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Abstract: Gene-based association analysis is a powerful tool for identifying genes that explain trait
variability. An essential step of this analysis is a conditional analysis. It aims to eliminate the influence
of SNPs outside the gene, which are in linkage disequilibrium with intragenic SNPs. The popular
conditional analysis method, GCTA-COJO, accounts for the influence of several top independently
associated SNPs outside the gene, correcting the z statistics for intragenic SNPs. We suggest a
new TauCOR method for conditional gene-based analysis using summary statistics. This method
accounts the influence of the full regional polygenic background, correcting the genotype correlations
between intragenic SNPs. As a result, the distribution of z statistics for intragenic SNPs becomes
conditionally independent of distribution for extragenic SNPs. TauCOR is compatible with any
gene-based association test. TauCOR was tested on summary statistics simulated under different
scenarios and on real summary statistics for a ‘gold standard’ gene list from the Open Targets Genetics
project. TauCOR proved to be effective in all modelling scenarios and on real data. The TauCOR’s
strategy showed comparable sensitivity and higher specificity and accuracy than GCTA-COJO on
both simulated and real data. The method can be successfully used to improve the effectiveness of
gene-based association analyses.

Keywords: random-effects model; conditional distribution; gene-based association analysis;
summary statistics

1. Introduction

Gene-based association (GBA) analysis is widely used for gene mapping. The interpre-
tation of its results essentially relies on reducing the influence of extragenic SNPs that are in
linkage disequilibrium (LD) with internal SNPs of a gene. This is achieved by conditional
analysis. GBA analysis is increasingly being performed using GWAS summary statistics
and correlation matrices (also called LD matrices) between SNP genotypes. This approach
has many advantages over the analysis of individual data [1,2]. A solution to the problem
of conditional analysis using GWAS summary statistics was first proposed in [3], where the
GCTA-COJO (or COJO for short) method was introduced.

The essence of COJO is to adjust the summary statistics of intragenic SNPs to ensure
their independence from the effects of extragenic SNPs. To do this, COJO selects indepen-
dently associated SNPs from the region surrounding a gene of interest. Then, for each SNP
within the gene, COJO recalculates the summary statistics conditional on a given list of
top SNPs outside the gene. These conditional summary statistics, along with the original
LD matrices, are then used as the input for secondary GBA analysis that can be made by
any GBA test. To compute the conditional summary statistics, COJO relies on a multiple
linear regression fixed effects model. This model is known for its shortcomings, most
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notably collinearity and sensitivity to outliers. COJO attempts to address these problems
by filtering out the highly correlated extragenic SNPs using a forward stepwise model
selection procedure. However, this procedure is classified as an overly greedy algorithm [4].
This means that COJO may miss some potentially helpful SNPs due to their LD with
previously detected SNPs [5]. Moreover, COJO is sensitive to the parameters of the model
embedded in COJO, resulting in an unstable list of top SNPs. Consequently, there is a risk
of overfitting, especially if too many predictors are included in the model.

COJO’s alternative for conditional GBA analysis is the polygene pruning (PP) method
described in [6,7]. This method, like COJO, uses summary statistics and is compatible with
all GBA tests. The essence of PP is to exclude the intragenic SNPs that are in high LD
with more significant SNPs outside the gene. Unlike COJO, which adjusts the summary
statistics of intragenic SNPs, PP filters SNPs within a gene, leaving SNPs that are statistically
independent of SNPs outside the gene. PP is fast because it does not require complex matrix
manipulations. This feature is advantageous when analyzing dense genomic regions
containing a large number of SNPs, as the number of predictors in the regression analysis
can be significantly reduced after PP. In addition, PP does not require strict inconsistency
between summary statistics and reference LD matrices. However, excluding SNPs always
reduces the informativity of data sets and might lead to a loss of statistical power compared
to methods that focus on correcting summary statistics.

Another method for conditional GBA analysis using summary statistics has been
proposed by [8]. This method, however, can be applied only to a particular GBA test, the
effective chi-squared statistic (ECS), proposed therein. It therefore precludes the application
of all known popular GBA tests, including the Burden test [9], SKAT [10,11], SKAT-O [12,13],
PCA [14], FLM [15], and others.

In this paper, we propose another method for conditional GBA analysis using summary
statistics. The new method, named TauCOR, aims to account for the external polygenic
background in the LD matrix for intragenic SNPs. Unlike COJO, which corrects the GWAS
summary statistics for each SNP individually, the new method corrects the whole LD
matrix that is attributed to the gene. This matrix is used along with the initial GWAS
summary statistics for further secondary GBA analysis. TauCOR is compatible with any
linear regression-based GBA test that uses summary statistics and LD matrices as input,
and thereby is universal.

The performance of the new method in comparison with COJO was evaluated on the
simulated summary statistics and on causal genes from the ‘gold standard’ causal gene list
and non-causal genes from neighboring regions.

2. Materials and Methods
2.1. The TauCOR Method

We focused on two objects: a gene and its surrounding region. SNPs within the gene
will be referred to as intragenic or internal, while SNPs from the region surrounding the
gene will be referred to as extragenic or external.

2.1.1. Algorithm

For each gene, the new method employs an algorithm comprising two steps (see
Figure 1):

(i) Estimating the joint contribution of extragenic SNPs to the trait variation and cal-
culating the trait variance explained by these extragenic SNPs (i.e., the local SNP
heritability, in terms proposed by Shi et al. [16]), and

(ii) Adjusting the LD matrix for intragenic SNPs so that the distribution of the z statistics
of these SNPs becomes conditionally independent of the distribution of the z statistics
of SNPs in the external region.



Genes 2024, 15, 1174 3 of 13

Genes 2024, 15, x FOR PEER REVIEW 3 of 13 
 

 

The first step of TauCOR relies on the variance-component (VC)-based model, which 
is a linear regression model with random effects and describes the joint distribution of the 
z statistics of extragenic SNPs. VC-based tests are widely used in association analysis due 
to their robust statistical power, even when the region under analysis has many 
non-causal SNPs and/or when the causal SNPs have different directions and different 
magnitudes of association [17,18]. In the context of the VC-based model, the parameter of 
interest is a scalar, τ, which reflects the local SNP heritability. The second step also relies 
on the VC-based model. In this case, however, we are dealing with a conditional model 
that describes the joint distribution of z statistics of intragenic SNPs, conditioned on the 
regional polygenic background. 

 
Figure 1. The flowchart of conditional analysis with TauCOR comprising two steps (i) and (ii). 

2.1.2. Task: Designations, Input Data, and Formulation 
Let us consider a set of mg SNPs within a gene (denoted by setG) and a set of mr SNPs 

from the region around the gene (denoted by setR), m = mr + mg. We denote the vectors of 
SNP-level z statistics as zr for setR and zg for setG. We signify the matrices of SNP-SNP 
correlations within the gene as Ug, within the region around the gene as Ur, and between 
the gene and the region as Urg. Here, we distinguish between the three types of z statistic 
distributions with respect to setG and setR: marginal, conditional, and joint. For the sake 
of convenience, they are symbolically denoted as f(zg) or f(zr), f(zg|zr), and f(zg, zr), respec-
tively. In terms of these designations, our objective is to estimate the conditional distri-
bution f(zg|zr). 

For building the heritability model, we consider a sample of n unrelated individuals 
with measured trait values, y, and measured genotypes for setR, Gr, and for setG, Gg. To 
describe the joint influence of setG and setR on the trait, we employ a linear regression 
model, in which we assume that the Gr effects are random, while Gg effects can be either 
random or fixed. This model uses a VC approach and allows us to consider the effects of 
extragenic SNPs as the external polygenic background that can distort the LD matrix for 
intragenic SNPs. 

For standardized individual data, the model is of the following form: 𝑦ത = 1√𝑛 �̅��̅�  + 1√𝑛 �̅��̅�  + 𝜉. (1)

Figure 1. The flowchart of conditional analysis with TauCOR comprising two steps (i) and (ii).

The first step of TauCOR relies on the variance-component (VC)-based model, which
is a linear regression model with random effects and describes the joint distribution of the
z statistics of extragenic SNPs. VC-based tests are widely used in association analysis due
to their robust statistical power, even when the region under analysis has many non-causal
SNPs and/or when the causal SNPs have different directions and different magnitudes
of association [17,18]. In the context of the VC-based model, the parameter of interest is
a scalar, τ, which reflects the local SNP heritability. The second step also relies on the
VC-based model. In this case, however, we are dealing with a conditional model that
describes the joint distribution of z statistics of intragenic SNPs, conditioned on the regional
polygenic background.

2.1.2. Task: Designations, Input Data, and Formulation

Let us consider a set of mg SNPs within a gene (denoted by setG) and a set of mr
SNPs from the region around the gene (denoted by setR), m = mr + mg. We denote the
vectors of SNP-level z statistics as zr for setR and zg for setG. We signify the matrices of
SNP-SNP correlations within the gene as Ug, within the region around the gene as Ur, and
between the gene and the region as Urg. Here, we distinguish between the three types of z
statistic distributions with respect to setG and setR: marginal, conditional, and joint. For
the sake of convenience, they are symbolically denoted as f (zg) or f (zr), f (zg|zr), and f (zg,
zr), respectively. In terms of these designations, our objective is to estimate the conditional
distribution f (zg|zr).

For building the heritability model, we consider a sample of n unrelated individuals
with measured trait values, y, and measured genotypes for setR, Gr, and for setG, Gg. To
describe the joint influence of setG and setR on the trait, we employ a linear regression
model, in which we assume that the Gr effects are random, while Gg effects can be either
random or fixed. This model uses a VC approach and allows us to consider the effects of
extragenic SNPs as the external polygenic background that can distort the LD matrix for
intragenic SNPs.

For standardized individual data, the model is of the following form:

y =
1√
n

Ggβg +
1√
n

Grβr + ξn. (1)
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Here, y is an (n × 1) vector of standardized trait values at n individuals; Gg (or Gr) is an
(n × mg) (or (n × mr)) matrix of standardized genotypes for setR (or setG); βr is an (mr × 1)
vector of random effects of SNPs from setR, βr ∼ N(0, τ Imr ), where Ik is an (k × k) identity
matrix, and τ measures a common contribution of SNPs from setR to the trait variability;
and βg is an (mg × 1) vector of random or fixed (depending on the selected GBA test) effects
of SNPs from setG. It is important to note that using standardized individual data leads
to standardized values of βr and βg. Furthermore, for ease of interpretation, we scaled
them by 1/

√
n to be able to express them in terms of the unstandardized (original) effect

sizes and their standard error (se) namely as βr = βr
se(βr)

and βg =
βg

se(βg)
. By definition,

βr and βr are equivalent to the joint z statistics. Finally, ξn is an (n × 1) vector of random
standardized regression residuals, ξn ∼ N(0, In).

In accordance with [1], Model (1) can be reformulated in terms of summary-level data
(for details, see Appendix A) divided into blocks linked with setG or setR:

setG →
setR →

(
zg
zr

)
=

(
Ug
Urg

)
βg︸ ︷︷ ︸

↑
setG

+

(
Ugr
Ur

)
βr︸ ︷︷ ︸

↑
setR

+

(
ξmg

ξmr

)
(2)

Here,
(

ξmg

ξmr

)
is an (m × 1) vector of random regression residuals distributed as

N
((

0
0

)
,
(

Ug Ugr
Urg Ur

))
.

Model (2) describes the joint distribution f (zg, zr). In order to construct the conditional
distribution f (zg| zr), we estimate the marginal distribution f (zr) on the basis of Model (2).
For this, we focus the bottom row of Expression (2), which corresponds to setR, under the
null GBA analysis hypothesis (βg = 0):

zr = Urβr + ξmr . (3)

Here, βr is distributed as described above in Model (1), βr ∼ N(0, Imr ), where τ is an
unknown model parameter that is proportional to the local SNP heritability, h2

r , explained
by setR, and ξmr is an (mr × 1) vector of random regression residuals, εmr ~ N(0, Ur). It can

be shown that τ = nh2
r

mr
(for details, refer to Appendix B). Consequently, certain limitations

are placed on the estimation of τ, 0 ≤ τ ≤ n
mr

.
In accordance with Model (3), the marginal distribution of zr is described by distribu-

tion parameters:

f (zr) ⇐
{

E(zr) = 0,
E
(
zrzT

r
)
= τUrUr + Ur

(4)

Here, the symbol ⇐ indicates that the distribution has a given mean vector E(zr) and
covariance matrix E(zrzr

T). The scalar τ can be estimated numerically from f (zr) described
in Expression (4) using the maximum-likelihood estimator (MLE):

−2lnLh ∼ log|τUrUr + Ur|+ zT
r (τUrUr + Ur)

−1 zr. (5)

As can be seen, Expression (5) includes a matrix inversion procedure that can be
complicated due to multicollinearity of genotypic data. To avoid this problem, we compute
a pseudo-inverse matrix for the low-rank approximation obtained from the original matrix
(see Supplementary Note S1 for details).

We then derive a conditional distribution f (zg|zr) from the known joint distribution
f (zg,zr), given the known marginal distribution f (zr). In order to achieve this, we consider
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the upper row of Model (2), which relates to zg, and demonstrates three potential sources
of trait variation:

zg = Ugβg︸ ︷︷ ︸
gene

+ Ugrβr︸ ︷︷ ︸
region

+ ξmg︸︷︷︸,
others

(6)

Here, the distribution of βr is already defined by the estimated τ parameter as de-
scribed in Model (1), and ξmg represents a vector of random regression residuals caused by
non-genetic or genetic, but not setG- and setR-associated, factors, ξmg ∼ N

(
0, Ug

)
.

As follows from Model (6) under the null hypothesis of GBA analysis (βg = 0), the
covariance matrix for setG is expressed as follows:

E
(

zgzT
g

)
= τUgrUT

gr + Ug. (7)

Then, the conditional distribution f (zg|zr) under βg = 0 is given by the distribution
parameters:

f
(
zg
∣∣zr
)
⇐
{

E
(
zg
∣∣zr
)
= 0,

Cov
(
zg
∣∣zr
)
= τ UgrUT

gr + Ug. (8)

The next step is to use the initial marginal z statistics, zg, and the adjusted
(

τ UgrUT
gr +Ug

)
matrix instead of initial Ug matrix as the input for secondary GBA analysis (see Figure 1).
This analysis can be performed with any of the GBA tests that use summary data. The
most popular GBA tests have been implemented in the sumFREGAT R-package (version
1.2.5) [2].

TauCOR has a property that depends on the GBA test selected. When kernel-based
score tests, such as Burden, SKAT, or SKAT-O, are used in conditional GBA analysis, the
p-values are guaranteed to be greater than or equal to the p-values of the initial GBA
analysis (a derivation is provided in Supplementary Materials, see Supplementary Note S2).
However, TauCOR loses this property when the PCA test is used (see Supplementary
Figure S1).

2.2. Simulation Strategy

We constructed a causal SNP model for all SNPs of a gene and the surrounding region.
This model simulates three vector variables: (i) the causal status of SNPs labelled as c; (ii)
joint z statistics, and (iii) marginal z statistics.

Consider a gene with mg SNPs and the surrounding region with mr SNPs. The scheme
of distribution of causal SNPs in the gene and surrounding region was as follows:

mr + mg︸ ︷︷ ︸
all SNPs

→



K︸︷︷︸
causal

→


ρK︸︷︷︸

in gene

(1 − ρ)K︸ ︷︷ ︸
in region

(
mr + mg

)
− K︸ ︷︷ ︸

non−causal

→


mg − ρK︸ ︷︷ ︸

in gene

mr − (1 − ρ)K︸ ︷︷ ︸
in region

(9)

We describe Scheme (9) using two parameters, K and ρ. The parameter ρ, which varies
between 0 and 1, is employed to indicate the location of causal SNPs. The value of ρ is 1
if the causal SNPs are located inside the gene, and 0 if the SNPs are located outside the
gene. The value of K is the total number of causal SNPs. Consequently, ρK is the number of
causal SNPs in the gene.
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The causal statuses of the SNPs in the gene and the surrounding region were modelled
separately using a Bernoulli distribution:

c =
{

Ber
(
ρK/mg

)
, if i ∈ setG

Ber ((1 − ρ)K/mr), if i ∈ setR
.

In our study, we propose that the heritability explained by a single SNP, h2
SNP, is

the same for all SNPs. This implies that the joint contribution of SNPs from setR to trait
variability, τ, can be defined via genome-wide heritability, h2

GW , as follows:

τ =
n
K

(
mr + mg

M
h2

GW

)
. (10)

The causal statuses of the SNPs in the gene and the surrounding region were modelled
separately using a Bernoulli distribution, where M is the total number of SNPs in the
genome, and mr+mg

M h2
GW is the local heritability explained by mr + mg SNPs. For all causal

SNPs, we simulated joint z statistics (denoted as zj) which, by definition, are equal to
β/se(β ):

zj ∼
{

0, if ci = 0
N(0, τ), if ci = 1

Next, for all SNPs, we modelled the marginal z statistics as z ~ N(Uzj, U), where U
is the LD matrix common for both intragenic and extragenic SNPs. These z statistics are
equivalent to the z statistics calculated in GWAS. They can be used for GBA analysis.

In our study, we directly simulated summary statistics using real LD matrices for
genes and their surrounding regions, which were calculated using genotypes from the
1000 Genomes Project [19] and PLINK (version 1.9) [20]. The direct simulation of marginal
z statistics is a valid approach because it has been analytically proven that the distribution
of marginal z statistics, expressed via summary statistics, z ∼ N

(
US−1β, U

)
where S is

a diagonal matrix with diagonal elements equal to se(β) and S−1β = zj, is identical to the
distribution calculated from individual phenotypic values [1]. The marginal SNP effects
were calculated as Sz.

The value of K was fixed at 10. Two classes of scenarios were considered with respect
to the ρ parameter, which was set to either 0 or 1. Formula (10) was used to assign τ, with
hGW

2 set at 0.3, 0.5, or 0.7. A more detailed description of the parameters and inputs for the
simulation is provided in Supplementary Table S1. Three GBA tests were selected for initial
and conditional GBA analyses, each employing a distinct strategy for detecting association
signals: the principal component analysis test (PCA), the Burden test (BT), and the sequence
kernel association test (SKAT) implicated in the sumFREGAT package (version 1.2.5) [2,6].
A total of six scenarios for each GBA test were therefore defined by two parameters, ρ and
hGW

2.
For our simulations, we considered real genes on chromosome 22 and surrounding

regions of ±1 Mb in size. We selected only genes with the number of internal SNPs varying
from 100 to 500 and with the number of adjacent external SNPs varying from 4000 to 9000.
The total number of such genes was 54. The input data for the simulation analysis of a
single gene were the LD matrices for setR and setG, Ur and Ug, respectively: the LD matrix
between setR and setG (Urg); the ratio of the sample size to the total number of SNPs
(n/M = 0.05); and the simulation model parameters (ρ, hGW

2 and K).
A total of 2000 runs were conducted to simulate association signals in a gene (ρ = 1),

and 6000 runs were conducted in the region surrounding this gene (ρ = 0), for each of
the 54 genes. For a conditional analysis, only those runs were selected in which the gene
exhibited a significant association signal (p-value < 2.5 × 10−6).

For the COJO-based analysis of a gene, the surrounding region was initially examined
to determine any conditional SNPs using the ‘--cojo-slct’ option. The p-value threshold
given by the ‘--cojo-p’ option was set to 1.0 × 10−4. If no conditional extragenic SNPs were
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detected, the gene was considered as having passed the COJO-based analysis, with its
initial gene-based p-value remaining unchanged. If the number of conditional extragenic
SNPs after ‘--cojo-slct’ exceeded 10, the 10 strongest were selected. With the final list of
conditional extragenic SNPs and the ‘--cojo-cond’ option, the corrected summary statistics
for the intragenic SNPs were obtained and used as the input for subsequent secondary
GBA analysis. If the recalculated GBA p-value was statistically significant (≤2.5 × 10–6),
the gene was considered as having passed the COJO-based analysis.

For the TauCOR-based analysis, the correlation matrix between intragenic SNPs and
extragenic SNPs within a given window was used to estimate τ and calculate the corrected
correlation matrix for SNPs within the gene. Together with the original z statistics, this
corrected correlation matrix was used as the input to the secondary GBA analysis. If the
GBA test p-value was statistically significant (≤2.5 × 10–6), the gene was considered as
having passed the TauCOR-based analysis.

2.3. ‘Gold Standard’ Gene List

In addition to the simulation data, we employed real data to assess the characteristics
of the novel method.

We selected a list of 28 ‘gold standard’ (GS) genes from the Open Targets Genetics
project [21], i.e., genes whose causal effect on a trait is clearly established. They were
considered to be causal genes in this study. These genes were associated with 13 traits.
The GWAS for these traits were selected from the UK Biobank (https://pheweb.org/UKB-
SAIGE/, accessed on 31 May 2023). Genes sampled in 1 Mb regions around GS genes were
considered non-causal. A total of 394 genes with more than one SNP were identified within
all regions in addition to the GS genes. The number of such genes per region ranged from
one to 59, with an average of 14.6.

For all selected genes, we performed GBA analysis using the sumSTAAR frame-
work [6]. For each gene, SNPs were filtered by MAF ≤ 10−4, annotated using the VEP tool
(version 107) [22], and divided into three categories (sets) of SNPs: non-coding, synony-
mous, and non-synonymous variants.

GBA analysis was carried out using the ACAT-O combination of six tests: SKAT-
O (optimal combination of BT and SKAT) and PCA testing for three SNP sets. Genes
that reached the standard GBA significance threshold (p < 2.5 × 10−6) were selected
for conditional analyses. Two methods for conditional analysis were used: COJO, as
implemented in the GCTA tool (version 1.25.0), and TauCOR. For each gene, a window
with 5 Mb or 1.5 Mb from both gene boundaries was used for COJO or TauCOR, respectively.

Conditional COJO and TauCOR analyses were performed as described in the previous
section, except the threshold p-value for COJO selection of extragenic SNPs that was defined
as the minimum p-value among intragenic SNPs.

2.4. Method Performance

A generally accepted significance threshold of 2.5 × 10−6 was used to determine
positive (i.e., trait-associated) (p < 2.5 × 10−6) and negative (i.e., non-associated) genes
(p ≥ 2.5 × 10−6). The sensitivity of the analysis was evaluated on the set of genes in which
the effect was simulated (ρ = 1) and on the set of GS genes. The sensitivity was calculated
as the ratio of the number of associated genes to the total number of genes involved in
the analysis. Specificity was evaluated on the set of genes in which the signal was not
simulated (when ρ = 0) and the set of genes surrounding the GS genes, as the ratio of
the number of non-associated genes to the total number of genes involved in the analysis.
Finally, accuracy was calculated as the proportion of genes in which the analysis result
matched the expected result.

https://pheweb.org/UKB-SAIGE/
https://pheweb.org/UKB-SAIGE/
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3. Results
3.1. Simulated Data Analysis

Figure 2 presents the results of the simulation analysis, which include estimates of
sensitivity, specificity, and accuracy for two conditional GBA analysis methods under
different scenarios. Further details on the simulation results can be found in Supplementary
Tables S2 and S3. These tables include the number of gene runs selected for conditional
analysis (Nan), as well as estimates of performance measures for an initial GBA analysis
and two conditional GBA analyses under different scenarios.
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Figure 2. Three performance measures for the COJO and TauCOR methods of conditional GBA
analysis, based on the three values of heritability. (a) Sensitivity calculated across the scenarios when
ρ = 1. (b) Specificity calculated across the scenarios when ρ = 0. (c) Accuracy calculated as the linear
combination of sensitivity and specificity.

Initial GBA analysis. The initial GBA tests showed consistently high specificity (>90%)
across all scenarios. However, the sensitivity of the different tests varied. As anticipated,
SKAT and PCA tests that support the bidirectionality of the causal SNP effects showed
moderate to high sensitivity, ranging from 61% to 91%. In contrast, BT demonstrated lower
sensitivity, ranging from 26% to 44%. Nevertheless, the accuracy, calculated essentially as a
linear combination of sensitivity and specificity, was acceptable, exceeding 85% for all tests.
Moreover, as expected, for each of the GBA tests, there was a decrease in specificity and an
increase in sensitivity with increasing hGW

2 (Supplementary Table S2).
Conditional GBA analysis. COJO sometimes failed to process runs with initial GBA p-

values below 1.0 × 10−30; therefore, only runs with an initial GBA p-value below 2.5 × 10−6

but above 1.0 × 10−30 were permitted for conditional analysis.
For PCA and SKAT testing, TauCOR sensitivity was high and comparable to COJO

sensitivity (>93%), whereas for BT, TauCOR sensitivity was significantly higher than COJO
sensitivity. Overall, TauCOR showed an acceptable sensitivity of over 86% in all scenarios.
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However, the specificities of COJO and TauCOR did not exceed 60% in all scenarios. In
particular, with regard to BT, the specificities of COJO and TauCOR were found to be
similar, with approximately 50% observed for both. In contrast, for PCA testing, both
COJO and TauCOR showed low specificity, with values below 12% observed for both. For
SKAT testing, TauCOR has a significantly higher specificity compared to COJO. In terms
of accuracy, TauCOR showed an advantage over COJO in all scenarios (Supplementary
Table S3) (see Figure 2).

The spread of the log10(p) values obtained from the conditional analysis was much
higher for COJO than for TauCOR (Supplementary Figure S1). For example, for PCA, the
standard deviation of the differences between the log10(p) values obtained in the initial and
conditional GBA analyses varied from 11.36 to 21.01 across all scenarios for COJO and from
1.23 to 2.50 for TauCOR (for details see Supplementary Table S4).

3.2. Real Data Analysis Using ‘Gold Standard’ List of Genes

We performed initial GBA analysis and selected only significantly associated SNP-
sets with a p-value < 2.5 × 10−6 in each gene. Among 28 GS genes, 15 were significantly
associated, while among 423 genes from their surroundings 54 were significantly associated.
Further conditional GBA analysis was performed for these genes. The complete GBA results
are presented in Supplementary Tables S5 and S6 and are summarized in Table 1.

Table 1. Effectiveness indicators of two conditional gene-based analysis methods.

Initial GBA COJO + GBA TauCOR + GBA

GS genes 15/28 * 10/15 12/15
Neighboring genes 54/423 15/54 5/54

Sensitivity 0.54 0.67 0.80
Specificity 0.87 0.72 0.91
Accuracy 0.85 0.71 0.88

* A fractional dash is employed to separate the two numbers, indicating the number of genes that have passed a
certain significance threshold and the total number of genes included in the analysis.

As can be seen, the sensitivity of the new method for GS genes is higher than that of
COJO. The specificity of the new method is substantially higher than that of COJO. TauCOR
gave false positive results in only five cases, while COJO gave false positive results three
times more often.

4. Discussion

We introduced a new method for conditional gene-based association analysis using
summary statistics, named TauCOR. Compared to COJO, the new method showed equal or
higher sensitivity and specificity in the majority of the simulation experiment scenarios. For
real data, TauCOR outperformed COJO in all performance measures, especially in method
specificity. TauCOR is a universal method for conditional gene-based analysis because the
corrected distribution of z statistics can be further used for any gene-based association test
that utilizes multiple linear regression models. This allows us to conclude that TauCOR is a
good alternative to the more popular COJO method.

The main idea of our method is that the objects of the correction are not SNP-level z
statistics, as in COJO, but the distribution of all z statistics within a gene. Most conditional
analysis methods assume that the cause of the induced association signal is the effect of
several independent top variants around the gene. We assume that the induced association
signal is explained by the entire region surrounding the gene. This assumption is based on
the notion of a regional polygenic background, which was defined via the LD score in LD
score regression [23]. Previously, the influence of the regional polygenic background on
trait variability was investigated at a single SNP level. In contrast, our method controls the
influence of the regional polygenic background at the gene level, i.e., simultaneously for all
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SNPs in a gene. We demonstrated that our method is an extension of the LD score (LDSC)
regression method proposed in [23] (see Supplementary Note S3).

The new method is based on the variance component approach, which assumes the
random effects of the extragenic SNPs. We extracted a component of intragenic z statistic
variance explained by SNPs outside the gene to correct the LD matrix for SNPs within the
gene. The derived Formula (8) for the parameters of the conditional distribution of the z
statistics of intragenic SNPs can also be obtained from the formula proposed by [24], where
the effects of the extragenic SNPs were assumed to be fixed (see Supplementary Note S4).

We also introduced here a new method for the direct simulation of z statistics in a
gene and its surrounding region without phenotype simulation. This method uses real LD
matrices for SNPs in the gene and surrounding region and three predefined parameters:
h2, the number of causal SNPs, and a fraction of these SNPs in the gene. In independent
studies which do not consider conditional analysis, it has been empirically shown that
the direct simulation of summary statistics produces very similar results to simulation of
individual data across a range of scenarios, with a substantial speedup even for modest
sample sizes [25,26]. We analytically confirmed the equivalence of the distributions of z
statistics directly simulated and calculated using simulated phenotypes.

The proposed TauCOR method can be applied to all genes on a genome-wide scale,
not just those containing significant SNPs as required by COJO. This expands the possibility
of including all genes in the gene set analysis. By correcting for the polygenic background
in gene set analysis approaches that use GBA results such as MAGMA [27], TauCOR may
lead to more robust gene set enrichment results.

5. Conclusions

A new method for conditional gene-based association analysis, TauCOR, showed
equal or higher sensitivity, specificity, and accuracy in the analysis of simulated and real
data compared to COJO. The TauCOR method may become a good alternative to the more
popular COJO method.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/genes15091174/s1, Supplementary Table S1. Parameters and
inputs for the simulation model that directly simulates summary statistics; Supplementary Table
S2. The specificity and sensitivity of the initial and conditional GBA analyses in the simulation
study; Supplementary Table S3. The accuracy of the initial and the conditional GBA analyses in the
simulation study; Supplementary Table S4. The standard deviations calculated for the differences
between the log10(p)-values of the initial and conditional GBA analyses in the simulation study;
Supplementary Table S5. The results of the initial and conditional GBA analyses for causal genes
from the ‘gold standard’ gene list; Supplementary Table S6. The results of the initial and conditional
GBA analyses for non-causal genes from regions neighboring ‘gold standard’ genes; Supplementary
Figure S1. The −log10(p) values of the conditional GBA analyses on the simulated summary data
for two scenarios, where ρ = 0 and ρ = 1 under hGW2 = 0.7. References [24,28,29] are cited in the
Supplementary Materials.
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Appendix A. From Individual-Level Data to Summary-Level Data

1. For setR, we construct a region-based linear regression model with random or fixed
effects of Gr on y:

y =
1√
n

Grβr + ξn, ξn ∼ N(0, In).

2. We move to the level of summary statistics by multiplying all components of this

regression equation by GT
r√
n on the left-hand side:

GT
r y√
n

=
GT

r Gr

n
βr + ξm, ξm ∼ N

(
0,

GT
r Gr

n

)
.

3. By definition, GT
r y√
n = z and GT

r Gr
n = U. After these substitutions, we obtain the

following equation:

zr = Urβr + ξm, ξm ∼ N(0, Ur).

Appendix B. Formulating the Parameter τ

1. According to #1 in Appendix A, we form the matrix of phenotypic correlations be-
tween individuals explained by the region (r) as follows:

E
(

yyT
)
=

1
n

Gr E
(

βrβ
T
r

)
GT

r + In.

2. Random effects model assumes that E
(

βrβ
T
r

)
= τ Im, and thus creates the following

equation:

E
(

yyT
)
= τ

1
n

GrGT
r + In.

3. The matrix GrGT
r , scaled by 1

mr
, presents the relationship matrix (Rr) between individ-

uals, which is explained by the following region:

E
(

yyT
)
= τ

mr

n
Rr + In.

4. The matrix of phenotypic correlations between individuals can be written in terms of
local SNP heritability, h2

r , as follows:

E
(

yyT
)
≈ h2

r Rr + In

5. Upon equating the two matrix expressions from #3 and #4, we obtain the following
result:

https://github.com/gulsvi/TauCOR
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τ =
nh2

r
mr

.

The same conclusion follows from the single-SNP-level LD score regression performed
on the level of summary statistics [23].
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