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Supplementary Notes 

S1. The maximum-likelihood estimator (MLE)

In order to estimate the value of , a -2 × natural logarithm (ln) of 

likelihood function is constructed for the vector zr: 

−2 𝑙𝑛 𝐿ℎ ~ ln|𝑈𝑟𝑈𝑟 + 𝑈𝑟| +  𝑧𝑟
𝑇(𝑈𝑟𝑈𝑟 + 𝑈𝑟)−1 𝑧𝑟.

Using simple transformations, we obtained: 

−2 𝑙𝑛 𝐿ℎ ~ ln|𝑈𝑟| + ln|𝑈𝑟 + 𝐼| + 𝑧𝑟
𝑇𝑈𝑟

−
1
2(𝑈𝑟 + 𝐼)−1𝑈𝑟

−
1
2 𝑧𝑟.

Since the summand 𝑙𝑛|𝑈𝑟| is independent of , it can be omitted: 

−2 𝑙𝑛 𝐿ℎ ~ ln|𝑈𝑟 + 𝐼| + 𝑧𝑟
𝑇𝑈𝑟

−
1
2(𝑈𝑟 + 𝐼)−1𝑈𝑟

−
1
2 𝑧𝑟.

To reduce the running time for MLE, some analytical transformations are first 

carried out. Using the properties of matrix form of A*x+I (from Linear algebra), we 

obtained expressions for summands of (−2 𝑙𝑛 𝐿ℎ): 

ln|𝑈𝑟 + 𝐼| = ∑ ln(𝜏𝑖 + 1)

𝑘

𝑖=1

 

and 

(𝑈𝑟 + 𝐼)−1 = 𝑉 {
1

𝜏𝑖 + 1
} 𝑉𝑇 . 

Here i is an (mr×1) vector of eigenvalues for the matrix Ur; V is an (m×m) matrix of 

eigenvectors for the matrix Ur; curly brackets define the diagonalization of vector and k 
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is the rank of matrix. The k parameter restricts the vector of eigenvalues to be analysed. 

It is typical for LD matrices to exhibit multicollinearity; therefore, they are 

approximated by semi-defined low-rank matrices, for which a pseudo-inverse matrix is 

then sought.  

After substituting these expressions, we obtained: 

−2 𝑙𝑛 𝐿ℎ ~ ∑ ln(𝜏𝑖 + 1)

𝑘

𝑖=1

+  ∑ {
𝑧̃𝑟

2

𝜏𝑖 + 1
} ,

𝑘

𝑖=1

 

where 𝑧̃ = 𝑧𝑟
𝑇𝑈𝑟

−
1

2.

Next, the optimisation problem of identifying the optimal value of  is solved. 

S2. TauCOR property

TauCOR has a property depending on the selected GBA test. When kernel-based 

tests such as Burden, SKAT, or SKAT-O are used in a conditional GBA analysis, the p-

values are guaranteed to be greater than or equal to the p-values of the initial GBA 

analysis. 

This follows from the distribution of the kernel-based score test statistics that can 

be written in general form for Burden, SKAT or SKAT-O: 

𝑄 = 𝑧𝑔
𝑇𝑅 𝑧𝑔,

where 𝑅=  𝟏𝟏𝑇 + (1 − )𝐼𝑚𝑔
 is the correlation matrix between intragenic SNP effects, 

and  is the parameter regulating the selection of the kernel-based test (Burden when  

is fixed at 1; SKAT when  is fixed at 0, and SKAT-O when  is not fixed and estimated 

in the range [0, 1]) (Lee et al. 2012). In accordance with Exp.(8) from the main text, the 

test statistic Q is distributed as a weighted sum of χ2df=1-distributions with weights 

equal to the eigenvalues of the corrected LD matrix, ( 𝑈𝑔𝑟𝑈𝑇
𝑔𝑟 +  𝑈𝑔)𝑅 . Since the 

matrices Ug and 𝑈𝑔𝑟𝑈𝑇
𝑔𝑟 are positively semi-definite, the eigenvalues of ( 𝑈𝑔𝑟𝑈𝑇

𝑔𝑟 +  
𝑈𝑔)𝑅 increase as  increases. Consequently, the p-value of the test statistic also 

increases. 

S3. Gene-level LDSC regression

Bulik et al. (Bulik-Sullivan et al. 2015) have developed the LDSC regression model 

for a single SNP. This model accounts for polygenic background around a single SNP, 

designated as SNP i: 
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𝐶𝑜𝑣(𝑧𝑔𝑖
|𝑧𝑟) = 𝑙𝑖

𝑛ℎ𝑟
2

𝑚𝑟
+ 1 + 𝑛𝑎.  (S1) 

Here n is the sample size; mr is the number of SNPs in a region of interest; hr2 is the 

regional (local) heritability; a measures the contribution of confounding biases, such as 

cryptic relatedness and population stratification; li is the LD score between the i-th SNP 

and all other SNPs from the surrounding region, LD score is calculated as ℓ𝑖 ≔ 𝛴𝑗𝑢𝑖𝑗
2 ,

where uij is the correlation coefficient between the i-th and k-th SNPs.  

It is assumed that the summary statistics have already been adjusted for 

cryptographic relatedness and population stratification, and thus that a = 0. In this case, 

Formula (S1) can be simplified as  

𝐶𝑜𝑣(𝑧𝑔𝑖
|𝑧𝑟) = ∑ 𝑢𝑖𝑗

2

𝑚𝑟

𝑗=1

𝑛ℎ𝑟
2

𝑚𝑟
+ 1.  (S2) 

It is important to note that Formula (S2) is a particular case of Formula (7) 

described in the main text. Formula (7) was derived for the covariance matrix of SNPs 

within a gene, with the aim of accounting for regional polygenic influence under the 

null hypothesis of no gene association: 

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) = 𝑈𝑔𝑟𝑈𝑔𝑟
𝑇

𝑛ℎ𝑟
2

𝑚𝑟
+ 𝑈𝑔.

Consequently, the aforementioned formula represents an extension of the LDSC 

regression, which has been previously constructed at the single-SNP level, to the gene 

level. 

S4. On the conversion from a fixed-effects model to a random effects model

Formula (8) that describes the parameters of the conditional distribution of z-

statistics of intragenic SNPs can also be obtained from the corresponding formula 

proposed in (Pasaniuc et al. 2014), where the extragenic SNP effects were assumed as 

fixed. In accordance with our notations, the conditional distribution of z-statistics 

obtained in (Pasaniuc et al. 2014) can be written: 

𝑓(𝑧𝑔|𝑧𝑟){
𝐸(𝑧𝑔|𝑧𝑟) =  𝑈𝑔𝑟𝑈𝑟

−1𝑧𝑟

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔 − 𝑈𝑔𝑟𝑈𝑟
−1𝑈𝑔𝑟

𝑇
 (S3) 
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As can be seen from Formula (S3), in the conditional GBA analysis based on fixed-

effects model, the biases are observed in both the mean vector and the covariance 

matrix (these biases are highlighted by the boxes in Formula (S3)).  

As follows from linear algebra, without loss of generality, we can remove the 

bias in the mean vector, transforming it into a bias in the covariance matrix: 

𝑓(𝑧𝑔|𝑧𝑟) {
𝐸(𝑧𝑔|𝑧𝑟) =  0

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔 − 𝑈𝑔𝑟𝑈𝑟
−1𝑈𝑔𝑟

𝑇  + 𝑈𝑔𝑟𝑈𝑟
−1𝑧𝑟𝑧𝑟

𝑇𝑈𝑟
−1𝑈𝑔𝑟

𝑇

We can now consider the extra-genic SNP effects not as fixed but as random and 

distributed as 𝑓(𝑧𝑟)~𝑁(𝟎, 𝑈𝑟 + 𝑈𝑟
2)) (see Exp.(4)). This leads to the following formula:

𝑓(𝑧𝑔|𝑧𝑟) {
𝐸(𝑧𝑔|𝑧𝑟) =  0

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔 − 𝑈𝑔𝑟𝑈𝑟
−1𝑈𝑔𝑟

𝑇  + 𝑈𝑔𝑟𝑈𝑟
−1𝐸(𝑧𝑟𝑧𝑟

𝑇)𝑈𝑟
−1𝑈𝑔𝑟

𝑇

Since 𝐸(𝑧𝑟𝑧𝑟
𝑇) = 𝑈𝑟 + 𝑈𝑟

2, we obtained

𝑓(𝑧𝑔|𝑧𝑟) {
𝐸(𝑧𝑔|𝑧𝑟) =  0

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔 − 𝑈𝑔𝑟𝑈𝑟
−1𝑈𝑔𝑟

𝑇  + 𝑈𝑔𝑟𝑈𝑟
−1(𝑈𝑟 + 𝑈𝑟

2)𝑈𝑟
−1𝑈𝑔𝑟

𝑇

The two matrices in boxes were then added together: 

𝑓(𝑧𝑔|𝑧𝑟) {
𝐸(𝑧𝑔|𝑧𝑟) =  0

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔 + 𝑈𝑔𝑟𝑈𝑟
−1(−𝑈𝑟 + 𝑈𝑟 + 𝑈𝑟

2)𝑈𝑟
−1𝑈𝑔𝑟

𝑇

This formula can be simplified to become equivalent to our Formula (8). 

𝑓(𝑧𝑔|𝑧𝑟) {
𝐸(𝑧𝑔|𝑧𝑟) =  0

𝐶𝑜𝑣(𝑧𝑔|𝑧𝑟) =  𝑈𝑔+ 𝑈𝑔𝑟𝑈𝑔𝑟
𝑇    . 
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Supplementary Tables 

Table S1. Parameters and inputs for the simulation model that directly simulates 

summary statistics 

Model parameters Description Values 

 
The proportion of causal SNPs in gene 

among all causal SNPs 
0 or 1 

hGW2 Genome-wide heritability  0.3, 0.5 or 0.7 

K The total number of causal SNPs 10 

Initial data Description Values 

Ur LD matrix for setR real 

Ug LD matrix for setG real 

Urg LD matrix between setR and setG real 

mg The number of SNPs in gene real 

mr 
The number of SNPs in surrounding 

region 
real 

M The number of SNPs in the genome 8 000 000 

n Sample size 380 506 
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Table S2. The specificity and sensitivity of the initial and conditional GBA analyses 

in the simulation study 

Scenarios The number of runs Specificity  

GBA test  hGW2 Ntot * Nan Initial GBA COJO+GBA TauCOR+GBA 

PCA 

0 0.3 129111 3716 0.971 0.12 0.068 

0 0.5 87568 5561 0.936 0.099 0.081 

0 0.7 66352 6319 0.904 0.103 0.101 

BT 

0 0.3 612000 5159 0.992 0.564 0.463 

0 0.5 580000 11440 0.980 0.543 0.493 

0 0.7 551726 17456 0.968 0.532 0.518 

SKAT 

0 0.3 216000 6635 0.969 0.089 0.525 

0 0.5 216000 14571 0.932 0.061 0.515 

0 0.7 216000 22408 0.894 0.044 0.502 

Scenarios The number of runs Sensitivity 

PCA 

1 0.3 14237 8149 0.626 0.934 0.996 

1 0.5 13048 8113 0.801 0.949 0.998 

1 0.7 51385 27962 0.912 0.976 0.996 

BT 

1 0.3 108000 26401 0.262 0.682 0.901 

1 0.5 108000 34897 0.373 0.678 0.882 

1 0.7 108000 38709 0.444 0.674 0.867 

SKAT 

1 0.3 108000 61163 0.616 0.968 0.929 

1 0.5 108000 68756 0.784 0.976 0.934 

1 0.7 107266 65783 0.864 0.982 0.954 

* Ntot: the total number of runs; Nan: the number of runs permitted for conditional 

analysis 
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Table S3. The accuracy of the initial and the conditional GBA analyses in the 

simulation study 

Scenarios Accuracy 

GBA test hGW2 Initial GBA COJO+GBA TauCOR+GBA 

PCA 

03 0.934 0.742 0.768 

05 0.917 0.613 0.634 

07 0.898 0.696 0.712 

BT 

03 0.887 0.662 0.825 

05 0.893 0.641 0.779 

07 0.894 0.624 0.748 

SKAT 

03 0.851 0.882 0.887 

05 0.883 0.816 0.859 

07 0.884 0.744 0.829 
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Table S4. The standard deviations calculated for the differences between the log10(p)-

values of the initial and conditional GBA analyses in the simulation study 

GBA test  hGW2 sd(COJO)* sd(TauCOR) 

PCA 

0 0.3 16.94 1.24 

0 0.5 19.03 1.88 

0 0.7 21.01 2.50 

1 0.3 11.36 1.23 

1 0.5 14.99 1.73 

1 0.7 13.99 2.19 

BT 

0 0.3 5.23 1.55 

0 0.5 5.92 2.10 

0 0.7 6.33 2.50 

1 0.3 6.07 1.76 

1 0.5 6.63 2.23 

1 0.7 7.03 2.62 

SKAT 

0 0.3 13.45 1.70 

0 0.5 14.36 2.31 

0 0.7 15.17 2.87 

1 0.3 7.98 1.96 

1 0.5 8.49 2.53 

1 0.7 8.76 2.97 

* sd(X): the standard deviation calculated for the differences between the log10(p)-values 

of the initial GBA analysis and conditional X-based GBA analysis, where X denotes 

either TauCOR or COJO. 
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Supplementary Figures 
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Figure S1. The -log10(p) values of the conditional GBA analyses on the simulated 

summary data for two scenarios, where  = 0 and  = 1 under hGW2 = 0.7. 

On each plot, the -log10(p) values were calculated in the initial, COJO- and TauCOR-

based GBA analysis. The initial GBA p-values are presented in ascending order and are 

marked by the black continuous line. The red dots represent COJO, while the blue dots 

represent TauCOR. The dotted line indicates the GBA threshold equal to -log10(2.5×10-6). 
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