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Abstract: Genetic epidemiological studies have shown that numerous genetic variants cumulatively
increase obesity risk. Although genetically predisposed individuals are more prone to developing
obesity, it has been shown that physical activity can modify the genetic predisposition to obesity.
Therefore, genetic data obtained from earlier studies, including 30 polymorphisms located in 18 genes,
were analyzed using novel methods such as the total genetic score and Biofilter 2.4 software to
combine genotypic and phenotypic information for nine obesity-related traits measured before and
after the realization of the 12-week training program. The results revealed six genes whose genotypes
were most important for post-training changes—LEP, LEPR, ADIPOQ, ADRA2A, ADRB3, and DRD2.
Five noteworthy pairwise interactions, LEP × LEPR, ADRB2 × ADRB3, ADRA2A × ADRB3, ADRA2A
× ADRB2, ADRA2A × DRD2, and three specific interactions demonstrating significant associations
with key parameters crucial for health, total cholesterol (TC), high-density lipoprotein (HDL), and
fat-free mass (FFM), were also identified. The molecular basis of training adaptation described in
this study would have an enormous impact on the individualization of training programs, which,
designed according to a given person’s genetic profile, will be effective and safe intervention strategies
for preventing obesity and improving health.

Keywords: total genetic score; Biofilter software; obesity; gene–physical-activity interaction

1. Introduction

Obesity is a chronic, multifactorial disease defined as the accumulation of body fat
to the extent that it negatively affects health. Obesity has a well-proven genetic basis but
requires behavioral, developmental, and/or environmental influences to develop [1–3]. In
recent years, the number of people with overweight and obesity has dramatically increased
worldwide, representing a significant public health concern. Given the excess mortality,
morbidity, and economic toll, obesity is an illness that warrants increased attention from
medical, scientific, and community organizations. Obesity’s status and acceptance as a
chronic disease are critical in determining its treatment and the development of compre-
hensive interventions [3]. It has been confirmed that systematic physical activity during a
diet-induced weight loss program has profound additional metabolic advantages in people
with diabetes and obesity [4,5]. However, exercise recommendations do not account for
individual genetic variability, increasing risk of these diseases [6].

Numerous studies have shown that systematic exercise and habitual physical activity
have numerous benefits for human health and life expectancy. Physical activity is crucial for
reducing the risk of excessive body mass gain, improving the efficiency of fat loss programs,
and especially preventing weight regain [7,8]. The physiological and biochemical reactions
occurring in the human body after training are well-described. Frequent exercise leads to
various metabolic and physical changes, such as alterations in skeletal muscle characteris-
tics, nutrient storage, metabolic enzyme levels, contractile protein quantity, and connective
tissue stiffness. The complex process of exercise-induced adaptation is determined by the
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volume, intensity, and frequency of physical activity [9,10]. In addition, Bouchard (1983)
demonstrated significant individual differences in the response to highly standardized and
well-controlled exercise programs and that there was a substantial familial aggregation
component to the heterogeneity noted above, confirmed by several other authors [11–13].
However, few studies have focused on the role of specific genes in accounting for the highly
prevalent effects of gene-exercise interaction. These authors indicated that training-induced
changes in several physical performance and health-related fitness phenotypes may be
more effective in individuals with some genotypes than others, confirming that some gene
variants influence individual differences in response to regular exercise [9,11,14]. How-
ever, identifying the genetic markers associated with obesity and explaining the complex
mechanisms through which they exert their effects pose challenges. In the future, a better
understanding of the molecular basis of training adaptation could significantly affect the
customization of training programs to make them more effective and safer. It could also
improve recovery, trauma care, medical treatment, diet, or supplementation. The specificity
of gene–physical-activity interactions is crucial for sports scientists and offers promising
pathways for identifying targets to address obesity. This knowledge holds significant
potential for informing both athletic performance and therapeutic interventions [9,15].

There have been several studies over the past 30 years on genetic obesity, which
have shown that genetic mutations, polymorphisms, and changes in gene expression all
play a role in predisposing individuals to obesity [16]. To date, more than 600 genes and
chromosomal regions have been linked to body mass and composition regulation. The
genetic risk of common obesity is associated with the accumulation of various loci, each
contributing a small part of the total risk of obesity [17]. Beyond the large number of
possible genetic markers, an additional problem lies in determining their influence on
lifestyle-induced changes in obesity-related parameters, separately and together. In earlier
studies, the associations of the numerous polymorphisms with training-induced changes
in body mass, composition, and biochemical parameters in Caucasian women have been
analyzed. However, each of those studies involved a single or a small number of single
nucleotide polymorphisms (SNPs), which did not allow comparison of the polymorphisms
and led to comprehensive conclusions about their impact on the characteristics and range
of the body’s adaptive response to training. Therefore, simultaneously analyzing numerous
SNPs is more advantageous than other methods and may offer additional insights for
comprehending complex gene–physical-activity interactions. Consequently, in this study,
genetic data obtained from earlier studies conducted using 30 polymorphic sites located
in 18 genes were used as components of a polygenic profile to find all ‘preferable’ and
‘unpreferable’ genotypes for training-induced body changes, which will provide additional
information about people undertaking physical training. In addition, Biofilter software
was used to construct a novel picture of the relationships among the genetic architecture
and proteins, such as interaction pairs, pathways, and complex phenotypic outcomes, as
described in previous biological experiments.

2. Materials and Methods
2.1. Overview

The results obtained from my studies regarding gene–physical-activity interactions
were collected, and the functional significance of the genotypes described in the 30 com-
mon polymorphic sites connected with obesity risk was determined. The genotypes were
assessed regarding their impact on training-induced changes in body mass, body compo-
sition, glucose level, and lipid profile in Caucasian females. The functional significance
of the individual genotypes was determined based on the various consequences of their
presence for achieving the desired health-promoting changes induced by the 12-week train-
ing program. Next, the relationships between the genetic variants and metabolic health
parameters were studied, providing insights into potential factors influencing individual
responses to training interventions.
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2.2. Participants

This study is based on the previously published data, which examined training-
induced changes in obesity-related parameters in participants. The participants were the
same as those in the studies listed in Table 1 in the Section 3.

The study group consisted of 165–201 healthy females of Caucasian origin (age:
21 ± 1 year). The following inclusion criteria were used: had a low level of physical
activity self-reported with the use of the Global Physical Activity Questionnaire; had no
metabolic, neuromuscular, or musculoskeletal disorders; were not using supplements or
medications; and were nonsmokers. All participants were expected to maintain a balanced
diet based on their dietary plan. They took part in the 12-week (36 training units) low- and
high-impact aerobics of increasing intensity preceded by a week-long familiarization stage
(3 training units). Before the training, participants of the experiment had their maximum
heart rate (HRmax) evaluated, on the basis of a continuous graded test on an electronic
cycle ergometer (Oxycon Pro, Erich JAEGER GmbH, Hoechberg, Germany). Exercise
intensity was designated using HR monitors to control each individual heart rate. The
volunteers were instructed to hold an HR or relative value of HRmax within appointed
ranges. Each training unit consisted of a warm-up (10 min), aerobic exercise (43 min), and
breathing–relaxing exercise with stretching (7 min). The main part was a combination of
two styles including high impact (running, jumping, and hopping, with a variety of flight
phases) and low impact (movements with at least 1 foot on the floor at all times). The
12-week program was divided as follows:

- 3 weeks (9 training units), 60 min each, at 50–60% of HRmax, tempo 135–140 BPM;
- 3 weeks (9 training units), 60 min each, at 60–70% of HRmax, tempo 140–152 BPM;
- 3 weeks (9 training units), 60 min each, at 65–75% of HRmax, tempo 145–158 BPM;
- 3 weeks (9 training units), 60 min each, at 65–80% of HRmax, tempo 145–160 BPM.

The training and dietary program was described in detail previously [18,19].
Before and after the completion of the training program, the chosen body mass and

composition parameters were assessed via the bioimpedance method using electronic
scale Tanita TBF 300 M (Arlington Heights, IL, USA), and biochemical analyses of blood
samples were performed [20]. The following parameters were selected for this study: body
mass index (BMI), fat mass (FM, kg), fat-free mass (FFM, kg), total body water (TBW, kg),
total cholesterol (TC, mg/dL), triglycerides (TGL, mg/dL), high-density lipoprotein (HDL,
mg/dL), low-density lipoprotein (LDL, mg/dL), and blood glucose level (BG, mg/dL).

The experiment was approved by the Ethics Committee of the Regional Medical
Chamber in Szczecin (no. 09/KB/IV/2011 and 01/KB/VI/2017). Participants obtained an
information sheet about the aim, procedures, benefits, and risks of the experiment, and a
written consent form. Pseudonymization was applied as the method of data protection.

2.3. Total Genetic Score

First, the average values of the analyzed variables were compared by calculating their
relative change by subtracting the variable’s value after training from the value of the
variable before training. Second, the obtained results were used to create a polygenic profile
for predicting post-training effects based on genotype data. According to Williams and
Folland [21], each polymorphism site used to calculate the TGS was assigned a score based
on the observed genotype (genotype score, GS). Typically, the polymorphisms identified
were biallelic, providing 3 possible genotypes assigned GS values of 0, 1, or 2. The ‘optimal’
genotypes associated with beneficial post-training changes in selected variability (meaning
that carriers of this genotype showed a relative change in the average values of the analyzed
variables closest to the desired post-training effects) were scored 2, ‘intermediate’ genotypes
were scored 1, and ‘less optimal’ genotypes (carriers of this genotype showed a change in
the mean values of the analyzed variables that were farthest from the desired post-training
effects) were scored 0. Due to the low abundance of one of the genotypes, homozygotes of
one type were combined with heterozygotes for 6 polymorphisms. These patients only had
two possible genotypes: a score of 2 or 0, indicating the least and most ‘optimal’ genotype.
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A decreasing BMI, FM, TC, TGL, LDL, and BG and increasing FFM, TBW, and LDL were
considered favorable changes.

Afterward, the scores of each genotype were summed to generate the total score. The
total score was converted to a scale of 0 to 100. The formula for calculating the TGS is
as follows:

TGS = (100/(2 × number of analyzed variables)) × (GSBMI + GSFM + GSFFM + GSTBW + GSTC + GSTGL + GSLDL +
GSHDL + GSBG)

Greater TGS values indicate a more favorable polygenic profile. Specifically, a TGS of
100 represents a ‘perfect’ profile when the genotype is the best for achieving all investigated
post-training effects (all GS values calculated for this genotype are equal to 2), and a TGS of
0 represents the ‘worst’ possible profile in terms of achieving the expected effects (all GS
values calculated for this genotype are equal to 0). The words ‘perfect’ and ‘worst’ are, of
course, only to be interpreted within the context of this paper. All the other TGS values,
ranging between 0 and 100, illustrate the intermediate value of a given genotype in the
context of achieving the expected post-training effects.

2.4. Biofilter

Biological information derivation and pairwise interaction modeling Biofilter 2.4
software [22] was used to derive biological information and construct pairwise interaction
models. Initially, a list of SNPs was input into Biofilter software, which subsequently
mapped these SNPs to corresponding genes. Next, genes harboring SNPs of interest
were interconnected pairwise to explore common sources and groups defined within the
Library of Knowledge Integration (LOKI) database. The LOKI database encompasses genes
from multiple database repositories [22]. This integration facilitated the identification of
common sources and groups among genes harboring relevant SNPs. Subsequently, the gene
models were deconstructed into pairwise combinations of SNPs across genes, specifying
the number of LOKI sources and the corresponding groups supporting these models. Each
SNP within the interaction pairs was annotated with information from LOKI sources, and
common entities were meticulously selected for group characterization.

2.5. Statistical Analysis of SNP Pairs and Interaction Testing

SNP pairs displaying potential interactions supported by biological knowledge were
subjected to statistical interaction testing. A mixed-effects model in R (https://www.R-
project.org/ (accessed on 19 January 2024) [23], specifically the ‘lme4’ package, version 1.1-
31) was utilized to assess the impact on all obesity-related parameters. The significance of
interactions was assessed through nested models, incorporating models with and without
the interaction term and employing a likelihood ratio test. For models demonstrating a
statistically significant interaction effect, predictor effect plots were generated using the
‘effects’ (version 4.2-2) library in R.

3. Results
3.1. Total Genetic Score

The complete list of the 30 SNPs localized in 18 genes associated with obesity-related
parameters, the sources of all the information, the relative changes in the mean values of
the analyzed variables, the GS for individual parameters, the GS sum, and the TGS values
received for each genotype can be viewed in Table 1. The observed TGS values were in the
range of 11–94. The TGS values distinguished five groups of genotypes:

1. TGS ≥ 80—includes four of the most preferable genotypes for training-induced body
changes

2. TGS of 60–79—includes 21 ‘preferable’ genotypes for training-induced body changes
3. TGS of 40–59—includes 30 ‘intermediate’ genotypes for training-induced body changes
4. TGS of 20–39—includes 22 ‘unpreferable’ genotypes for training-induced body changes

https://www.R-project.org/
https://www.R-project.org/
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5. TGS < 20—includes five of the most ‘non-preferable’ genotypes for training-induced
body changes

The obtained data indicate that the highest TGS values (Group 1) reflecting the most
‘optimal’ genotypes in the context of obtaining all the desired post-training effects were
obtained for the following genotypes: ADRA2A rs553668 AA (genotype frequency 3%;
94 TGS), LEPR rs1137101 AA (genotype frequency 29%; 94 TGS), DRD2 rs1076560 AA
(genotype frequency 2%; 83 TGS), and LEP rs2167270 GG (genotype frequency 40%; 83 TGS).
The lowest TGS values (Group 5) reflecting the ‘worst’ possible profile in terms of achieving
the expected effects were obtained for the following genotypes: DRD2 rs1076560 CA
(genotype frequency 28%; 11 TGS), ADIPOQ rs266729 GG (genotype frequency 6%; 17 TGS),
ADRB3 rs4994 TT (genotype frequency 86%; 17 TGS), ADRA2A rs553668 GG (genotype
frequency 66%; 17 TGS), and LEPR rs1137101 AG (genotype frequency 49%; 17 TGS)
(Table 1). The other genotypes presented intermediate TGS values.
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Table 1. Polygenic profile of post-training changes in obesity-related parameters according to score.

Gene SNP Genotype
BMI FM FFM TBW TC TGL LDL HDL BG Total

GS TGS
∆BMI GSBMI ∆FM GSFM ∆FFM GSFFM ∆TBW GSTBW ∆TC GSTC ∆TGL GSTGL ∆LDL GSLDL ∆HDL GSHDL ∆BG GSBG

ACE
[24] rs1799752

II −0.4 2 −0.9 0 0.4 0 0.3 0 −0.2 1 1.8 2 1 0 −1 2 −5 2 9 50

ID −0.1 0 −0.9 0 0.5 2 0.4 2 −1.7 2 2.8 1 2.4 1 −4.5 1 −1.6 1 10 56

DD −0.2 1 −1.2 2 0.5 2 0.4 2 1.1 0 6.5 0 4.7 2 −4.9 0 −0.5 0 9 50

ADIPOQ [18]

rs266729

CC −0.23 2 −0.91 2 0.4 2 0.1 1 0.16 1 6.65 1 4.93 1 −4.3 0 −2.74 2 12 67

GC −0.2 1 −0.83 1 0.25 0 0.24 2 −5.65 2 −4.78 2 −2.23 2 −2.95 2 −1.73 0 12 67

GG −0.05 0 −0.24 0 0.32 1 −0.17 0 3.24 0 9.84 0 36.1 0 −4.07 1 −2.08 1 3 17

rs1501299

GG −0.14 0 −0.46 0 0.18 0 0.04 1 1.26 0 6.56 1 12.61 0 −3.85 2 −2.97 2 6 33

TG −0.26 2 −1.04 1 0.42 1 0.39 2 −4.15 2 −1.58 2 2.11 1 −5.36 0 −2.08 1 12 67

TT −0.2 1 −1.32 2 0.69 2 −0.78 0 −4 1 7.16 0 −5.14 2 −3.86 1 −0.1 0 9 50

ADRB2 [25]

rs1042713

GG −0.12 0 −0.92 0 0.39 0 0.46 2 −0.59 1 4.79 1 2.67 1 −3.56 2 −2.96 1 8 44

AG −0.31 1 −1.61 1 0.43 1 −0.25 0 −2.12 2 0.51 2 2.44 2 −4.75 0 −3.36 2 11 61

AA −0.32 2 −2.07 2 0.6 2 0.4 1 0.05 0 11.09 0 40.65 0 −3.8 1 −0.73 0 8 44

rs1042714

GG −0.14 0 −1.07 0 0.45 2 0.32 2 −2.71 1 −2.21 2 2.04 2 −3.57 1 −2.47 2 12 67

CG −0.23 1 −1.28 1 0.42 0 −0.05 0 2.34 0 8.17 0 5.29 1 −4.99 0 −2.41 1 4 22

CC −0.3 2 −1.69 2 0.44 1 0.3 1 −4.61 2 2.45 1 15.13 0 −3.28 2 −2.35 0 11 61

ADRB3 [25] rs4994

TT 0.5 0 −1.38 2 −0.47 0 0.15 0 −0.33 0 4.49 0 9.56 0 −4.81 0 −2.36 1 3 17

CT −0.29 2 −1.36 1 0.25 1 0.18 1 −3.54 1 0.67 1 −2.66 2 −0.62 1 −2.04 0 10 56

CC 0.03 1 −0.84 0 0.57 2 0.37 2 −3.67 2 0.66 2 6.5 1 0.73 2 −7.33 2 14 78

ADRA2A
[25] rs553668

GG −0.24 1 −1.21 0 0.36 0 0.22 1 −1.58 1 4.56 0 9.37 0 −4.82 0 −2.33 0 3 17

AG −0.18 0 −1.86 1 0.65 1 −0.08 0 0.95 0 3.3 1 2.75 1 −1.78 2 −2.41 1 7 39

AA −0.45 2 −1.9 2 0.9 2 0.75 2 −12 2 −24.5 2 −3.9 2 −1.9 1 −7 2 17 94

AMPD1 [26] rs17602729
CC −0.2 0 −0.9 0 0.4 0 0.3 0 −4 2 2 0 −1 0 −3 2 −3 2 6 33

TT + CT −0.3 2 −1 2 0.5 2 0.4 2 1 0 1 2 −5 2 −5 0 −2 0 12 67



Genes 2024, 15, 1137 7 of 17

Table 1. Cont.

Gene SNP Genotype
BMI FM FFM TBW TC TGL LDL HDL BG Total

GS TGS
∆BMI GSBMI ∆FM GSFM ∆FFM GSFFM ∆TBW GSTBW ∆TC GSTC ∆TGL GSTGL ∆LDL GSLDL ∆HDL GSHDL ∆BG GSBG

DRD2
[27]

rs1076560

AA −0.57 2 −1.9 2 0.85 2 0.79 2 −5.5 2 −8.17 2 2.48 1 −6.21 0 −8.84 2 15 83

CA −0.18 0 −0.89 0 0.28 0 0.05 0 −1.08 0 10.3 0 2.81 0 −5.89 1 −3.79 1 2 11

CC −0.23 1 −0.91 1 0.47 1 0.44 1 −1.77 1 0.79 1 1.3 2 −3.14 2 −1.88 0 10 56

rs12364283

AA −0.22 1 −0.98 2 0.46 2 0.36 2 −0.75 0 3.92 1 2.49 0 −3.96 2 −2.73 1 11 61

GA −0.29 2 −0.76 1 0.23 1 0.18 1 −8.25 1 −2.94 2 −2.86 1 −4.6 1 −1.88 0 10 56

GG −0.1 0 0.25 0 −0.6 0 −0.45 0 −19 2 7 0 −12.2 2 −7.7 0 −7 2 6 33

rs1799732
C– −0.26 2 −0.94 0 0.26 0 0.27 0 −4.79 2 −5.37 2 −0.8 2 −2.83 2 −4.84 2 12 67

CC −0.22 0 −0.95 2 0.49 2 0.36 2 −0.78 0 5.88 0 2.57 0 −4.44 0 −2.06 0 6 33

rs1800497

CC −0.21 0 −0.83 0 0.46 1 0.45 1 −1.74 1 0.99 1 1.4 2 −3.26 2 −1.71 0 8 44

CT −0.24 1 −1.1 1 0.36 0 0.12 0 −1.1 0 8.53 0 2.43 1 −5.16 1 −3.95 1 5 28

TT −0.54 2 −1.4 2 0.58 2 0.62 2 −7.6 2 −9 2 2.6 0 −8.24 0 −9 2 14 78

rs1800498

CC −0.21 0 −0.88 1 0.75 2 0.6 2 0.38 0 7.58 0 1.04 2 −2.05 2 −5.35 2 11 61

TC −0.22 1 −1.03 2 0.43 1 0.2 0 −3.75 2 −0.55 2 1.79 1 −5.35 0 −2.99 1 10 56

TT −0.24 2 −0.49 0 0.21 0 0.38 1 −0.02 1 6.19 1 2.27 0 −3.46 1 −0.59 0 6 33

FABP2
[28] rs1799883

GG −0.2 0 −1.1 2 0.5 2 0.5 2 −4 2 1.5 2 0.3 2 −4.5 0 −3.2 2 14 78

GA+AA −0.3 2 −0.9 0 0.3 1 0.2 0 1 0 5.1 0 4.1 0 −3.3 2 −2.1 0 5 28

FTO
[20] rs9939609

TT −0.3 2 −1 2 0.45 2 0.1 0 −0.3 0 3.9 0 4 0 −3.8 0 −2.6 2 8 44

AA+AT −0.2 0 −0.9 0 0.4 0 0.5 2 −2.3 2 2.8 2 1.1 2 −3.6 2 −2.2 0 10 56

IL1A
[29] rs1800587

TT −0.3 2 −1.1 2 0.6 2 0.5 2 0 0 4 1 3 1 −3 2 −3 1 13 72

CT −0.2 0 −0.7 0 0.4 1 0.2 1 −2 1 2 2 2 2 −4 1 −2 0 8 44

CC −0.25 1 −1 1 0.3 0 −0.4 0 −10 2 11 0 7 0 −7 0 −6 2 6 33

IL6
[29]

rs1800795

GG −0.3 2 −0.8 0 0.3 0 0.3 0 −2 2 −1.3 2 2.3 0 −4 1 −2.2 0 7 39

CG −0.2 1 −1.1 2 0.5 1 0.3 0 −1 0 6.8 0 2.3 0 −5 0 −2.9 2 6 33

CC −0.1 0 −0.9 1 0.8 2 0.5 2 −1 0 3.4 1 −0.1 2 −1.6 2 −2.7 1 11 61

rs1800796
GG −0.3 2 −1 2 0.45 2 0.4 0 −2 2 3.4 2 0.8 2 −3.8 2 −2.4 0 14 78

CC+CG −0.2 0 −0.8 0 0.4 0 0.45 2 2 0 3.8 0 7.2 0 −5.2 0 −3.7 2 4 22

rs1800797

GG −0.2 1 −0.7 0 0.7 1 0.3 0 −1 1 −0.4 2 3.9 0 −4.5 1 −2.5 1 7 39

AG −0.3 2 −1.1 2 0.4 0 0.3 0 −3 2 6.2 0 0.6 2 −4.8 0 −3.2 2 10 56

AA 0 0 −0.8 1 0.8 2 0.6 2 0 0 3.5 1 1 1 −1.4 2 −1.7 0 9 50
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Table 1. Cont.

Gene SNP Genotype
BMI FM FFM TBW TC TGL LDL HDL BG Total

GS TGS
∆BMI GSBMI ∆FM GSFM ∆FFM GSFFM ∆TBW GSTBW ∆TC GSTC ∆TGL GSTGL ∆LDL GSLDL ∆HDL GSHDL ∆BG GSBG

IL15
[19]

rs1589241

AA −0.2 1 −0.9 0 0.4 1 0.4 1 1 0 0.4 2 4.5 0 −3.4 2 − − 7 44

AT −0.25 2 −1 1 0.3 0 0.1 0 −3 1 0.5 1 −0.5 2 −4.6 1 − − 8 50

TT −0.1 0 −1.2 2 1.1 2 0.8 2 −4 2 0.9 0 0.7 1 −6.3 0 − − 9 56

rs1057972

TT −0.2 0 −0.6 0 0.1 0 0.3 0 2 0 0.1 2 6.3 0 −3.3 2 − − 4 25

AT −0.25 1 −0.9 1 0.6 2 0.3 0 −3 2 0.4 1 0.1 2 −4.9 0 − − 9 56

AA −0.3 2 −1.4 2 0.6 2 0.4 2 0 1 1 0 1.2 1 −3.5 1 − − 11 69

LEP
[30] rs2167270

GG −0.3 2 −1.2 2 0.45 2 0.4 1 −3 2 0.3 2 −0.1 2 −2.8 1 −1.1 1 15 83

AG −0.2 0 −0.8 0 0.4 0 0.3 0 −3 2 4.9 1 1.9 1 −5.5 0 −5.3 2 6 33

AA −0.2 0 −1.1 1 0.4 0 0.6 2 4 0 6.2 0 5.8 0 −2.6 2 0.6 0 5 28

LEPR
[30] rs1137101

AA −0.25 1 −1.2 2 0.7 2 0.6 2 −6 2 1.5 2 −3.1 2 −3 2 −3 2 17 94

AG −0.2 0 −0.8 0 0.3 0 0.4 1 1 0 4.7 0 4.5 0 −3.8 1 −2.6 1 3 17

GG −0.3 2 −1 1 0.3 0 0 0 −2 1 2.4 1 2.3 1 −5.4 0 −2.1 0 6 33

MC4R
[31] rs17782313

TT −0.2 0 −0.95 0 0.4 0 0.3 2 −2 2 3.3 2 1.2 2 −3.8 2 −2.01 0 10 56

CC+CT −0.3 2 −1.25 2 0.5 2 −0.1 0 1 0 8.6 0 15.7 0 −5.1 0 −3 2 8 44

PPARA
[32]

rs4253778

GG −0.23 1 −0.88 0 0.41 0 0.24 0 −1.95 2 3.37 1 0.37 2 −2.88 2 −2.39 1 9 50

GC −0.24 2 −1.08 1 0.46 1 0.48 1 −1.77 1 5.4 0 3.06 1 −5.89 1 −4.28 2 10 56

CC −0.22 0 −1.22 2 0.55 2 0.7 2 7.67 0 −12 2 16.31 0 −6.52 0 7.67 0 8 44

rs18000206
CC −0.21 0 −0.88 0 0.43 0 0.34 2 −1.63 2 4.26 0 0.95 2 −3.34 2 −3.09 2 10 56

CG −0.45 2 −1.65 2 0.45 2 0.32 0 −0.71 0 −5.43 2 11 0 −10.79 0 2.35 0 8 44

PPARD
[33]

rs2267668

AA −0.25 2 −1.39 1 0.33 0 0.02 0 0.88 0 7.74 0 3.54 1 −4.05 1 −2.54 1 6 33

AG 0.2 1 −1.66 2 0.56 1 0.49 1 −5.86 1 −12.9 2 29.24 0 −3.22 2 −0.04 0 10 56

GG 0.27 0 0.53 0 1.93 2 1.47 2 −19.66 2 6.17 1 −11.42 2 −9.65 0 −10.33 2 11 61

rs2016520

TT −0.25 2 −1.4 1 0.34 0 0.01 0 0.77 0 8.11 0 3.75 1 −4.43 1 −2.68 1 6 33

TC 0.2 1 −1.65 2 0.58 1 0.48 1 −4.6 1 −12.69 2 67.08 0 −1.8 2 0.28 0 10 56

CC 0.22 0 0.61 0 1.54 2 1.19 2 −18.72 2 4.72 1 −10.22 2 −8.85 0 −8.86 2 11 61

rs1053049

TT −0.22 2 −12.35 2 0.38 1 −0.05 0 −0.12 0 8.66 0 3.19 1 −4.6 1 −2.77 1 8 44

TC 0.01 1 −1.71 1 −1.96 0 0.57 1 −1.68 1 −7.11 1 21.09 0 −2.22 2 −1.02 0 7 39

CC 0.16 0 1.3 0 1.56 2 1.22 2 −19.4 2 −8 2 −6.52 2 −9.24 0 −5.2 2 12 67

TNF-α
[34] rs1800629

GG −0.21 0 −0.94 0 0.51 2 0.31 0 −1.62 2 1.26 2 3.82 0 −5.63 0 −1.98 0 6 33

AA+AG −0.27 2 −0.96 2 0.26 0 0.4 2 −1.4 0 8.11 0 −2.52 2 0.43 2 −4 2 12 67

∆—change in variable (before and after the completion of the training program); SNP—single nucleotide polymorphism; GS—genotype score; TGS—total genotype score; BMI—body
mass index; FM—fat mass; FFM—fat-free mass; TBW—total body water; TC—total cholesterol; TGL—triglycerides; LDL—low-density lipoprotein; HDL—high-density lipoprotein.
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3.2. Biofilter

Using Biofilter with the LOKI database, five noteworthy pairwise interactions were
identified, each revealing potential associations between specific genes and their corre-
sponding SNPs (Table 2).

Table 2. SNP interactions with scores supported by Biofilter modeling.

Gene × Gene SNP 1 × SNP 2
Score

Source Group

LEP × LEPR rs2167270 × rs1137101 3 13

ADRB2 × ADRB3
rs1042713 × rs4994 3 16

rs1042714 × rs4994 3 16

ADRA2A × ADRB3 rs553668 × rs4994 3 10

ADRA2A × ADRB2
rs553668 × rs1042713 3 10

rs553668 × rs1042714 3 10

ADRA2A × DRD2
rs553668 × rs1076560 3 6

rs553668 × rs1800498 3 6
The score is a combination of two tallies: the number of original data sources which contained the pair and the
number of different groups among those sources. For example, a score of “3–13” indicates that the model appears
in thirteen different groups, and those groups originated with three different sources.

Three sources supported all interactions; the groups ranged from 6 to 16. Detailed infor-
mation about the sources and groups for each interaction SNP pair is shown in Figure 1A–E.
Based on this, comprehensive analyses were conducted to explore the implications of pair-
wise interactions suggested by Biofilter software, employing mixed-effect models for each
obesity-related parameter. The investigation identified three specific interactions demon-
strating significant associations with key parameters crucial for metabolic health—TC,
HDL, and FFM (see Figure 1F). Figure 1F shows predictor effect plots, providing insights
into the relationships between changes in predictor variables and corresponding alterations
in the predicted response variable. For the TC (the upper panel in Figure 1F), compound
homozygotes with LEP rs2167270 AA and LEPR rs1137101 AA showed a more significant
increase in TC than those with other genotypes. For HDL (the middle panel of Figure 1F),
compound genotypes, such as ADRA2A rs553668 AA+AG and ADRB3 rs9449 CC+CT,
displayed a more pronounced decrease in HDL cholesterol during intervention than did
the other genotypes. For FFM (the bottom panel in Figure 1F), we explored the interaction
between ADRA2A GG and AA+AG based on baseline differences in AA homozygotes in
ADRB2. The interaction of FFM, while detected, appears to be of lesser importance in the
context of training response, as it depends on baseline differences in AA homozygotes in
ADRB2 between the ADRA2A GG and AA+AG genotypes.
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ate-cyclase-activating adrenergic receptor signaling pathway, positive regulation of cold-induced 
thermogenesis; PFAM—7 transmembrane receptor (rhodopsin family); REACTOME—R-HSA-
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ADRA2A × ADRB2: GO—protein binding, plasma membrane, protein homodimerization activity, 
receptor complex, positive regulation of MAPK cascade, norepinephrine binding, adrenergic recep-
tor signaling pathway, adenylate-cyclase-activating adrenergic receptor signaling pathway; 
PFAM—7 transmembrane receptor (rhodopsin family); REACTOME—R-HSA-390696; (E) ADRA2A 
× DRD2: GO—protein binding, plasma membrane, heterotrimeric G-protein binding, adenylate-

Figure 1. Detailed information about the sources and groups for each interaction SNP pair.
(A) LEP × LEPR: GO—angiogenesis, positive regulation of protein phosphorylation, protein bind-
ing, energy reserve metabolic process, negative regulation of autophagy, sexual reproduction, T cell
differentiation, leptin-mediated signaling pathway, regulation of bone remodeling, bone growth, positive
regulation of cold-induced thermogenesis; PHARMGKB—Antipsychotics Pathway (Metabolic Side Ef-
fects), Pharmacodynamics; REACTOME—R-HSA-2586552; (B) ARDB2 × ADRB3: GO—norepinephrine–
epinephrine-mediated vasodilation involved in regulation of systemic arterial blood pressure, desensiti-
zation of G-protein-coupled receptor signaling pathway by arrestin, protein binding, plasma membrane,
receptor-mediated endocytosis, adenylate-cyclase-modulating G-protein-coupled receptor signaling
pathway, activation of adenylate cyclase activity, protein homodimerization activity, receptor complex,
positive regulation of MAPK cascade, norepinephrine binding, adenylate-cyclase-activating adrenergic
receptor signaling pathway, positive regulation of cold-induced thermogenesis; PFAM—7 transmem-
brane receptor (rhodopsin family); REACTOME—R-HSA-390696, R-HSA-418555; (C) ADRA2A ×
ADRB3 GO—protein binding, plasma membrane, protein homodimerization activity, receptor complex,
positive regulation of MAPK cascade, epinephrine binding, norepinephrine binding, adenylate-cyclase-
activating adrenergic receptor signaling pathway; PFAM—7 transmembrane receptor (rhodopsin family);
REACTOME—R-HSA-390696; (D) ADRA2A × ADRB2: GO—protein binding, plasma membrane, pro-
tein homodimerization activity, receptor complex, positive regulation of MAPK cascade, norepinephrine
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binding, adrenergic receptor signaling pathway, adenylate-cyclase-activating adrenergic receptor
signaling pathway; PFAM—7 transmembrane receptor (rhodopsin family); REACTOME—R-HSA-
390696; (E) ADRA2A × DRD2: GO—protein binding, plasma membrane, heterotrimeric G-protein
binding, adenylate-cyclase-activating adrenergic receptor signaling pathway; PFAM—7 transmem-
brane receptor (rhodopsin family); PHARMGKB—Methylphenidate Pathway, Pharmacodynamics;
(F) predictor effect plots, providing insights into the relationships between changes in predictor
variables and corresponding alterations in the predicted response variable; GO (Gene Ontology)—GO
is a comprehensive bioinformatics resource that provides structured and standardized terms to
describe the functions of genes and proteins in any organism. It categorizes gene functions into three
main ontologies: Molecular Function (the molecular activities of gene products), Biological Process
(the larger biological goals accomplished by gene products), and Cellular Component (the locations
in the cell where gene products are active); PFAM—widely used database that classifies proteins
into families based on the presence of specific conserved protein domains or functional units. It pro-
vides information about the structure and function of these protein domains; REACTOME—curated
and peer-reviewed pathway database that provides insights into biological pathways, reactions,
and biomolecule interactions. It covers many biological processes, including signaling pathways,
metabolic pathways, and immune system responses.

4. Discussion

According to studies performed in twins, families, and adoptees, the heritability of
body mass status ranges from 40% to 50%. However, this value is lower among normal-
weight individuals (approximately 30%) and higher in obese people (60–80%) [35]. Genetic
epidemiological studies have shown that numerous genetic loci identified by genome-
wide association studies (GWASs) cumulatively increase the risk of obesity [17] and may
influence physical activity and sedentary behavior in daily life [36]. Although genetically
predisposed individuals are more prone to developing obesity, it has been shown that
the level of physical activity can modify the genetic predisposition to common obesity. Li
et al. [37] indicated that a physically active lifestyle is associated with a 40% reduction in
genetic susceptibility to obesity. The authors emphasized the importance of promoting
exercise, particularly in genetically predisposed individuals, as a significant approach to
controlling the growing obesity epidemic [37]. However, we still do not know whether or to
what extent habitual physical activity may weaken this genetic susceptibility [37]. Therefore,
my research on gene–physical-activity interactions in obesity for 10 years has resulted in
more than 15 published articles [15,18–20,24–34]. Because the individual studies involved
only single or small numbers of polymorphisms, which did not allow for their simultaneous
analysis to elucidate the complex associations between the genetic determinants of obesity
and physical activity, previously obtained results were used to describe their impact on
post-training response comprehensively.

The most important achievement of this work was identifying specific genotypes
associated with favorable or undesirable training-induced changes in body mass, body
composition, and biochemical parameters (‘preferable’, ‘intermediate’, and ‘unpreferable’,
respectively). The data obtained showed that the most significant impact on the effective-
ness of a 12-week training program involved genes encoding leptin and a leptin receptor
(LEP and LEPR), adrenergic receptors (ADRA2A and ADRB3), a dopamine receptor D2
(DRD2), and an adiponectin receptor (ADIPOQ). None of the genotypes achieved the TGS
value of either 0 or 100, reflecting the ‘worst’ or the ‘perfect’ profile. The best result was
94 TGS for the ADRA2A rs553668 AA and LEPR rs1137101 AA genotypes, which indicated
that carriers of these genotypes exhibited a beneficial change in the average values of
all the analyzed variables (eight parameters were scored 2, and one was scored 1). In
addition, two genotypes, DRD2 rs1076560 AA and LEP rs2167270 GG, had a TGS of 83
and were classified as the most ‘preferable’ genotypes for training-induced body changes.
The worst result was 11 TGS for DRD2 rs1076560 CA, and the carriers of this genotype
exhibited an unbeneficial change in the mean values of almost all the chosen variables
(seven parameters were scored 0, and two were scored 1). The group of individuals with
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the most ‘unpreferable’ genotypes for training-induced body changes also included geno-
types such as ADIPOQ rs266729 GG, ADRB3 rs4994 TT, ADRA2A rs553668 GG, and LEPR
rs1137101 AG, for which the TGS value was 17. These results confirm the role of the various
genes in the development of obesity described by several authors [2,13,32]. However, a
polygenic profile aimed at finding all the ‘preferable’ and ‘unpreferable’ genotypes for
training-induced body changes was created for the first time. Thus, this study cannot be
directly compared to previous studies.

In the 2000s, GWASs allowed the analysis of polymorphic sites in the whole genome
to link common and low-frequency genomic variants to phenotypes such as obesity. The
first defined obesity susceptibility gene with a more significant influence on body mass
to date was the fat mass and obesity-associated (FTO) gene. The common FTO polymor-
phism with a T-to-A change (rs9939609) is strongly associated with an increased risk of
obesity development in various populations. Each A allele, a risk allele, is associated with a
1–1.5 kg increase in body weight [38]. My interventional study confirmed that participants
with the AA and AT genotypes had increased BMIs during the entire study period; how-
ever, the FTO gene–physical-activity interaction was not demonstrated [20]. This analysis
confirmed that no FTO genotype was associated with better or worse training-induced
body changes. Thus, not all obesity-related polymorphisms are crucial for assessing the
effectiveness of weight loss programs. Some studies have been unable to demonstrate this
interaction [39,40]; however, others have shown that the effect size of FTO variants is up to
80% lower in physically active individuals than in inactive individuals [41,42]. Other SNPs
in the LEP, LEPR, ADIPOQ, ADRA2A, and ADRB3 genes, which are described as key for
energy intake and fat metabolism [2], are also important in the body’s adaptive response
to training. Adipose tissue plays significant roles in body weight regulation and energy
homeostasis, including the production and secretion of numerous cytokines, chemokines,
and hormone-like factors known as adipokines [43]. Leptin and adiponectin are critical
in food intake, metabolism, and immunity. Leptin, which acts as an afferent signal in a
negative feedback loop by binding to the leptin receptor, plays important roles in regu-
lating body weight by suppressing appetite and stimulating energy expenditure [44,45].
Adiponectin is an essential anti-inflammatory and insulin-sensitizing hormone that pro-
motes lipid oxidation in tissues such as skeletal muscle and liver [46]. The brain receives
signals from adipose tissue, which activates neural circuits controlling energy expenditure
and increases sympathetic nerve activity. Adrenergic receptors are part of the sympathetic
nervous system and exert their actions by coupling with catecholamines, which are impor-
tant regulators of lipolysis and energy expenditure [47]. Considering the multifactorial
role of these gene products in regulating energy metabolism, it was expected that they
would also contribute to the post-training response, which was confirmed by the analysis.
Surprisingly, the genotypes of the rs1076560 polymorphism in the DRD2 gene encoding the
dopamine receptor D2 were the genotypes with the highest post-training effect. Although
it is associated with essential central nervous system functions, such as cognitive abilities,
its impact on exercise-induced changes has rarely been analyzed, making comparison
difficult. This analysis highlights that the genes related to the dopaminergic system may
play a significant role in the effectiveness of training programs, so continuing research
is necessary.

The second part of this analysis, conducted using Biofilter software, confirmed the
biological significance of the SNPs. These SNPs are most important, based on the TGS, for
the changes in body mass, composition, and biochemical parameters induced by training.
Five noteworthy pairwise interactions (LEP × LEPR, ADRB2 × ADRB3, ADRA2A × ADRB3,
ADRA2A × ADRB2, and ADRA2A × DRD2) were identified. The core principle guiding
the analysis conducted with Biofilter software is that any grouping of genes or proteins,
whether a pathway, ontological category, protein family, experimental interaction, or
any other classification, implies a potential relationship among the individual elements
within that group. When the same two genes repeatedly appear together in various
groupings, this signifies a substantial biological relationship. Furthermore, if these genes
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are present in multiple groups sourced from diverse, independent origins, their probability
of being biologically related significantly increases. Biofiltering taps into an extensive
repository of such groupings, facilitating the examination of all these associations. The
tool discerns pairs of genes or SNPs that co-occur across numerous groupings spanning
various original data sources. Consequently, these gene pairs can undergo significance
testing within a research dataset, eliminating the need for exhaustive pairwise analyses
that would pose computational challenges and the burden of multiple testing. Based
on these findings, comprehensive analyses were conducted to explore the implications
of pairwise associations suggested by Biofilter software, employing mixed-effect models
for each obesity-related parameter. Three specific interactions demonstrating significant
associations with key parameters crucial for metabolic health—TC, HDL cholesterol, and
FFM—were shown. Carriers of the LEP rs2167270 AA and LEPR rs1137101 AA exhibited
greater increases in TC levels during the intervention, suggesting that the average values of
these parameters did not change with age. Compound genotypes such as ADRA2A rs553668
AA+AG and ADRB3 rs9449 CC+CT showed a more substantial training-induced decrease
in HDL levels and may be classified as unpreferable genotypes. The third interaction,
detected for FFM, appears to be of minor importance in training response, as it depends on
baseline differences in AA homozygotes in ADRB2 between the ADRA2A GG and AA+AG
genotypes. These findings highlight the nuanced relationships between genetic variations
and metabolic health parameters, providing insights into potential factors that influence
individual responses to training interventions.

GWASs have recognized numerous genetic loci associated with lipid traits. However,
these loci explain only 25–30% of the heritability observed at the blood lipid level [48].
Interactions between genes may explain a part of this missing heritability [49]. Previously,
Holzinger et al. [50] performed a gene-centric interaction study for four different lipid
traits, LDL, HDL, TC, and BG, using a main-effect filter and biofilters. More models passed
the selected replication threshold for the main-effect filter analyses. However, for the
biofilter analyses, the results were replicated only for the BG trait, with two models passing
the significance threshold in a single cohort (SIK3 rs11216162 × APOA4 rs1263173 and
SIK3 rs625145 × APOA4 rs1263173). The authors suggested that biofilter analysis, which
creates gene–gene models based on current biological knowledge, allows for more precise
interpretations, as the models make biological sense. However, this approach inhibits
the discovery of interactions in regions with limited biological knowledge. Using the
genetic data from five cohorts of 24,837 individuals, De et al. [51] combined the quantitative
multifactor dimensionality reduction algorithm with two SNP filtering methods to search
for interactions between SNPs linked to lipid traits. When SNPs were filtered using Biofilter,
two models associated with HDL cholesterol, three associated with LDL cholesterol, one
associated with TC, and eight associated with BG were revealed. However, none of these
interactions were consistent with the results obtained in this study. These differences may
be explained by the fact that previous studies did not address changes in post-training
parameters. To the best of my knowledge, this is the first study to analyze the interactions
between SNPs in the context of post-training changes in selected parameters, which makes
it difficult to compare the results.

The strong point of the study was the comprehensive analysis of numerous genetic
data obtained from the experiment consisting of regulation of both food intake and physical
activity of a homogeneous Caucasian population, whose body mass and composition, as
well as physiological and biochemistry parameters, were analyzed before and after the com-
pletion of the 12-week training program. In addition, the use of creative approaches such
as the construction of a polygenic profile and Biofilter software has provided novel insights
into potential factors influencing individual responses to training interventions. It needs to
be highlighted that common obesity is a multifactorial disease, most likely resulting from
a complicated interaction of genetic, epigenetic, and environmental components [52,53].
Among the many factors influencing response to exercise training are age, gender, diseases,
volume, intensity and frequency of exercise, diet, and many others [16]. Therefore, a po-
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tential limitation of the study is the small size of the participant group, which may not
show statistical power sufficient to yield meaningful analysis and interpretation. Another
factor that should be considered as a weakness is population-specific characteristics such
as one gender, similar age, relatively high physical activity levels as well as a relatively
low weight. Previously, studies investigating gene-by-sex interactions for obesity have
shown an interplay between sex and obesity-related traits, and specific polymorphisms can
be associated with obesity in one sex [54]. Unfortunately, the experiment only included
young Caucasian women, and thus there was no possibility of comparing the results be-
tween genders, ethnicities, and age groups. Additionally, Aurich et al. have shown that
intervention studies documenting changes in a systemic epigenetic biomarker for obesity
susceptibility during weight loss programs make a significant contribution to a better
understanding of epigenetic reprogramming in obesity [52]. Epigenetic modifications
include DNA methylation, histone modifications, and non-coding RNAs (microRNAs,
miRs) which mediate between environmental and genetic factors. These alterations may
be causal for the development of obesity by inducing improper expression or silencing
of the obesity-associated genes and regulatory sequences, leading to metabolic balance
disorders. Epigenetic changes can also arise as a consequence of obesity and predispose
for obesity-associated comorbidities such as cancer [52,55–57]. This study did not examine
lifestyle effects on epigenetic remodeling, which is another weak point of the study.

5. Conclusions

In this study, two novel approaches, total genetic score and Biofilter software, were
used to combine genotypic and phenotypic information for nine obesity-related traits
measured before and after the initiation of a 12-week aerobic training program. The first
important finding was the indication of ‘preferable’, ‘intermediate’, and ‘unpreferable’
genotypes for training-induced changes in selected body mass, composition, and biochem-
ical parameters. The genes most important for post-workout changes were LEP, LEPR,
ADIPOQ, ADRA2A, ADRB3, and DRD2. The second finding involved the identification of
five noteworthy pairwise interactions (LEP × LEPR, ADRB2 × ADRB3, ADRA2A × ADRB3,
ADRA2A × ADRB2, and ADRA2A × DRD2) and three specific interactions demonstrating
significant associations with key parameters crucial for metabolic health—TC, HDL, and
FFM. Understanding the genetic architecture and its interactions with lifestyle factors such
as physical activity level enables us to clarify individuals’ physical activity criteria. In the
future, training programs designed according to a given person’s genetic profile will be
effective and safe intervention strategies for preventing obesity and improving health.
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34. Leońska-Duniec, A.; Ficek, K.; Świtała, K.; Cięszczyk, P. Association of the TNF-α -308G/A Polymorphism with Lipid Profile
Changes in Response to Aerobic Training Program. Biol. Sport. 2019, 36, 291–296. [CrossRef]

35. Bouchard, C. Genetics of Obesity: What We Have Learned Over Decades of Research. Obesity 2021, 29, 802–820. [CrossRef]
36. Wang, Z.; Emmerich, A.; Pillon, N.J.; Moore, T.; Hemerich, D.; Cornelis, M.C.; Mazzaferro, E.; Broos, S.; Ahluwalia, T.S.; Bartz,

T.M.; et al. Genome-wide association analyses of physical activity and sedentary behavior provide insights into underlying
mechanisms and roles in disease prevention. Nat. Genet. 2022, 54, 1332–1344. [CrossRef] [PubMed]

37. Li, S.; Zhao, J.H.; Luan, J.; Ekelund, U.; Luben, R.N.; Khaw, K.-T.; Wareham, N.J.; Loos, R.J.F. Physical Activity Attenuates the
Genetic Predisposition to Obesity in 20,000 Men and Women from EPIC-Norfolk Prospective Population Study. PLoS Med. 2010,
7, e1000332. [CrossRef] [PubMed]

38. Frayling, T.M.; Timpson, N.J.; Weedon, M.N.; Zeggini, E.; Freathy, R.M.; Lindgren, C.M.; Perry, J.R.B.; Elliott, K.S.; Lango, H.;
Rayner, N.W.; et al. A Common Variant in the FTO Gene Is Associated with Body Mass Index and Predisposes to Childhood and
Adult Obesity. Science 2007, 316, 889–894. [CrossRef] [PubMed]

39. Jonsson, A.; Renström, F.; Lyssenko, V.; Brito, E.C.; Isomaa, B.; Berglund, G.; Nilsson, P.M.; Groop, L.; Franks, P.W. Assessing the
Effect of Interaction between an FTO Variant (rs9939609) and Physical Activity on Obesity in 15,925 Swedish and 2,511 Finnish
Adults. Diabetologia 2009, 52, 1334–1338. [CrossRef]

40. Hakanen, M.; Raitakari, O.T.; Lehtimäki, T.; Peltonen, N.; Pahkala, K.; Sillanmaki, L.; Lagstrom, H.; Viikari, J.; Simell, O.;
Ronnemaa, T. FTO Genotype Is Associated with Body Mass Index after the Age of Seven Years but Not with Energy Intake or
Leisure-Time Physical Activity. J. Clin. Endocrinol. Metab. 2009, 94, 1281–1287. [CrossRef]

41. Vimaleswaran, K.S.; Li, S.; Zhao, J.H.; Luan, J.; Bingham, S.A.; Khaw, K.-T.; Ekelund, U.; Wareham, N.J.; Loos, R.J. Physical
Activity Attenuates the Body Mass Index-Increasing Influence of Genetic Variation in the FTO Gene. Am. J. Clin. Nutr. 2009, 90,
425–428. [CrossRef]

42. Rampersaud, E.; Mitchell, B.D.; Pollin, T.I.; Fu, M.; Shen, H.; O’connell, J.R.; Ducharme, J.L.; Hines, S.; Sack, P.; Naglieri, R.; et al.
Physical Activity and the Association of Common FTO Gene Variants With Body Mass Index and Obesity. Arch. Intern. Med. 2008,
168, 1791–1797. [CrossRef]

43. Trayhurn, P.; Wood, I.S. Adipokines: Inflammation and the Pleiotropic Role of White Adipose Tissue. Br. J. Nutr. 2004, 92, 347–355.
[CrossRef]

44. Lenard, N.R.; Berthoud, H.R. Central and Peripheral Regulation of Food Intake and Physical Activity: Pathways and Genes.
Obesity 2008, 16 (Suppl. S3), S11–S22. [CrossRef] [PubMed]

45. Sahu, A. Minireview: A Hypothalamic Role in Energy Balance with Special Emphasis on Leptin. Endocrinology 2004, 145,
2613–2620. [CrossRef]

46. Yamauchi, T.; Kamon, J.; Minokoshi, Y.; Ito, Y.; Waki, H.; Uchida, S.; Yamashita, S.; Noda, M.; Kita, S.; Ueki, K.; et al. Adiponectin
Stimulates Glucose Utilization and Fatty-Acid Oxidation by Activating AMP-Activated Protein Kinase. Nat. Med. 2002, 8,
1288–1295. [CrossRef]

47. Lowell, B.B.; Bachman, E.S. β-Adrenergic Receptors, Diet-Induced Thermogenesis, and Obesity. J. Biol. Chem. 2003, 278,
29385–29388. [CrossRef]

https://doi.org/10.3390/genes11050558
https://www.ncbi.nlm.nih.gov/pubmed/32429460
https://doi.org/10.3390/ijerph19094942
https://doi.org/10.3390/genes12070954
https://doi.org/10.5114/biolsport.2024.131415
https://doi.org/10.1519/JSC.0000000000002447
https://doi.org/10.1515/hukin-2017-0073
https://doi.org/10.3390/jcm8071043
https://doi.org/10.1371/journal.pone.0202557
https://www.ncbi.nlm.nih.gov/pubmed/30157214
https://doi.org/10.5114/biolsport.2019.85456
https://doi.org/10.1002/oby.23116
https://doi.org/10.1038/s41588-022-01165-1
https://www.ncbi.nlm.nih.gov/pubmed/36071172
https://doi.org/10.1371/journal.pmed.1000332
https://www.ncbi.nlm.nih.gov/pubmed/20824172
https://doi.org/10.1126/science.1141634
https://www.ncbi.nlm.nih.gov/pubmed/17434869
https://doi.org/10.1007/s00125-009-1355-2
https://doi.org/10.1210/jc.2008-1199
https://doi.org/10.3945/ajcn.2009.27652
https://doi.org/10.1001/archinte.168.16.1791
https://doi.org/10.1079/BJN20041213
https://doi.org/10.1038/oby.2008.511
https://www.ncbi.nlm.nih.gov/pubmed/19190620
https://doi.org/10.1210/en.2004-0032
https://doi.org/10.1038/nm788
https://doi.org/10.1074/jbc.R300011200


Genes 2024, 15, 1137 17 of 17

48. Kathiresan, S.; Willer, C.J.; Peloso, G.M.; Demissie, S.; Musunuru, K.; Schadt, E.E.; Kaplan, L.; Bennett, D.; Li, Y.; Tanaka, T.; et al.
Common Variants at 30 Loci Contribute to Polygenic Dyslipidemia. Nat. Genet. 2009, 41, 56–65. [CrossRef]

49. Manolio, T.A.; Collins, F.S.; Cox, N.J.; Goldstein, D.B.; Hindorff, L.A.; Hunter, D.J.; McCarthy, M.I.; Ramos, E.M.; Cardon, L.R.;
Chakravarti, A.; et al. Finding the Missing Heritability of Complex Diseases. Nature 2009, 461, 747–753. [CrossRef]

50. Holzinger, E.R.; Verma, S.S.; Moore, C.B.; Hall, M.; De, R.; Gilbert-Diamond, D.; Lanktree, M.B.; Pankratz, N.; Amuzu, A.; Burt,
A.; et al. Discovery and Replication of SNP-SNP Interactions for Quantitative Lipid Traits in over 60,000 Individuals. BioData Min.
2017, 10, 25. [CrossRef]

51. De, R.; Verma, S.S.; Holzinger, E.; Hall, M.; Burt, A.; Carrell, D.S.; Crosslin, D.R.; Jarvik, G.P.; Kuivaniemi, H.; Kullo, I.J.; et al.
Identifying Gene–Gene Interactions That Are Highly Associated with Four Quantitative Lipid Traits across Multiple Cohorts.
Hum. Genet. 2017, 136, 165–178. [CrossRef]

52. Aurich, S.; Müller, L.; Kovacs, P.; Keller, M. Implication of DNA methylation during lifestyle mediated weight loss. Front.
Endocrinol. 2023, 14, 1181002. [CrossRef] [PubMed]

53. Silveira, A.; Gomes, J.; Roque, F.; Fernandes, T.; de Oliveira, E.M. MicroRNAs in Obesity-Associated Disorders: The Role of
Exercise Training. Obes. Facts. 2022, 15, 105–117. [CrossRef] [PubMed]

54. Kyrgiafini, A.M.; Sarafidou, T.; Giannoulis, T.; Chatziparasidou, A.; Christoforidis, N.; Mamuris, Z. Gene-by-Sex Interactions:
Genome-Wide Association Study Reveals Five SNPs Associated with Obesity and Overweight in a Male Population. Genes 2023,
14, 799. [CrossRef] [PubMed]

55. Barrero, M.J.; Cejas, P.; Long, H.W.; Ramirez de Molina, A. Nutritional epigenetics in cancer. Adv. Nutr. 2022, 13, 1748–1761.
[CrossRef]

56. Duncan, G.E.; Avery, A.; Maamar, M.B.; Nilsson, E.E.; Beck, D.; Skinner, M.K. Epigenome-wide association study of systemic
effects of obesity susceptibility in human twins. Epigenetics 2023, 18, 2268834. [CrossRef]

57. Cannataro, R.; Perri, M.; Gallelli, L.; Caroleo, M.C.; De Sarro, G.; Cione, E. Ketogenic Diet Acts on Body Remodeling and
MicroRNAs Expression Profile. Microrna 2019, 8, 116–126. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/ng.291
https://doi.org/10.1038/nature08494
https://doi.org/10.1186/s13040-017-0145-5
https://doi.org/10.1007/s00439-016-1738-7
https://doi.org/10.3389/fendo.2023.1181002
https://www.ncbi.nlm.nih.gov/pubmed/37614712
https://doi.org/10.1159/000517849
https://www.ncbi.nlm.nih.gov/pubmed/35051942
https://doi.org/10.3390/genes14040799
https://www.ncbi.nlm.nih.gov/pubmed/37107557
https://doi.org/10.1093/advances/nmac039
https://doi.org/10.1080/15592294.2023.2268834
https://doi.org/10.2174/2211536608666181126093903

	Introduction 
	Materials and Methods 
	Overview 
	Participants 
	Total Genetic Score 
	Biofilter 
	Statistical Analysis of SNP Pairs and Interaction Testing 

	Results 
	Total Genetic Score 
	Biofilter 

	Discussion 
	Conclusions 
	References

