
MS: Mass spectrometry. ESI–MS/MS: Electrospray ionization-tandem mass spectrometry, SWATH-MS: Sequential
Windowed Acquisition of All Theoretical Fragment Ion Mass Spectra, LC-MS/MS: Label-free shotgun proteomics
combined with liquid chromatography-tandem mass spectrometry.
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An integromics study was performed to review the status of protein biomarker discov-
ery targeting beef tenderness, gathering and proposing a comprehensive list of 124 putative
protein biomarkers derived from 28 independent proteomics-based experiments [90]. In the
study of Gagaoua et al. [90], 33 robust candidates were identified as worthy of evaluation
using targeted or untargeted data-independent acquisition proteomic methods. The study
provides an overview of the interconnection of the main biological pathways impacting
tenderness determination, including structural proteins, enzymes, heat shock proteins, and
proteins involved in energy metabolism, response to oxidative stress, and apoptosis [90].
Gagaoua et al. [90] identified MYOZ3 (Myozenin 3), BIN1 (Bridging Integrator-1), and
OGN (Mimecan) as the primary proteins, which accounted for 79% of the variability in
shear force values.

Functional proteomic and interactome analysis was used to identify protein biomark-
ers and biological pathways associated with beef tenderness in Angus cattle [85]. The study
compared the proteome of longissimus thoracis muscle samples from Angus cattle with
divergent tenderness phenotypes. Several proteins involved in structural integrity, energy
metabolism, stress response, and proteolysis were found to be differentially abundant be-
tween tender and tough meat samples. Interactome analysis revealed complex interactions
among these proteins, providing insights into the molecular mechanisms underlying beef
tenderness variation. The results of Zhao et al. [85] suggest that a combination of protein
biomarkers could be used to predict and improve beef tenderness in Angus cattle. In
addition, proteomic techniques have been applied to investigate different degrees of meat
tenderness in the Nellore breed, a Bos indicus breed of cattle [82,83]. The results demon-
strate that meat tenderness in Nellore cattle depends on the modulation and expression of
a set of proteins. For example, the results of Rosa et al. [82] demonstrated that polymor-
phisms at UOGCAST and CAPN4751 SNPs (located on CAST and CAPN1, respectively)
are associated with the variability in the expression of proteins that are involved in muscle
metabolism and consequently affect meat tenderness. Malheiros et al. [83] also identified
the proteins PFN1, LAP3, PRDX1, PRDX2, HSPD1, and ARHGDIA to be associated with
beef tenderness.

The study by López-Pedrouso et al. [91] employed a quantitative proteomic approach
using SWATH-MS (Sequential Window Acquisition of All Theoretical Mass Spectra) to
investigate the molecular factors influencing beef tenderness in young Piedmontese bulls.
They analyzed the proteome of Longissimus thoracis muscle samples from 10 animals, which
were categorized as tough or tender based on Warner–Bratzler shear force measurements.
The SWATH-MS analysis identified and quantified over 1200 proteins, revealing significant
differences in the abundance of 43 proteins between the tough and tender groups. Most of
these differentially abundant proteins were associated with energy metabolism pathways.
Functional analysis suggested that gluconeogenesis, glycolysis, and the citric acid cycle
are key pathways influencing tenderness in Piedmontese beef, with proteins like ACO2,
MDH1, MDH2, CS, FBP2, PFKL, LDHA, TPI1, and GAPDH/S playing crucial roles [91].

Zhu et al. [80] used label-free proteomics to identify molecular mechanisms and
biomarkers related to beef sensory texture and flavor traits in early post-mortem muscle.
The authors revealed 34 putative protein biomarkers that discriminated between tender and
tough meat groups, belonging to biological pathways associated with muscle structure, heat
shock proteins, energy metabolism, response to oxidative stress, and apoptosis. Many of
these proteins were previously identified as biomarkers of beef tenderness in an integromics
data mining approach [94]. Heat shock protein beta-6 (HSPB6) has been identified as being
negatively correlated with tenderness and flavor and positively with stringiness [80]. It
belongs to small heat shock proteins (HSPs) that are widely considered useful biomarkers
of beef tenderness, color, water-holding capacity, and other quality traits [84,90,95].

To provide insights into the molecular mechanisms underlying dark-cutting beef
and identify potential biomarkers for predicting and managing this meat quality defect,
Gagaoua et al. [96] conducted an integromics meta-analysis of proteomics data from eight
studies on dark-cutting beef. The authors curated a list of 130 proteins that differed
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between dark-cutting and normal-pH beef and analyzed them using bioinformatics tools.
Key pathways involved in dark-cutting beef development included muscle structure, heat
shock proteins, energy metabolism, oxidative stress response, and apoptosis. Also, Kiyimba
et al. [93] compared the mitochondrial proteomes of dark-cutting and normal-pH beef using
LC-MS/MS proteomics and found that dark-cutting beef has up-regulation of proteins
involved in mitochondrial biogenesis, oxidative phosphorylation, intracellular protein
transport, and calcium homeostasis. Mitochondria isolated from dark-cutting beef showed
greater mitochondrial complex II respiration and uncoupled oxidative phosphorylation,
but no differences in membrane integrity or respiration at complexes I and IV. These results
indicate that dark-cutting beef has greater mitochondrial biogenesis proteins, increasing
mitochondrial content and contributing to the dark color. The study provides insights into
the mechanistic basis of dark-cutting beef and identifies potential candidate markers for
detecting pre-slaughter events leading to this meat quality defect.

In summary, proteomics has been extensively applied to study the molecular basis of
various beef quality traits, including tenderness, marbling, color, water-holding capacity,
and dark-cutting beef. These studies have utilized advanced proteomics techniques, such as
2D-PAGE, mass spectrometry, and bioinformatics, to identify differentially expressed pro-
teins and their associated biological pathways. Key proteins and pathways linked to meat
quality include those involved in glycolysis, oxidative phosphorylation, the tricarboxylic
acid (TCA) cycle, muscle structure, heat shock response, energy metabolism, oxidative
stress, and apoptosis. Proteomics has provided valuable insights into post-mortem changes
in muscle proteins and their relation to the development of meat quality traits, as well as
identified potential biomarkers for predicting and managing beef quality. Future research
should focus on integrating proteomic analyses with other omics approaches, such as
transcriptomics and metabolomics, to gain a more comprehensive view of the regulatory
networks influencing beef quality.

7. Metabolomics of Beef Quality

Metabolomics is a valuable analytical approach for studying the small-molecule
metabolites present in biological samples, including beef and meat products. It utilizes
two major platforms, mass spectrometry (MS) and nuclear magnetic resonance (NMR),
to comprehensively profile the metabolite composition. The resulting metabolomic data
provide insights into the metabolic state of the beef samples, enabling the discovery of
biomarkers associated with desirable beef quality traits like tenderness, flavor, and shelf life.
Additionally, metabolomics elucidates the underlying biochemical pathways that produce
key metabolites influencing beef quality characteristics. Metabolomic profile data can
also be used to explore the genes responsible for specific metabolite-featured phenotypes
in genome-wide association studies. Therefore, by associating metabolite profiles with
sensory evaluation, production conditions, and postmortem changes, metabolomics offers
a powerful tool for monitoring and predicting beef quality, optimizing animal breeding
and feeding strategies, and improving meat processing methods. Some of the published
applications of metabolomics in assessing beef quality are summarized in Table 5.

Table 5. Summary of some of the applications of metabolomics in beef quality analysis.

Beef Attribute Analytical
Techniques

Multivariate
Analysis Techniques Metabolites Reference

Sensory evaluation
of beef taste GC/MS PCA

Cold storage led to increased free fatty
acids and Glutamic acid and decreased

creatinine and inosinic acid
[97]
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Table 5. Cont.

Beef Attribute Analytical
Techniques

Multivariate
Analysis Techniques Metabolites Reference

Meat color, pH,
water holding
capacity, shear

force, and texture

NMR PCA, OPLS-DA

Beef quality differences related to
acetylcholine, valine, adenine, leucine,
phosphocreatine, β-hydroxypyruvate,

ethanol, adenosine diphosphate,
creatine, acetylcholine, and lactate

[98]

Beef fat color LC-MS PCA, PLS-DA

3-hydroxyoctanoic acid, anethofuran,
9,10-DiHODE, furanoeremophilane,

pregeijerene, N-glycolylneuraminic acid,
and glycocholic acid were identified as
potential biomarkers for differentiating

fat color

[99]

Marbling NMR PLS-DA Carnosine, creatine, glucose, and lactate
were associated with higher marbling [100]

Marbling

Mass spectrometry-
based untargeted

and targeted
metabolomics

ASCA Unconjugated-BA and Glucocorticoids
were associated with marbling [101]

Aroma of cooked
beef SPME and GC–MS

Linear and
logarithmic

regression model

Benzeneacetaldehyde and Heterocyclic
compounds [102]

Meat freshness NMR PCA, PLS
60 identified metabolites, metabolomics

classified meat samples according to
their storage time

[103]

Intramuscular fat NMR PCA, OPLS-DA

The unsaturation degree of
triacylglycerol was estimated by the 1H
NMR spectra and was correlated with
the content ratio of unsaturated fatty
acids and the melting point of IMF.
Leucine and creatine were found as

biomarkers, positively and negatively
correlated with aging duration,

respectively.

[104]

NMR: Magnetic resonance spectroscopy, PCA: Principal Component Analysis, PLS-DA: Partial least squares
discriminant analysis, SPME: Solid-phase microextraction, and GC–MS: Gas chromatography-mass spectrometry,
LC-MS: Liquid chromatography-mass spectrometry, OPLS-DA: Orthogonal signal correction–projection to latent
structures–discriminant analysis, ASCA: ANOVA-simultaneous component analysis.

Muroya et al. [105] introduced the concept of “MEATabolomics”—the application of
metabolomics to study skeletal muscle and meat in domestic animals. Muscle metabolites,
as the major phenotypic components, determine the physiological characteristics of muscle
and meat quality traits. Since raw and cooked meat is rich in flavor-associated volatile
compounds and precursors [105], MEATabolomics studies in combination with sensory
evaluation can be used to explore biomarker candidates associated with the eating quality
of beef.

Jeong et al. [100] used NMR spectroscopy to investigate the meat metabolite profiles
related to differences in beef quality attributes, specifically comparing high-marbled and
low-marbled groups. High-marbled meat had higher levels of taste compounds compared
to low-marbled meat. Metabolite analysis revealed differences between the two marbling
groups based on partial least squares discriminant analysis (PLS-DA). Metabolites identified
by PLS-DA, such as N, N-dimethylglycine, creatine, lactate, carnosine, carnitine, sn-glycero-
3-phosphocholine, betaine, glycine, glucose, alanine, tryptophan, methionine, taurine, and
tyrosine, were directly linked to marbling groups. These potential markers were involved
in beef taste-related pathways, including carbohydrate and amino acid metabolism. The
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findings of Jeong et al. [100] provide an important understanding of the roles of taste-
related metabolites in beef quality attributes and suggest that metabolomics analysis of
taste compounds and meat quality may be a powerful method for evaluating beef quality.

Zhang et al. [106] described recent applications of metabolomics in evaluating meat
freshness, composition, authenticity, and origin, highlighting its potential as a powerful
tool for meat quality assessment. They discussed the challenges faced, such as sample
complexity, a lack of specialized databases, and the need for harmonized methods. Finally,
they outlined future trends, including the development of standardized protocols, meat
metabolome databases, and advanced data analysis tools to fully exploit the potential of
metabolomics in meat science [106]. Moreover, Ramanathan et al. [107] provided a recent
comprehensive overview of the current state of metabolomics research in meat quality and
highlighted the immense potential of metabolomics in advancing meat quality research
and its practical applications in the meat industry.

Yu et al. [69] compared the metabolomes of two Chinese indigenous cattle breeds
(Qinchuan and Nanyang) and Japanese Black cattle. They reported that the Japanese Black
breed had significantly higher IMF content compared to the Chinese indigenous breeds.
Metabolomic analysis showed higher levels of monounsaturated and polyunsaturated fatty
acids, as well as amino acids like creatine, lysine, and glutamine, in the Japanese Black
breed, contributing to better flavor formation [69].

Metabolomics, especially focusing on volatile compounds, has changed our under-
standing of beef aroma and flavor. Using techniques like gas chromatography-mass spec-
trometry (GC-MS), researchers can quantify and correlate metabolites with flavor pref-
erences. This analysis identifies key flavor compounds and their precursors, revealing
mechanisms like the Maillard reaction, thermal lipid degradation, and oxidation. In beef,
metabolomics shows that flavor results from interactions between aromatics and taste com-
ponents, with meaty and roasted notes from Maillard reactions [108]. This knowledge helps
food scientists predict and manipulate flavor profiles, enhancing product development and
quality control.

Castejón et al. [103] investigated the potential of using metabolomics analysis of meat
exudate to evaluate beef conservation and aging. These researchers analyzed the exudate
from beef samples stored at different temperatures and aging times using NMR spec-
troscopy. They found that the metabolite profile of the exudate changed significantly with
storage temperature and aging time, allowing them to discriminate between fresh and aged
meat samples. Specific metabolites like creatine, carnosine, and anserine were identified
as potential biomarkers for monitoring meat aging and conservation, demonstrating that
metabolomics of meat exudate could be a rapid and non-destructive approach to assessing
beef quality during storage and aging processes [103].

Tian et al. [99] performed a comparative metabolomics analysis on subcutaneous
fat samples from crossbred cattle with white and yellow fat colors. Through liquid
chromatography-mass spectrometry, 235 significant metabolites across five categories were
identified, with principal component analysis showing distinct clustering of white and
yellow fat samples. White fat exhibited greater metabolite variation, with 163 metabolites
having a higher relative abundance and 72 having a lower relative abundance compared
to yellow fat. Notably, 3-hydroxyoctanoic acid, anethofuran, 9,10-DiHODE, furanoere-
mophilane, pregeijerene, N-glycolylneuraminic acid, and glycocholic acid were identified
as potential biomarkers for differentiating fat color. The findings provide insights into the
metabolic mechanisms underlying fat color variation and suggest potential biomarkers for
selective breeding programs aimed at achieving desired beef fat color traits.

Next-generation phenotyping (NGP) using metabolomics is becoming a fundamental
approach to refine trait description and improve the prediction of breeding values aligned
with beef industry objectives. For example, non-invasive urinary biomarkers have been
identified for beef production efficiency and carcass quality traits [101]. These biomarkers
are indicative of various aspects of beef quality, such as taste and appearance, that can be
used to predict and improve beef quality through targeted breeding and nutrition.
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In summary, metabolomics has emerged as a powerful tool for profiling meat qual-
ity attributes such as flavor, color, and texture. Recent studies have successfully applied
metabolomics to identify biomarkers related to meat quality and taste, using techniques
like nuclear magnetic resonance spectroscopy and mass spectrometry. However, challenges
remain in correlating metabolites to specific meat quality traits and elucidating the underly-
ing mechanisms [106,107]. Future research should focus on developing generic validation
schemes for metabolomics-based meat quality control as well as integrating metabolomics
with other omics technologies to provide a more holistic understanding of beef quality.

8. Challenges and Future Directions

While a wide range of omics technologies have been applied to study beef quality
traits, several challenges remain in fully harnessing their potential:

- Integrating Multi-Omics Data: Combining genomics, transcriptomics, proteomics,
and metabolomics data to elucidate the complex biological networks underlying meat
quality is a challenging task that requires robust bioinformatic pipelines and systems
biology approaches.

- Implementing Integromics: Integromics, which uses advanced computational and
statistical methods to integrate diverse data types, offers a promising platform for
advancing beef quality research. However, the implementation of an integromics
approach is still in its early stages and requires further development and validation.

- Identifying Causal Functional Mutations: The identification and validation of causal
functional mutations through gene editing techniques is crucial for precise genomic
selection and breeding programs. While gene editing technologies like CRISPR/Cas9
have been developed, their application in beef quality research is still limited.

- Overcoming Challenges through Interdisciplinary Research: Addressing the chal-
lenges in applying omics technologies to beef quality research will require interdis-
ciplinary research efforts and public-private partnerships. The lack of collaboration
between different disciplines and stakeholders has hindered progress in this field.

- Translating Multi-Omics Findings into Practical Applications: While multi-omics
findings have the potential to improve breeding strategies and genomic predictions
for beef quality, the translation of these findings into practical applications is still
limited. More research is needed to bridge the gap between research and industry.

Despite these challenges, there have been notable successes, such as the identification
of specific genetic variants that have been incorporated into breeding strategies, leading to
measurable improvements in meat quality. Future research should focus on refining these
techniques, improving data integration methods, and addressing the economic feasibility
of implementing functional genomics in commercial cattle breeding. By doing so, we can
better harness the potential of these advanced technologies to meet the growing demand
for high-quality beef.
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