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Abstract: The oxygen-sensing pathway is a crucial regulatory circuit that defines cellular conditions
and is extensively exploited in cancer development. Pathogenic mutations in the von Hippel–Lindau
(VHL) tumour suppressor impair its role as a master regulator of hypoxia-inducible factors (HIFs),
leading to constitutive HIF activation and uncontrolled angiogenesis, increasing the risk of develop-
ing clear cell renal cell carcinoma (ccRCC). HIF hyperactivation can sequester HIF-1β, preventing
the aryl hydrocarbon receptor (AHR) from correctly activating gene expression in response to en-
dogenous and exogenous ligands such as TCDD (dioxins). In this study, we used protein–protein
interaction networks and gene expression profiling to characterize the impact of VHL loss on AHR
activity. Our findings reveal specific expression patterns of AHR interactors following exposure to
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in ccRCC. We identified several AHR interactors
significantly associated with poor survival rates in ccRCC patients. Notably, the upregulation of the
androgen receptor (AR) and retinoblastoma-associated protein (RB1) by TCDD, coupled with their
respective downregulation in ccRCC and association with poor survival rates, suggests novel thera-
peutic targets. The strategic activation of the AHR via selective AHR modulators (SAhRMs) could
stimulate its anticancer activity, specifically targeting RB1 and AR to reduce cell cycle progression
and metastasis formation in ccRCC. Our study provides comprehensive insights into the complex
interplay between the AHR and HIF pathways in ccRCC pathogenesis, offering novel strategies for
targeted therapeutic interventions.

Keywords: aryl hydrocarbon receptor (AHR); HIF-1A; VHL; dioxins; ccRCC

1. Introduction

The family of proteins known as basic helix–loop–helix (bHLH) PER-ARNT-SIM (PAS)
transcription factors plays crucial roles in physiological adaptations to environmental sig-
nals and cancer pathogenesis [1]. Despite having distinct sets of target genes, these proteins
form heterodimers by utilizing common dimerization partners within specific subfamilies,
leading to intricate interactions [2]. One such protein, hypoxia-inducible factor (HIF), re-
sponds to the hypoxic microenvironment by promoting the transcription of its target genes
after heterodimerization in the nucleus with the aryl hydrocarbon receptor nuclear translo-
cator (ARNT) [3]. The dysregulation of HIF is linked to key transcriptional programmes in
tumorigenesis and directly impacts patient prognosis, particularly in clear cell renal cell
carcinoma (ccRCC), the most common form of kidney cancer [3,4]. In ccRCC, the loss of the
von Hippel–Lindau tumour suppressor (pVHL) disrupts physiological HIF degradation,
yielding constitutive HIF activation [5]. The so-called von Hippel–Lindau (VHL) disease is
an inherited condition associated with increased susceptibility to various benign and malig-
nant tumours, including retinal and cerebellar hemangioblastomas, pheochromocytomas,
paragangliomas, non-functioning pancreatic neuroendocrine tumours (pNETs), and renal
cell carcinoma (RCC) [6,7]. The pVHL acts as a substrate recognition component within a
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protein complex (VCB), consisting of elongin-B (ELOB), elongin-C (ELOC), and cullin-2
(CUL2) [8,9]. This complex exhibits E3 ubiquitin ligase activity, targeting the HIF-1α tran-
scription factor for ubiquitination and proteasome degradation [10]. Another important
protein from the bHLH-PAS family is the aryl hydrocarbon receptor (AHR), encoded by the
homonymous gene localizing on chromosome 7, and acting as a 96 kDa ligand-dependent
transcription factor [11]. The AHR possesses a bHLH-PAS architecture at the N-terminus
and a transactivation domain at the C-terminus, allowing it to dynamically interact with
multiple co-activators [11]. When inactive, the AHR forms a complex with stabilizing
proteins in the cytosol, including heat shock proteins (HSP90), p23, and XAP2 [12]. Upon
ligand binding, the AHR undergoes a conformational change, enabling it to translocate to
the nucleus and form a heterodimer with the aryl hydrocarbon receptor nuclear translocator
(ARNT). The resulting complex is known to interact with DNA via xenobiotic-responsive
elements (XREs) and dioxin-responsive elements (DREs) in gene promoters [13,14]. The
AHR responds to diverse ligands, including environmental chemicals, dietary compo-
nents, and endogenous metabolites. Notably, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
is a prototype ligand with a planar aromatic structure [15,16]. This compound typically
forms as an undesired by-product in the combustion processes of organic materials as
well as a secondary product in organic synthesis [17]. In the nucleus, the AHR/ARNT
complex transcribes genes involved in detoxification, inflammation, immune response,
and development, such as Cyp1a, Cyp1b, GSTA1, EPHX1, and PAI2 [14]. The complex’s
transcriptional activity also involves other specific proteins that act as transcriptional mod-
ulators, such as p300, CREBBP, NCOA1/2/3, and NRIP1 [18]. The AHR plays diverse roles
in cancer, exhibiting both tumour-promoting and tumour-suppressing activities [17]. AHR
modulation affects cancer cell behaviour in a cell-specific manner; for example, in breast
cancer cells, AHR inhibition enhances proliferation in ER-positive cells but has no effect in
ER-negative cells [19]. AHR deletion in various cancer types influences cell proliferation,
invasion, and differentiation [20]. Its interaction with signalling pathways like TGF-β,
PI3K/AKT/mTOR, NF-κB, FAK/c-Src, and Wnt5a/b-β-catenin further complicates its
role [20]. Ligand-activated AHR can inhibit or induce specific signalling pathways, impact-
ing cancer cell functions [19–26]. Moreover, in the last 10 years, the role of the AHR as a
therapeutic target in cancers has emerged in particular through the involvement of agonists
and inhibitors in breast cancer, hepatocellular carcinoma, and melanoma [20,27–33]. These
complex interactions indicate that the AHR’s function is context-dependent, making it
a potential target for cancer-specific therapies, although more cancer-specific studies are
needed for a comprehensive understanding. The identified shared transcriptional binding
partner, ARNT (HIF-1β), between the AHR and HIF-1α suggests a dynamic interplay and
modulation of these canonical pathways. This implies that the preferential activation of
one pathway over the other may result in the impairment of specific cellular behaviour and
homeostasis. VHL disease recapitulates the persistent competition between HIF1A and the
AHR for heterodimerization with ARNT (HIF-1β) and subsequent DNA binding events,
which influence the transcription of target genes [34]. By employing a protein–protein
interaction network-based approach, we here investigated the impact of pVHL loss on
the regulation of AHR activities as well as their intricate pathways interplay [35–37]. We
identified AHR-specific interactors and used them to predict a set of biological responses
that may be compromised by the constitutive activation of HIF-1α [34]. By integrating our
analysis with expression data from exposures to TCDD and expression data from pVHL-
defective clear cell renal cell carcinoma (ccRCC), we provide insights into the potential
repercussions of an impaired AHR pathway in ccRCC and its subsequent impact on tumour
progression. Furthermore, the accompanying Kaplan–Meier analysis sheds light on the
association between numerous AHR interactors and unfavourable survival rates in ccRCC,
collectively supporting the intricate and miscellaneous role of the AHR in the tumour
microenvironment. Our data propose the AHR as a potential target for the simultaneous
agonistic activation of its regulative function, such as modulating androgen receptor (AR)
transcriptional activity and protecting the retinoblastoma-associated protein (RB1) against
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phosphorylation to reduce cell cycle progression [19,38–42]. These three proteins indeed
present low expression levels and are linked to low survival prognoses in ccRCC. In this
specific scenario, AHR-selective activation could result in an interesting therapeutic target
for treatment against pVHL-null ccRCC.

2. Materials and Methods
2.1. Network Generation

The protein–protein interaction network data were retrieved from five of the most
reliable databases of protein interaction, these being BIOGRID, HIPPIE, STRING, IntAct,
and KEGG [43–46]. In particular, these databases were selected as they store experimentally
validated data. To highlight differences in protein network composition upon exposition to
TCDD only, AHR direct interactors were included, while interactions between the AHR
interactors were filtered and not considered in the final network. We employed Cytoscsape
3.9.1 for network data handling, and the interaction data from databases were merged
into a single network [47,48]. Each network was filtered to include only experimentally
validated interactions. In the case of the KEGG network, we exploited the KEGGREST
package (version 1.42.0 and Bioconductor 3.17) in R (version 4.3) to perform an integrative
merge of selected KEGG pathways where the ARNT is involved, specifically the HIF1A sig-
nalling pathway (hsa04066), Cushing syndrome (hsa04934), pathways in cancer (hsa05200),
chemical carcinogenesis—receptor activation (hsa05207), chemical carcinogenesis—reactive
oxygen species (hsa05208), renal cell carcinoma (hsa05211), and Th17 cell differentiation
(hsa04659) [49,50]. In detail, databases were searched imposing the following filters:

• STRING: interactions with an “experimental score” > 0 and no text mining;
• BIOGRID: interactions derived from experiments with a “Biogrid_score” > 0;
• KEGG: manually curated interactions from pathways including the ARNT;
• HIPPIE: this database uses a specific scoring system; we selected interactions with a

score > 0.5;
• IntAct: interactors defined by the terms “association” and “physical association”.

Functional annotations of AHR interactors were obtained from the manual curation of
papers describing the interaction as reported in the different databases. All databases were
accessed in August 2023.

2.2. NCBI-GEO Expression Profiles

The data for protein levels were retrieved from Gene Expression Omnibus (GEO), a free
public database of microarray/gene profiles [51]. In this study, we employed expression
profiles that describe the dioxin effect on HepaRG, MCF7, Ishikawa cells, and HepG2. The
cells were subjected to 100 nM of TCDD for six hours (GSE69844, GSE69845, GSE69849,
and GSE69850) [52]. The second set of expression profiles refers to datasets describing the
ccRCC condition (GSE36895, GSE102101, GSE107848, and GSE186013); here, the first two
datasets are from patient samples, whereas the last two datasets are from 786-O cell lines.
GSE36895: the RNA of clear cell renal cell carcinoma (ccRCC) primary tumours, tumours
growing in immunodeficient mice (tumorgrafts), and normal kidney cortices were labelled
and hybridized to Affymetrix Human Genome U133 Plus 2.0 arrays [53,54]. GSE102101:
RNA-seq profiles of 10 patient-matched normal kidney and ccRCC pairs [55]. GSE107848:
the transcriptomic profiles of 786-O under normoxia, short-term hypoxia, and long-term
hypoxia were analyzed using next-generation sequencing [56]. GSE186013: transcriptomic
profiles of 786-O-TR-Ctrl and 786-O-TR-VHL [57].

2.3. DEG Definition

The expression profiles were analyzed using the GEO2R online tool to compare two
or more groups of samples to identify genes that are differentially expressed across experi-
mental conditions, and default constraints were applied [51]. Genes with logFC > 0 have
been defined as upregulated, and those with logFC < 0 as downregulated [58]. Moreover,
to overcome the differences within the datasets, since different cell lines were treated with
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TCDD and the ccRCC datasets were from both patients and cell lines, proteins were defined
as up- or downregulated if they had the same expression levels in at least three of the
five datasets; if this was not the case, they were declared as undefined expressed and
not considered.

2.4. Survival Analysis of DEGs in Renal Cell Carcinoma

Kaplan–Meier plots are commonly used for assessing the effect of a great number of
genes on survival based on the EGA, TCGA database, and GEO (Affymetrix microarrays
only) [59,60]. The log-rank p-values and hazard ratios (HRs) with 95% confidence intervals
were computed for ccRCC and shown on the plots for each protein. The expression levels
that define the effect on the patient’s survival rate were compared with the levels expressed
in the GEO datasets for ccRCC. p-value evaluation and correction were performed by
applying the Benjamani–Hochberg FDR method [61].

3. Results
3.1. Description of PPIN Features

All interactions considered for constructing the AHR interactor networks underwent
rigorous experimental validation and curation. The merged network, combining data from
various databases, encompasses 182 nodes connected by 327 edges. This protein–protein
interaction (PPI) network is centred around AHR, offering the most comprehensive view of
its interactors. Figure 1 illustrates the sources of interactions in the merged network, with
the majority stemming from at least two databases.
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Figure 1. Pie chart showing the distribution of AHR interactors across databases.

Notably, the database with the highest number of unique interactors was KEGG. This
underscores the robustness and reliability of our AHR-centred PPI network, providing
a thorough understanding of its interacting partners. The specific dimensions of each
network are detailed in Table 1.

Table 1. Derivation of nodes and edges for each network.

BIOGRID HIPPIE STRING IntAct KEGG Merged

Nodes 126 122 20 14 50 182

Edges 150 122 52 17 49 327
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3.2. DEG Network Representation

The network serves as a crucial tool for visualizing and interpreting the expression
levels obtained from the GEO datasets. TCDD-related expression specifically identifies
interactors that are differentially expressed following the activation of the canonical AHR
pathway. The datasets under consideration involve four distinct cell lines, including
HepaRG, MCF7, Ishikawa cells, and HepG2, all subjected to treatment with 100 nM of
TCDD for 6 h (GSE69844, GSE69845, GSE69849, and GSE69850). The visualization of these
data is shown in Figure 2, where differentially expressed genes (DEGs) are represented
in various colours: 35 are upregulated, 50 are downregulated, and the majority exhibit
undefined expression across the analyzed datasets.
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Figure 2. Merged AHR protein–protein interaction network. The colour code represents interactors
following 6 h exposure to 100 nM of TCDD. Red is for upregulated proteins and blue is for downreg-
ulated, while nodes with an undefined expression level are represented in grey. Edges are coloured
according to their node derivation: green is for interactions found in BIOGRID, violet represents data
from HIPPIE, and orange for those from IntAct, while yellow and blue are for KEGG and STRING,
respectively. The thickness of the lines represents the confidence score of the interactions as defined by
each database, while the colours denote the different sources of the interactions, with each database
assigned a distinct colour.

Through this representation of expression data, we can discern which AHR interactors
are the most commonly associated with the activation of its canonical pathway. By mining
data from different cell lines, we identified a minimal set of interactors reliably influenced
by dioxin. Notably, well-known AHR target genes such as CYP1A and CYP1B are down-



Genes 2024, 15, 1167 6 of 15

regulated, suggesting that cell type can influence target gene expression. Conversely, other
target genes implicated in xenobiotic metabolic processes, such as glutathione S-transferase
A5 (GSTA5), glutathione S-transferase Mu 2 (GSTM2), and UDP-glucuronosyltransferase
2B11 (UGT2B11) [12], were found to be upregulated. This nuanced exploration sheds
light on the complex relationship between the AHR and its interactors in response to
TCDD across diverse cell lines. We categorized interactors into two main groups, namely
upregulated and downregulated, and compared their expression levels during canonical
pathway activation with their expression data derived from ccRCC, a well-known scenario
characterized by the absence of functional pVHL. The previously selected upregulated
and downregulated proteins were integrated with a second set of expression levels refer-
ring to the ccRCC condition. Similar to the first dataset, we applied the same colouring
code and procedures defining differentially expressed genes (DEGs), resulting in proteins
clustered as upregulated, downregulated, or having undefined expression. We found that
within the established AHR interactor DEG pool, 35 and 30 proteins were upregulated and
downregulated in ccRCC, respectively. Table 2 summarizes the DEGs that were considered
for further analysis, presenting the levels of expression in the two conditions. To gain
insights into the biological function of these interactions, we annotated each interactor with
information derived from the literature. These interactors were grouped into six clusters,
namely “Cytosolic complex”, “Regulatory functions”, “Transcription partners”, “TCDD
transcript”, “Degradation (no TCDD)”, and “No function”, based on their specific interac-
tion nature/function with the AHR (Figure 3). Moreover, in a broader context, we propose
that proteins with high expression levels in both scenarios may not be induced solely by
the canonical AHR pathway. Higher expression upon dioxin exposure paired with lower
expression in ccRCC is likely dependent on AHR activation, while lower expression in the
first dataset and higher expression in ccRCC could indicate that these genes are specifically
promoted in the kidney tumour context. Finally, we were unable to discriminate low expres-
sion levels in both scenarios as they may be related either to the tumoral environment or
attributed to the cell lines selected in TCDD datasets (Table 2). Nevertheless, our interactor
categorization should provide a comprehensive understanding of the intricate dynamics
of the AHR protein binding network in different scenarios, shedding light on potential
biological functions and implications in the context of ccRCC.

Table 2. List of proteins included in the PPIN, with expression levels found upon TCDD exposition
and in ccRCC cells.

Node Name Expression Levels in at Least Three
out of the Five Datasets Kaplan–Meier Analysis

Protein ID TCDD ccRCC Overall Survival
(p-Value FDR)

LOW Surv.
Expression Level

Expression Level
Validation with the

ccRCC GEO Datasets

AHR HIGH LOW 5.47 × 10−4 LOW X

ANAPC16 LOW HIGH 2.89 × 10−4 LOW

AR HIGH LOW 6.24 × 10−11 LOW X

ARNT2 HIGH HIGH 2.60 × 10−2 LOW

BRCA1 HIGH LOW 7.22 × 10−2 LOW

CCDC43 HIGH LOW 9.01 × 10−5 LOW X

CHMP1A LOW LOW 7.22 × 10−2 HIGH

CLEC11A HIGH HIGH 5.20 × 10−3 HIGH X

CYP1B1 LOW LOW 1.13 × 10−3 HIGH

DDB1 LOW HIGH 6.76 × 10−7 LOW

DNAJA2 LOW LOW 1.95 × 10−10 LOW X

EGLN3 HIGH LOW 1.38 × 10−2 LOW X

EP300 HIGH LOW 2.13 × 10−5 LOW X
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Table 2. Cont.

Node Name Expression Levels in at Least Three
out of the Five Datasets Kaplan–Meier Analysis

Protein ID TCDD ccRCC Overall Survival
(p-Value FDR)

LOW Surv.
Expression Level

Expression Level
Validation with the

ccRCC GEO Datasets

EPHX2 LOW HIGH 2.13 × 10−5 LOW

EPHX4 HIGH LOW 9.98 × 10−2 HIGH

FASN LOW LOW 1.10 × 10−5 HIGH

GSTA4 LOW HIGH 3.12 × 10−3 LOW

GSTM2 HIGH HIGH 4.70 × 10−3 HIGH X

GSTM3 LOW HIGH 1.13 × 10−3 LOW

GSTM4 LOW HIGH 1.51 × 10−1 LOW

GSTM5 HIGH HIGH 1.71 × 10−1 LOW

HSP90AB1 LOW LOW 2.24 × 10−4 LOW X

HSPB8 HIGH LOW 7.81 × 10−2 LOW

IVNS1ABP HIGH HIGH 9.78 × 10−7 LOW

KIF14 HIGH LOW 1.82 × 10−6 HIGH

MAF LOW LOW 7.43 × 10−4 LOW X

MGST1 LOW HIGH 3.39 × 10−2 HIGH X

MGST2 LOW HIGH 2.45 × 10−6 LOW

MPHOSPH8 LOW LOW 2.50 × 10−3 LOW X

NCOA1 HIGH HIGH 2.69 × 10−3 LOW

NCOA7 LOW HIGH 9.78 × 10−7 LOW

NR2F1 LOW HIGH 2.69 × 10−3 LOW

PARP1 LOW LOW 5.02 × 10−2 HIGH

PPP1R12A LOW LOW 3.24 × 10−2 LOW X

PSMC2 LOW LOW 1.09 × 10−1 HIGH

PSMD3 LOW LOW 4.00 × 10−5 HIGH

PTGES3 HIGH LOW 2.89 × 10−4 LOW X

PUS7 LOW LOW 8.77 × 10−2 HIGH

RAF1 HIGH LOW 1.30 × 10−1 HIGH

RB1 HIGH LOW 2.60 × 10−6 LOW X

RBX1 LOW LOW 2.50 × 10−3 HIGH

RELA LOW LOW 9.98 × 10−2 HIGH

SF3B3 LOW LOW 7.43 × 10−4 LOW X

SMAD4 LOW HIGH 2.64 × 10−5 LOW

SUMO2 HIGH LOW 1.57 × 10−2 HIGH

SUV39H1 LOW LOW 2.50 × 10−3 LOW X

TERF2IP LOW HIGH 1.71 × 10−1 HIGH X

TOMM34 LOW HIGH 7.06 × 10−5 HIGH X

TRIM52 HIGH LOW 9.77 × 10−3 HIGH

UBLCP1 LOW LOW 2.08 × 10−2 LOW X

UGT1A1 HIGH HIGH 1.71 × 10−1 HIGH

VIM HIGH LOW 2.50 × 10−3 HIGH
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Figure 3. Networks of interactors clustered by functional relationship with the AHR. Panel (A) groups
proteins upregulated after exposition to TCDD, while downregulated nodes after exposition to TCDD
are reported in panel (B). Red borders mark upregulated nodes, while blue is for those that are
downregulated. Fulfilled red or blue nodes are used to highlight up- or downregulated nodes in both
TCDD and ccRCC samples. The thickness of the lines represents the number of sources reporting
the interaction.

3.3. Analysis of the DEGs by a Kaplan–Meier Plotter

To gain a deeper understanding of the involvement of these proteins in the context
of ccRCC, we employed a Kaplan–Meier plotter to assess the correlation between the
expression of 52 proteins (22 upregulated and 30 downregulated in TCDD) (Table 2 and
Figure 3A,B) and the survival rate of patients with this tumour type. We found that
16 upregulated and 23 downregulated proteins are significantly associated with worse
survival rates, as indicated by their expression levels (p-value FDR < 0.05). To identify in our
dataset which interactors are responsible for the correlation, we compared the expression
levels of 39 proteins—correlated with poorer survival—with the expression levels found in
the ccRCC GEO datasets. There were nine upregulated and ten downregulated proteins,
whose expression levels consistently align with a worse survival rate (Table 3 and Figure 4),
as determined by the Kaplan–Meier analysis.

Table 3. Summary tables of the nodes that have significantly worse survival in ccRCC.

Upregulated Nodes (TCDD 100 nM for 6 h) Downregulated Nodes (TCDD 100 nM for 6 h)

Gene ID
Expression
Levels in

ccRCC

Overall
Survival
(p-Value

FDR)

Expression
Levels

Correlated to
Worse Survival

Rate

Gene ID
Expression
Levels in

ccRCC

Overall
Survival
(p-Value

FDR)

Expression
Levels

Correlated to
Worse Survival

Rate

CCDC43 LOW 9.01 × 10−5 LOW DNAJA2 LOW 1.95 × 10−10 LOW

AR LOW 6.24 × 10−11 LOW HSP90AB1 LOW 2.24 × 10−4 LOW
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Table 3. Cont.

Upregulated Nodes (TCDD 100 nM for 6 h) Downregulated Nodes (TCDD 100 nM for 6 h)

Gene ID
Expression
Levels in

ccRCC

Overall
Survival
(p-Value

FDR)

Expression
Levels

Correlated to
Worse Survival

Rate

Gene ID
Expression
Levels in

ccRCC

Overall
Survival
(p-Value

FDR)

Expression
Levels

Correlated to
Worse Survival

Rate

EP300 LOW 2.13 × 10−5 LOW MAF LOW 7.43 × 10−4 LOW

RB1 LOW 2.60 × 10−6 LOW MGST1 HIGH 3.39 × 10−2 HIGH

EGLN3 LOW 1.38 × 10−2 LOW MPHOSPH8 LOW 2.50 × 10−3 LOW

GSTM2 HIGH 4.70 × 10−3 HIGH PPP1R12A LOW 3.24 × 10−2 LOW

AHR LOW 5.47 × 10−4 LOW SF3B3 LOW 7.43 × 10−4 LOW

CLEC11A HIGH 5.20 × 10−3 HIGH SUV39H1 LOW 2.50 × 10−3 LOW

PTGES3 LOW 2.89 × 10−4 LOW TOMM34 HIGH 7.06 × 10−5 HIGH

UBLCP1 LOW 2.08 × 10−2 LOW
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been associated with alterations in cell proliferation, invasion, and differentiation [20]. The 
intricate interplay between the AHR and signalling pathways, such as TGF-β, 
PI3K/AKT/mTOR, NF-κB, FAK/c-Src, and Wnt5a/b-β-catenin, further complicates its role 
in cancer development [20]. The ligand-activated AHR is reported to either inhibit or in-
duce specific signalling pathways, thereby influencing cancer cell functions [19–26], mak-
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Figure 4. Networks of AHR interactors that have significantly worse survival from the Kaplan–Meier
analysis. Panel (A) groups proteins upregulated after exposition to TCDD, while downregulated
nodes after exposition to TCDD are reported in panel (B). Red borders mark upregulated nodes,
while blue is for those that were downregulated. Fulfilled red or blue nodes are used to highlight up-
or downregulated nodes in both TCDD and ccRCC samples. The thickness of the lines represents the
number of sources reporting the interaction.

4. Discussion

The recognition of the ARNT as the transcriptional binding partner shared between
the AHR and HIF1A highlights the intricate interplay and regulation within these pathways
involved in environmental signal responses. The modulation of the AHR has diverse effects
on cancer cell behaviour in a cell-specific manner, influencing cell proliferation, invasion,
and differentiation [26]. The deletion of the AHR in different cancer types has been associ-
ated with alterations in cell proliferation, invasion, and differentiation [20]. The intricate
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interplay between the AHR and signalling pathways, such as TGF-β, PI3K/AKT/mTOR,
NF-κB, FAK/c-Src, and Wnt5a/b-β-catenin, further complicates its role in cancer devel-
opment [20]. The ligand-activated AHR is reported to either inhibit or induce specific
signalling pathways, thereby influencing cancer cell functions [19–26], making it a potential
target for cancer-specific therapies as it was evaluated in breast cancer, hepatocellular
carcinoma, and melanoma; however, a comprehensive understanding of these contrasting
functions is still to be explained. In this work, we investigated the canonical response to
TCDD mediated by the aryl hydrocarbon receptor (AHR) and the expression of its interac-
tors, comparing exposure to the receptor’s most potent ligand with the ccRCC pathology
condition that precludes the main interaction with the ARNT/HIF1B. Our hypothesis is
that sustained competition between the AHR and HIF1A for binding to the ARNT/HIF1B
during prolonged exposure to TCDD may lead to significant deregulation of key cellular
pathways. Using Cytoscape, we constructed a network centred on the AHR to visualize
GEO datasets and identify differentially expressed interactors in the two conditions. Our
analysis yielded 36 upregulated and 50 downregulated interactors after TCDD exposure,
with 96 interactors exhibiting undefined expression. Further examination of the upregu-
lated and downregulated sets revealed distinct expression patterns in the tumour context.
We identified four clusters based on expression levels in the two conditions, classifying
interactors into groups such as “Cytosolic complex”, “Regulatory functions”, “Transcrip-
tion partners”, “TCDD transcript”, “Degradation (no TCDD)”, and “No function”. These
data were then correlated with patient survival analysis on ccRCC using a Kaplan–Meier
plotter. From the 50 investigated proteins, 9 and 10 proteins from the upregulated and
downregulated sets, respectively, were associated with worse survival rates in ccRCC
patients. Additionally, two proteins—the AR and RB1—were upregulated by TCDD expo-
sure and downregulated in ccRCC, worsening patient survival rates [62]. The ambiguous
role of hormone receptors, particularly the AR, has been extensively studied, revealing
its involvement in metastatic migration/invasion processes and its differential regulation
of VEGF-A vs. VEGF-C under different oxygen conditions in ccRCC cells [12,20,63–67].
RB1, a tumour suppressor, plays a crucial role in regulating the G1/S transition of the cell
cycle [67]. In ccRCC, RB1 often undergoes copy number alterations, impacting cell cycle
progression [42,68]. TCDD-induced G1 cell cycle arrest involves a reduction in phosphory-
lated RB1, facilitated by the direct interaction between the AHR and RB1, protecting RB1
from CDK2/4-mediated phosphorylation [19,69,70]. Our findings suggest that targeting
the AHR could hold therapeutic potential in ccRCC; the activation of this receptor, despite
the constitutive HIF1A triggering, is shown to potentiate the tumour suppressor behaviour
of both the AR and RB1. In summary, this study provides insights into the condition of
TCDD-activated AHR interactors within the context of ccRCC. Utilizing computational
approaches and survival analysis, we identified potential therapeutic approaches, specif-
ically AR and RB1 enhancement. Ligands of the aryl hydrocarbon receptor (AhR) are
categorized into groups such as xenobiotic, endobiotic, and related compounds. It was
proposed that ligands within each category may share similar functional activities, differing
primarily in their relative potency. Alternatively, these ligands can be viewed as selective
modulators (SAhRM), where different SAhRM groups may exhibit overlapping functions,
but their genomic and biological activities can vary [71]. Previous investigations in the
literature explored this concept, showing that these modulators can have specific agonist
and antagonist effects on various cells and tissues. For instance, alkyl polychlorinated
dibenzofurans (PCDFs) with alternative substitutions (1,3,6,8- and 2,4,6,8-) and substituted
diindolylmethanes (DIMs) can bind to the AHR, leading to inhibitory interactions between
the AHR and the estrogen receptor (ER). This interaction mirrors the effects observed with
TCDD, including the suppression of mammary tumour growth [72]. The strategic activation
of the AHR through a selective AHR modulator (SAhRM) may offer effective anti-tumour
therapy in VHL-mutated ccRCC, reducing the need for surgical interventions [71,73].
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VHL, pVHL von Hippel–Lindau tumour suppressor

HIFs Hypoxia-inducible factors

ccRCC Clear cell renal cell carcinoma

AHR Aryl hydrocarbon receptor

HIF-1β, ARNT Aryl hydrocarbon receptor nuclear translocator

TCDD Dioxin, 2,3,7,8-tetrachlorodibenzo-p-dioxin

AR Androgen receptor

RB1 Retinoblastoma-associated protein

SAhRMs Selective AHR modulators

bHLH-PAS Basic helix–loop–helix-PER-ARNT-SIM transcription factors

pNETs Non-functioning pancreatic neuroendocrine tumours

RCC Renal cell carcinoma

VCB complex Complex formed by pVHL, elongin-B, elongin-C, and Cullin-2

ELOB Elongin-B

ELOC Elongin-C

CUL2 Cullin-2

HIF-1α Hypoxia-inducible factor 1-α

HSP90 Heat shock protein 90

p23 Prostaglandin E synthase 3

XAP2 AH receptor-interacting protein

XREs Xenobiotic-responsive elements

DREs Dioxin-responsive elements

Cyp1a Cytochrome P450, family 1, subfamily A, polypeptide 1

Cyp1b Cytochrome P450, family 1, subfamily B, polypeptide 1

GSTA1 Glutathione S-transferase A1

EPHX1 Epoxide hydrolase 1

PAI2 Plasminogen activator inhibitor 2

p300 Histone acetyltransferase p300

CREBBP CREB-binding protein

NCOA1/2/3 Nuclear receptor coactivator 1/2/3
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NRIP1 Nuclear receptor-interacting protein 1

ER Estrogen receptor

HepaRG Human hepatic in vitro line

MCF7 Human breast cancer cell line (Michigan Cancer Foundation-7)

HepG2 Human liver cancer cell line

786-O Human renal cancer cell line

EGA European Genome–Phenome Archive

TCGA The Cancer Genome Atlas

GEO Gene Expression Omnibus

HR Hazard ratio

PPI Protein–protein interaction

DEGs Differentially expressed genes

GSTA5 Glutathione S-transferase A5

GSTM2 Glutathione S-transferase Mu 2

UGT2B11 UDP-glucuronosyltransferase 2B11

PPIN Protein–protein interaction network

VEGF-A/C Vascular endothelial growth factor A/C

CDK2/4 Cyclin-dependent kinase 2/4
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