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Abstract: Wheat is used for making many food products due to its diverse quality profile among
different wheat classes. Since laboratory analysis of these end-use quality traits is costly and time-
consuming, genetic dissection of the traits is preferential. This study used a genome-wide association
study (GWAS) of ten end-use quality traits, including kernel protein, flour protein, flour yield, softness
equivalence, solvent’s retention capacity, cookie diameter, and top-grain, in soft red winter wheat
(SRWW) adapted to US southeast. The GWAS included 266 SRWW genotypes that were evaluated
in two locations over two years (2020–2022). A total of 27,466 single nucleotide markers were used,
and a total of 80 significant marker-trait associations were identified. There were 13 major-effect
quantitative trait loci (QTLs) explaining >10% phenotypic variance, out of which, 12 were considered
to be novel. Five of the major-effect QTLs were found to be stably expressed across multiple datasets,
and four showed associations with multiple traits. Candidate genes were identified for eight of the
major-effect QTLs, including genes associated with starch biosynthesis and nutritional homeostasis
in plants. These findings increase genetic comprehension of these end-use quality traits and could
potentially be used for improving the quality of SRWW.

Keywords: quality; kernel; flour; protein; solvent retention capacity; cookie diameter; softness; genes;
quantitative trait loci

1. Introduction

Various types of wheat classes, each possessing distinct end-use characteristics, are
cultivated in diverse environments by communities with different social backgrounds.
These wheat classes/varieties are utilized to produce a broad spectrum of end-use products.
Therefore, wheat breeding programs worldwide are working on improving grain yield,
processing, and end-use quality, with specific breeding targets for each wheat class [1–4].
For example, soft red winter wheat (SRWW) is bred for low protein content and is suitable
for making cookies, crackers, cakes, pretzels, and pastry products [5,6]. The end-use quality
of SRWW is determined by milling and baking qualities, which include kernel protein
content (KP), kernel hardness, softness equivalence (SE), flour protein content (FP), flour
yield (FY), solvent retention capacity (SRC), and cookie diameter (CD).

KP affects the nutritional value, the dough rheological properties, and the baking
properties of wheat [7,8]. Unlike SRWW, the other wheat market classes with KP above
12.5% are preferred for bread making [9]. Breeding for higher FY is beneficial, since millers
are willing to invest in wheat cultivars that can provide more flour per unit of wheat kernels
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to increase their revenue. SRC provides an estimation of the flour quality and functionality
when the flour is mixed with one of the four different diagnostic solvents: 5% lactic acid (for
gluten strength/quality), 5% sodium carbonate (Na2CO3 for damaged starch), 50% sucrose
(for amount of arabinoxylans/pentosans), and water (for water holding capacity) [10]. For
soft wheat, the amounts of water, sodium carbonate, and sucrose solutions retained by flour
are expected to be low, and the desired level of retained lactic acid solution depends on the
type of end-use product [11,12]. Wheat flour of relatively high lactic acid SRC is used for
making crackers, as they require strong gluten, whereas wheat flour of relatively low lactic
acid SRC is desirable for making cookies and cakes, as they require weak gluten [11,12].
SE provides an estimation of flour particle size and largely depends on kernel hardness.
The CD is commonly used as an indicator of SRWW baking quality. The CD and texture
are mainly influenced by starch properties, gluten strength, water absorption, and flour
texture [13].

Many studies showed that all of the quality-related traits studied are polygenic in
nature [14]. Quantitative trait locus (QTL) mapping and genome-wide association studies
(GWAS) have been carried out to identify QTLs/genes governing such traits. Simons
et al. [15] carried out QTL mapping on recombinant inbred lines (RIL) of spring wheat for
twenty end-use quality traits, including six kernel, seven milling and flour, four dough
mixing strength, and three bread-making traits, where they identified thirty-one QTLs
associated with the traits clustered on five chromosomal regions, 1BS, 1DL, 4BL, 5BL, and
6AS. Cabrera et al. [16] carried out GWAS and QTL mapping for FY, FP, SE, and SRC on a
diversity panel and five bi-parental populations, where they identified 26 potential QTL
regions in the diversity panel and 74 QTL across all five bi-parental populations. The
authors also found high heritability (0.7–0.94) for all of the traits during association analysis.
More recently, Gaire et al. [17] carried out GWAS on 270 elite breeding lines of SRWW,
where they identified 84 marker-trait associations (MTAs) for seven milling and baking
traits, which were grouped into 18 independent QTL regions located on 12 chromosomes
of wheat.

However, studies on the end-use quality of wheat are limited, given the number of
traits involved and their complex genetic inheritance, specifically for the SRWW [16]. With
the use of genomic tools such as GWAS and QTL mapping, novel QTLs/genes related
to such traits could be identified and can help in overcoming breeding challenges. The
huge genome size of wheat requires an extensive amount of such genetic studies to unfold
the mysteries of wheat grain genetics. Therefore, in this GWAS, our goal is to focus on
deciphering the genetics of end-use quality traits in SRWW that can contribute towards
developing high-yielding wheat cultivars with improved wheat end-use quality. The
specific objectives of this study are to (1) evaluate end-use quality traits in a SRWW diversity
panel and identify relationships among these traits, and (2) identify novel major-effect
QTLs governing these traits using GWAS.

2. Materials and Methods
2.1. Plant Materials and Experimental Design

A diversity panel of 266 SRWW lines was used to evaluate end-use quality traits.
The panel includes advanced lines of SRWW developed by public and private soft wheat
breeding programs in the southeastern USA and is referred to as the soft red winter wheat
association mapping panel (SWAMP) hereafter [18]. The field trials were conducted at
two locations: UGA Southwestern Research and Education Center (SWREC) in Plains, GA
(32◦ 2.80′ N, 84◦ 21.98′ W), and Bledsoe research farm in Williamson, GA (33◦ 10.50′ N,
84◦ 24.46′ W), which are referred to as Plains and Griffin, respectively, in this study. The
SWAMP study was evaluated for two consecutive field seasons, 2020–2021 and 2021–2022,
in both locations, providing a total of four environment data, Plains-2021, Plains-2022,
Griffin-2021, and Griffin-2022. The plot size of the SWAMP experiment was two rows
(0.9 m long) with two replicates in Griffin and a plot of seven rows (3 m × 1.5 m) with
two replicates in Plains. The experiments were laid out in a randomized complete block
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design (RCBD) in both locations. The soil was fertilized with pre-plant fertilizer providing
Nitrogen, Phosphorous, and Potassium, and planting was carried out in the first three
weeks of November at a seed rate of 3 gm m−1 using a GPS in-built tractor (John Deere,
Moline, Illinois, USA and Trimble technologies, Westminster, CO, USA) and auto trip seed
drill (Hege Equipment Inc, Salt lake city, UT, USA). For pre-emergence grass control, Zidua
SC was applied at 0.15 L ha−1, followed by post-emergence treatments of Harmony Extra
at 53 g ha−1 for broadleaf control and Axial XL at 1.17 L ha−1 for grass control.

2.2. Trait Measurement

End-use quality traits were evaluated in the USDA-ARS Soft Wheat Quality Research
Unit located in Wooster, Ohio. Seed samples from two replications in each environment
were combined to sample 200–400 g of seeds of each line for analysis. The end-use quality
traits studied include the following: milling traits: KP, FP, SE, and FY; flour quality: SRC for
sodium carbonate (SC.SRC), sucrose (SUC.SRC), lactic acid (LA.SRC), and water (WA.SRC);
and baking quality: CD and top-grain (TG). All of the traits except CD and TG were
measured as percentages. KP was measured using DA7250 at 12% moisture adjustment. FY
was determined using a Quadrumat break roll unit and was calculated as the percentage
of total flour weight (Break flour+ mids) obtained from the sample grain weight. FP was
estimated as a percentage by using NIR Unity Spectra-Star. SE was the percentage of break
flour that passed through the 94-mesh screen of the total flour weight [19]. The SC.SRC,
LA.SRC, SUC.SRC, and WA.SRC assays were carried out according to Approved Method
56-11.02 [19]. Sugar-snap cookies were baked according to Approved Method 10-52.2 [19]
and CD were measured for two cookies in centimeters. The cookies were graded for a TG
score of 1 to 9 based on the islanding pattern on the top surface as described in Approved
Method 10-52.2 [19], where 1 is considered poor and 9 is an excellent TG.

2.3. Phenotypic Data Analysis

The phenotypic data were analyzed using R v4.3.3 (RStudio, Boston, MA, USA).
Three combined datasets were prepared including Griffin-Combined (Griffin-2021, Griffin-
2022), Plains-Combined (Plains-2021 and Plains-2022), and All-Combined (Griffin-2021,
Griffin-2022, Plains-2021, and Plains-2022). All phenotypic analyses were estimated for the
All-Combined dataset. Genotypic and environmental effects were analyzed via analysis
of variance (ANOVA). For this, a mixed linear model was used, as shown in Equation (1),
where both genotype and environment were considered as random effects.

Yij = µ + Gi + Ej + εij (1)

where Yij represents the phenotypic response observed in the jth environment for the ith

genotype, µ is the overall mean, Gi is the effect of the ith genotype, Ej is the effect of the jth

environment, and εij represents the residual error term associated with the observation Yij.
Since there were no replicates, the genotype and environment interaction (GXE) per se

could not be evaluated in the datasets [20]. Broad sense heritability was estimated by using
the formula as shown in Equation (2):

H2 =
σ2

G
σ2

G + σ2
e
n

(2)

where H2 is the broad-sense heritability estimate; σ2
G is genetic variance; σ2

e is residual
variance; and n is number of environments.

Pearson correlation was calculated to determine the magnitude and direction of
measured trait association in the All-Combined dataset using R package psych v2.3.6 [21]
in R. The best linear unbiased prediction (BLUP) was estimated for three combined datasets,
Griffin-Combined, Plains-Combined, and All-Combined, using the “lme4” package v1.1 in
R [22] and referred to as BLUP-G, BLUP-P, and BLUP-A, respectively.
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2.4. Genotyping, Linkage Disequilibrium, and Population Structure

The genotyping, marker filtration, linkage disequilibrium, and population structure
results have been described previously by Subedi et al. [23]. In short, single nucleotide
polymorphisms (SNPs) were filtered for missing values <20% and MAF > 5%, and the
obtained number of SNPs was utilized for our analysis. Population-specific linkage dise-
quilibrium critical value was estimated, and any markers exhibiting greater than or equal
to this value were regarded as linked and grouped into a common QTL [23]. The number
of sub-groups identified through principal component analysis were used as covariates
in GWAS.

2.5. GWAS Analysis

GWAS using the SWAMP panel was conducted to identify genomic regions signifi-
cantly associated with end-use quality traits of SRWW using a genome association and
prediction integrated tool (GAPIT) v3.0 package in R [24]. GWAS was run using five
different models, including both single and multi-loci models: general linear model, mixed
linear model, multiple loci mixed model, fixed and random model circulating probability
unification (FarmCPU), and Bayesian-information and Linkage-disequilibrium Iteratively
Nested Keyway (BLINK). The quantile–quantile (Q-Q) plots and number of significant
SNPs identified by each model were compared to select the best model for our analysis [23].
The number of principal components to be used as covariates during GWAS was also
confirmed based on model-fit in Q-Q and scree plots.

MTAs with a false-positive discovery rate (FDR) of ≤0.10 were considered to be signif-
icant [25]. The adjusted R2, which represents the proportion of phenotypic variance (PV)
explained, was calculated by modeling the phenotype as a function of the significant marker
(independent variable) using the ordinary least-squares regression approach. Pairwise
linkage disequilibrium (r2) was estimated for significant MTAs identified on the same chro-
mosome using TASSEL v5.0 [26]. Any cluster of markers exhibiting linkage disequilibrium
values equal to or superior to the critical r2 value was regarded as linked, consequently
grouping the markers into a common QTL. Stable loci were defined as any loci, with the
associated marker being identified in at least two of the three datasets, BLUP-G, BLUP-P,
and BLUP-A.

To explore how the favorable alleles linked to the major-effect QTLs impact the end-use
quality traits, we categorized the SWAMP into three groups based on marker genotypes:
homozygous for favorable allele, heterozygous, and homozygous for unfavorable allele.
These classifications were based on their positive or negative effects on specific traits
relative to SRWW. Favorable alleles confer desirable phenotypic characteristics, such as
lower FP and FP, higher FY, higher CD, and TG, leading to better end-use quality in SRWW.
Subsequently, we conducted TUKEY’s test among these groups using BLUP-A values
associated with the trait.

2.6. Candidate Gene Discovery and Novelty Testing

Candidate gene discovery was performed by identification of any gene/s lying close
to the MTAs. Chinese Spring RefSeq v1.1 reference genome assembly [27] available in
Ensembl Plants (http://plants.ensembl.org/, accessed on 3 March 2022) was utilized
for the identification of candidate genes for the identified QTLs. Functional annotation
of the identified candidate genes was carried out using the Uniport database (https://
www.uniprot.org/, accessed on 3 March 2022), Wheat Expression Browser (http://www.
wheat-expression.com/, accessed on 3 March 2022), and Wheatomics 1.0 [28]. To test
the novelty of the identified QTLs, the locations of these QTLs were compared with the
previously identified QTLs using NCBI (https://www.ncbi.nlm.nih.gov/, accessed on
3 March 2022) and PlantBioinfoPF (https://urgi.versailles.inra.fr/, accessed on 3 March
2022) [29] databases.

http://plants.ensembl.org/
https://www.uniprot.org/
https://www.uniprot.org/
http://www.wheat-expression.com/
http://www.wheat-expression.com/
https://www.ncbi.nlm.nih.gov/
https://urgi.versailles.inra.fr/
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3. Results
3.1. Phenotypic Analysis

All the phenotypic data of the studied end-use quality traits is provided in Supplemen-
tary Table S1. Our analysis revealed significant variation (p < 0.001) among the genotypes of
the SWAMP panel for all end-use quality traits in the All-Combined dataset (Supplementary
Table S2). The environmental effect was also significant (p < 0.001) for all traits. KP ranged
from 8.8 to 15.8%, with a mean value of 11.2%. FP also showed wide variation from 6.9 to
14.1%, with a mean of 9.13%. The Griffin environment had higher mean values for KP and
FP than the Plains environment (Supplementary Table S2). Interestingly, Plains had slightly
higher FY values than the Griffin samples. FY had an overall mean value of 68.9%, ranging
from 60.6 to 72.8% (Table 1). SE had a mean value of 58.4%, ranging from 40.4 to 70.4%.
SRC showed wide variation for all tested solvents, with mean values of 117.5%, 69.7%,
100.7%, and 53.7% for LA.SRC, SC.SRC, SUC.SRC, and WA.SRC, respectively (Table 1).
LA.SRC exhibited the highest variation, ranging from 84.9 to 164.9%. For baking traits, CD
ranged from 16 to 20.3 cm, while TG scores ranged from 1 to 7.

Table 1. Descriptive statistics, analysis of variance, and heritability estimation for ten end-use quality
traits studied in 266 SRWW lines.

Trait a
General Statistics of Population

H2 g
Mean SD b CV c Min d Max e SE f

KP (%) 11.2 0.56 4.95 8.8 15.8 0.03 0.65
FY (%) 68.6 1.38 2.01 60.6 72.8 0.09 0.90
SE (%) 58.4 3.05 5.22 40.4 70.4 0.19 0.92
FP (%) 9.1 0.49 5.42 6.9 14.1 0.03 0.72
LA.SRC (%) 117.5 8.91 7.58 84.9 164.9 0.55 0.81
SC.SRC (%) 69.7 2.91 4.17 61.1 85.7 0.18 0.91
SUC.SRC (%) 100.7 5.26 5.23 84.9 128.7 0.33 0.90
WA.SRC (%) 53.7 1.88 3.51 46.7 65.5 0.12 0.90
CD (cm) 18.6 0.42 2.23 16.0 20.3 0.03 0.82
TG 3.3 0.6 17.68 1 7 0.04 0.40

a End-use quality traits KP, kernel protein; FY, flour yield; SE, softness equivalence; FP, flour protein; LA.SRC,
lactic acid solvent retention capacity; SC.SRC, sodium carbonate solvent retention capacity; SUC.SRC, sucrose
solvent retention capacity; WA.SRC, water solvent retention capacity; CD, cookie diameter; TG, top-grain. b SD,
standard deviation. c CV, coefficient of variation. d Minimum value obtained for traits. e Maximum value
obtained for traits. f SE, standard error of the mean. g Broad-sense heritability estimates for the traits from the
All-Combined dataset.

Heritability (H2) ranged from 0.4 to 0.92 among the end-use quality traits (Table 1). FY,
SE, SC.SRC, SUC.SRC, and WA.SRC had H2 ≥ 0.9, whereas TG had the lowest heritability
of 0.4. The heritability of KP, FP, LA.SRC, and CD were between 0.65 and 0.82. The study
revealed significant positive correlations (p < 0.01) among all traits except for SE and
SUC.SRC (Figure 1). The highest correlation coefficient was observed between KP and
FP (r= 0.95). Both KP and FP exhibited positive correlations with LA.SRC (r=0.53 to 0.56),
while showing negative correlations with FY (r =−0.40 to −0.36), SE (r = −0.49 to −0.42),
and CD (r = −0.62 to −0.59). SE was positively correlated with CD (r = 0.51) and negatively
with WA.SRC (r = −0.54). Similarly, FY displayed positive correlations with CD (r = 0.50)
and negative correlations with SRC traits (r = −0.57 to −0.24). SC.SRC, SUC.SRC, and
WA.SRC were all found to be positively correlated (r= 0.40 to 0.72). Moreover, all SRC traits
displayed negative correlations with CD (r = −0.57 to −0.30). Lastly, CD and TG were
found to have a positive correlation (r = 0.57).
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Figure 1. Correlation analysis of ten end-use quality traits among 266 SRWW lines. Combined data
from four environments across two years 2020–2022, All-Combined, was used for correlation. SE,
softness equivalence; KP, kernel protein; FP, flour protein; FY, flour yield; LA.SRC, lactic acid-solvent
retention capacity; SC.SRC, sodium carbonate-solvent retention capacity; SUC.SRC, sucrose-solvent
retention capacity; WA.SRC, water-solvent retention capacity; CD, cookie diameter; TG, top-grain; ns,
non-significant; * significant at 0.01 level; ** significant at the 0.001 probability level.

3.2. GWAS

The filtered genotype data, including 27,466 SNPs, is provided in Supplementary
Table S3. BLUP-A, BLUP-G, and BLUP-P were used for GWAS. Among the five tested
models, mixed linear model, general linear model, multiple loci mixed model, FarmCPU,
and BLINK, we found BLINK to have better control over both false-positive and false-
negative associations. Thus, BLINK was used to run GWAS for all of the studied end-use
quality traits. We identified a total of 80 MTAs at pFDR ≤ 0.1 from all three BLUP datasets
(Supplementary Table S4). MTAs were identified for all of the traits except CD. Of 80 MTAs,
59 were associated with SRC, including 18 for SC.SRC, 16 for LA.SRC, 15 for WA.SRC, and
10 for SUC.SRC. There were nine MTAs for KP, whereas FP had four MTAs. FY and SE had
four and three MTAs, respectively. For baking traits, we only found one MTA associated
with TG. Thus, SC.SRC and TG were the traits with the highest and lowest number of
MTAs (Supplementary Table S4).

MTAs were discovered across 17 wheat chromosomes, excluding 3D, 4D, 7A, and 7B
(Figure 2 and Supplementary Table S5). Chromosome 6B exhibited the highest number of
MTAs, totaling 11, while chromosomes 4A and 5D each had only one MTA (Supplementary
Table S5). The B genome featured the greatest number of MTAs (38), followed by the A
genome (25), with the D genome having the fewest MTAs (17) (Supplementary Table S5).
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Figure 2. Physical location of MTAs identified for end-use quality traits across 17 chromosomes
of wheat genome. The numbers 1 to 7 and the letters A, B, D represent chromosomes in three sub
genomes of wheat (A, B, and D). The traits connected with the black lines indicate different MTAs
associated with the traits in the chromosomal region. The y-axis shows the length of chromosomes
in million base pairs (Mbp). SE, softness equivalence; KP, kernel protein; FP, flour protein; FY, flour
yield; LA.SRC, lactic acid-solvent retention capacity; SC.SRC, sodium carbonate-solvent retention
capacity; SUC.SRC, sucrose-solvent retention capacity; WA.SRC, water-solvent retention capacity;
TG, top-grain.

The marker S5A_595957121 contributed to the highest percentage of PV explained
for SE, reaching 10.3% (Supplementary Table S4). Similarly, marker S5B_111221616 was
linked to the highest PV for FY, amounting to 4.9%. For KP and FP, S2B_769051134
explained the highest PV, registering 10.9% and 10.3%, respectively. Interestingly, all 13
MTAs related to protein content (KP and FP) were exclusively identified in the B and D
genomes (Supplementary Table S4). In contrast, MTAs associated with SRC were identified
in 17 chromosomes. For WA.SRC, the marker S6B_621092809 accounted for the highest PV
at 10.9%. Notably, S1B_55461748 exhibited the highest PV among all of the tested end-use
quality traits, contributing to 20.6% in LA.SRC. In the case of SUC.SRC, S3B_658495375 was
associated with the highest PV, explaining 14.5%. For SC.SRC, S6B_619025168 explained
the highest PV at 13.9%. Finally, the only marker associated with TG, S3B_669428408,
explained 12.9% of the PV.
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3.3. Major Effect QTLs for Milling and Baking Traits

Based on the population-specific linkage disequilibrium critical value of 0.32 [23],
we resolved the 80 significant MTAs into 53 distinct QTLs (Supplementary Table S4).
Furthermore, we identified 13 QTLs explaining ≥10% PV, which were considered to be
major-effect QTLs and are discussed further in Table 2. For example, major-effect QTL,
QFp/Kp.uga-2B, located on chromosome 2B, explained 10.3% and 10.9% PV for FP and
KP, respectively, showing it as a significant locus associated with both traits. Similarly,
another major effect, QTL, QFp/Kp.uga-1D, located on chromosome 1D, exhibited multi-
trait associations contributing to 7.1% and 10.6% of PV for FP and KP, respectively. This
investigation also revealed two major-effect QTLs for SE, QSe.uga-4B and QSe.uga-5A,
located on chromosomes 4B and 5A and contributing to 10.1% and 10.3% PV, respectively
(Table 2).

We identified eight major-effect QTLs associated with SRC, including two, QLa/Sc.uga-
1B and QLa.uga-3A, on chromosomes 1B and 3A, respectively (Table 2). QLa/Sc.uga-
1B was associated with two markers in the linkage disequilibrium, S1B_55461748 and
S1B_65768803. QLa/Sc.uga-1B not only explained 20.6% PV for LA.SRC, but also exhibited
a stable association with SC.SRC (up to 9.8% PV) across datasets (BLUP-A and BLUP-P).
Furthermore, QLa.uga-3A, a stable QTL identified in BLUP-A and BLUP-P, explained up to
11.4% of PV for LA.SRC.

In addition to QLa/SC.uga-1B, two more QTLs were identified for SC.SRC, QSc.uga-6A
and QSc/Suc/Wa.uga-6B, positioned on chromosomes 6A and 6B. QSc.uga-6A, detected
using BLUP-G, contributed to 10.8% PV for SC.SRC (Table 2). QTL QSc/Suc/Wa.uga-6B was
an interesting finding since this QTL was not only associated with three SRC traits, SC.SRC,
SUC.SRC, and WA.SRC, but was also stably expressed for all of these traits among the
tested datasets (Table 2). QTL QSc/Suc/Wa.uga-6B explained a PV of up to 13.9% for SC.SRC,
14.2% for SUC.SRC, and 11.3% for WA.SRC. Additionally, four more QTLs associated with
SUC.SRC were discovered: QSuc.uga-1D, QSuc.uga-2D, QSuc.uga-3A, and QSuc.uga-3B, in
chromosome 1D, 2D, 3A, and 3B, respectively. QSuc.uga-2D and QSuc.uga-3B were stable
QTLs and explained up to 10.0% and 14.5% of PV, respectively, for SUC.SRC in all tested
datasets. In contrast, QSuc.uga-1D and QSuc.uga-3A were identified in only one dataset,
BLUP-A, and explained 11.3% and 12.7% of PV for SUC.SRC. Lastly, we only identified one
major-effect QTL for TG, QTg.uga-3B, in chromosome 3B, which explained a PV of 12.9%
(Table 2).

In summary, among the 13 major-effect QTLs discovered for evaluated end-use quality
traits, five exhibited stable expression, and four showed an association with multiple
traits (Table 2). Considering the multi-trait association of each QTL, we identified five
major-effect QTLs for SUC.SRC, three for SC.SRC, two each for LA.SRC, FP, KP, and SE,
and one each for WA.SRC and TG. No major-effect QTLs were identified for FY and CD.
These findings underscore the complexity and interrelation of genetic loci governing wheat
end-use quality traits.
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Table 2. Summary of 13 major-effect QTLs for ten end-use quality traits from three BLUP datasets, BLUP-G, BLUP-P, and BLUP-A.

QTL Name a SNP b Trait c Dataset d Allele e MAF f pFDR g Effect h PV i Candidate Gene ID j Associated Protein k

QFp/Kp.uga-1D S1D_108803007 FP BLUP_A G/A 0.2 0.04 −0.15 7.15 - -
S1D_108803007 KP BLUP_A G/A 0.00 −0.18 10.67

QFp/Kp.uga-2B S2B_769051134 FP BLUP_A A/G 0.3 0.00 0.13 10.36 TraesCS2B02G581400 Leucine-rich repeat-containing
N-terminal plant-type
domain-containing protein

KP BLUP_A 0.00 0.14 10.92 TraesCS2B01G581500 Pentatricopeptide repeat-containing
protein

QSe.uga-4B S4B_544593051 SE BLUP_P T/C 0.4 0.00 −0.81 10.12 TraesCS4B02G269500 Uncharacterized protein
QSe.uga-5A S5A_595957121 SE BLUP_P G/A 0.1 0.01 1.62 10.30 - -

QLa/Sc.uga-1B
S1B_55461748 LA.SRC BLUP_G

T/C
0.1 0.00 5.64 20.64 TraesCS1B02G070400 Uncharacterized protein

S1B_65768803 SC.SRC BLUP_A 0.2 0.00 −0.97 9.49 TraesCS1B02G082300 Uncharacterized proteinSC.SRC BLUP_P 0.00 −0.96 9.81

QLa.uga-3A S3A_738748059 LA.SRC BLUP_A C/A 0.1 0.00 7.87 11.41 - -LA.SRC BLUP_P 0.00 3.41 10.93

QSc.uga-6A S6A_611293571 SC.SRC BLUP_G C/T 0.1 0.03 1.37 10.83 TraesCS6A02G404700 Serine/threonine-protein phosphatase

QSc/Suc/Wa.uga-6B

S6B_619025168

SC.SRC BLUP_A

A/C 0.3

0.00 −1.36 13.98

TraesCS6B02G353300
Cation efflux protein cytoplasmic
domain-containing protein/Metal
tolerance protein

SC.SRC BLUP_P 0.00 −1.30 13.85
SUC.SRC BLUP_A 0.01 −1.46 12.43
SUC.SRC BLUP_P 0.00 −1.63 14.27

S6B_621092809
SC.SRC BLUP_G

T/G 0.3
0.00 1.15 11.44

WA.SRC BLUP_A 0.00 0.73 11.33
WA.SRC BLUP_G 0.00 0.61 10.99

QSuc.uga-1D S1D_462736410 SUC.SRC BLUP_A C/T 0.2 0.01 −1.67 11.34 TraesCS1D02G393000 Dynamin-related protein 5A

QSuc.uga-2D S2D_121596645 SUC.SRC BLUP_A A/G 0.1 0.01 2.48 10.01 - -SUC.SRC BLUP_P 0.00 3.14 8.95

QSuc.uga-3A S3A_635786446 SUC.SRC BLUP_A T/G 0.1 0.01 −1.82 12.79

QSuc.uga-3B S3B_658495375 SUC.SRC BLUP_A A/G 0.1 0.01 2.12 14.55 TraesCS3B02G421500 Jasmonate O-methyltransferase
SUC.SRC BLUP_P 0.1 0.01 2.36 14.47 TraesCS3B01G421600 Transcription initiation factor TFIID

subunit 9

QTg.uga-3B S3B_669428408 TG BLUP_P C/T 0.2 0.00 −0.08 12.96 TraesCS3B02G429900 Formin-like protein

a Major-effect QTL identified in this study. b SNP associated with major-effect QTL. c End-use quality traits. SE, softness equivalence; KP, kernel protein; FP, flour protein; FY, flour
yield; LA.SRC, lactic acid-solvent retention capacity; SC.SRC, sodium carbonate-solvent retention capacity; SUC.SRC, sucrose-solvent retention capacity; WA.SRC, water-solvent
retention capacity; TG, top-grain. d BLUP datasets used for identification of the marker-trait association. BLUP-A, BLUP values from All-Combined dataset; BLUP-P, BLUP values from
Plains-Combined dataset; BLUP-G, BLUP values from Griffin-Combined dataset. e Allele combination for the locus. f MAF, minor allele frequency. g pFDR, False discovery rate adjusted
p-value. The markers are significant at less than 0.1 pFDR. h Allelic effect on the trait. In the GAPIT-based GWAS result, the effect is estimated for the second marker in alphabetical order,
which means it could be a minor or major allele effect. i Percentage of phenotypic variance (PV) explained by the marker. j Candidate genes identified for the QTL. k Protein produced by
the candidate gene.
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3.4. Allelic Effect of Major-Effect QTLs

We studied the allelic effects for all of the major-effect QTLs except QTg.uga-3B (Ta-
ble 3). There was a significant difference (p < 0.05) among the homozygous state of favorable
and unfavorable allele genotypes for each of the major-effect QTLs except for QSe.uga-5A,
with no such difference among the two genotypes. For QLa.uga-3A, only one homozygous
state was present; therefore, we could not clearly differentiate between favorable and unfa-
vorable alleles (Table 3). In contrast, the difference between homozygous (favorable and
unfavorable) and heterozygous genotypes varied with the QTL. QFp/Kp.uga-1D exhibited
the largest allelic effect for FP and KP, where the lines homozygous for the favorable allele
had 0.45% and 0.58% lower FP and KP values compared to lines homozygous for the
unfavorable allele (Table 3). Similarly, the lines carrying homozygous favorable alleles
associated with QFp/Kp.uga-2B had 0.26% and 0.29% lower FP and KP values, respectively,
compared to lines with unfavorable alleles. In a similar comparison, for QTL QSe.uga-4B,
the lines with a favorable allele had a 1.82% lower SE compared to the lines with an unfa-
vorable allele. Notably, for QSe.uga-5A, heterozygous lines exhibited 3.57% lower SE values
than homozygous lines carrying unfavorable alleles (Table 3).

Table 3. Allelic effect of significant markers associated with major-effect QTLs identified in this study.

QTL Name a SNP b Traits c MAF d Genotype e N f Mean BLUP-A g TUKEY HSD Test h

QFp/Kp.uga-1D S1D_108803007
FP 0.20

AA 6 9.54 A
AG 67 9.25 B
GG 145 9.09 C

KP 0.20
AA 6 11.75 A
AG 67 11.37 B
GG 145 11.17 C

QFp/Kp.uga-2B S2B_769051134
FP 0.34

AA 131 9.06 A
AG 37 9.18 AB
GG 60 9.32 B

KP 0.34
AA 131 11.15 A
AG 37 11.28 AB
GG 60 11.44 B

QSe.uga-4B S4B_544593051 SE 0.43
CC 85 59.34 A
CT 24 58.47 AB
TT 116 57.52 B

QSe.uga-5A S5A_595957121 SE 0.09
AA 33 60.09 -
AG 1 56.52 A
GG 192 58.65 -

QLa/Sc.uga-1B
S1B_55461748 LA.SRC 0.14

CC 16 107.9 A
CT 27 115.66 B
TT 183 119.1 C

S1B_65768803 SC.SRC 0.14
CC 36 70.74 A
CT 25 70.6 B
TT 165 69.26 C

QLa.uga-3A S3A_738748059 LA.SRC 0.14
CC 200 117.08 A
AC 26 121.18 B
AA 0 NA -

QSc.uga-6A S6A_611293571 SC.SRC 0.08
CC 202 69.56 A
CT 9 69.62 A
TT 9 74.36 B

QSc/Suc/Wa.uga-6B

S6B_619025168
SC.SRC

0.26

AA 160 70.37 A
AC 17 68.67 B
CC 47 68.16 B

SUC.SRC
AA 160 101.77 A
AC 17 100.86 AB
CC 47 97.9 B

S6B_621092809 WA.SRC 0.26
GG 45 52.59 A
GT 22 53.48 AB
TT 157 54.1 B

QSuc.uga-1D S1D_462736410 SUC.SRC 0.20
CC 171 101.61 A
CT 8 98.77 AB
TT 32 97.14 B

QSuc.uga-2D S2D_121596645 SUC.SRC 0.07
AA 200 100.45 A
AG 15 101.45 A
GG 4 111.45 B
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Table 3. Cont.

QTL Name a SNP b Traits c MAF d Genotype e N f Mean BLUP-A g TUKEY HSD Test h

QSuc.uga-3A S3A_635786446 SUC.SRC 0.11
GG 17 104.89 A
GT 5 103.35 AB
TT 197 100.11 B

QSuc.uga-3B S3B_658495375 SUC.SRC 0.15
AA 166 99.88 A
AG 53 103.31 B
GG 3 109.98 B

a Major-effect QTL identified for end-use quality traits. b Significant SNPs associated with major-effect QTLs.
c End-use quality traits for which the MTAs were identified. SE, softness equivalence; KP, kernel protein; FP,
flour protein; FY, flour yield; LA.SRC, lactic acid-solvent retention capacity; SC.SRC, sodium carbonate-solvent
retention capacity; SUC.SRC, sucrose-solvent retention capacity; WA.SRC, water-solvent retention capacity; TG,
top-grain. d MAF, minor allele frequency. e Homozygous and heterozygous genotypes for each SNP. The allele in
bold is the favorable allele for the trait. f N, number of wheat lines having respective genotype classes for each
marker. g Mean value of traits in BLUP-A. h Tukey’s HSD test results, where different letters represent significant
differences at p < 0.05.

For QLa/Sc.uga-1B, the lines with favorable alleles had 11.2% and 1.48% lower LA.SRC
and SC.SRC values, respectively, than the lines with unfavorable alleles (Table 3). In the case
of QTL QLa.uga-3A, although no lines possessed the homozygous genotype AA, those with
the CC genotype had lower LA.SRC values (by 4.10%) than the heterozygous genotype,
AC. For QSc.uga-6A, the lines with favorable alleles had 4.80% lower SC.SRC values then
line with unfavorable alleles. For QTL, QSc/Suc/Wa.uga-6B, the lines with favorable alleles
had 2.21%, 3.87%, and 1.51% lower SC.SRC, SUC.SRC, and WA.SRC values than the lines
with unfavorable alleles. Similarly, for QTLs, QSuc.uga-2D, QSuc.uga-3B, QSuc.uga-1D, and
QSuc.uga-3A associated with SUC.SRC, the lines with favorable alleles had 11.0%, 10.10%,
4.47%, and 4.78% lower SUC.SRC values than the lines with unfavorable alleles (Table 3).

3.5. Candidate Gene Discovery

Out of the 80 significant MTAs identified in this study, 42 were found to be linked to
30 different functional genes (Supplementary Table S4). Based on the annotation results,
we identified eight candidate genes for LA.SRC, six for SC.SRC, five for WA.SRC, three
for SUC.SRC, six for KP, three for FP, and one each for SE and TG. Candidate genes
were identified for eight of the thirteen major-effect QTLs, QFp/Kp.uga-2B, QSe.uga-4B,
QLa/Sc.uga-1B, QSc.uga-6A, QSc/Suc/Wa.uga-6B, QSuc.uga-1D, QSuc.uga-3B, and QTg.uga-
3B (Supplementary Table S4, Table 2). However, the proteins associated with candidate
genes for QSe.uga-4B and QLa/Sc.uga-1B have not yet been characterized (Supplementary
Table S4).

4. Discussion
4.1. Variation and Heritability of End-Use Quality Traits

We observed a significant variation in ten end-use quality traits across 266 diverse lines
of SRWW. This study showed that KP, FP, SE, FY, WA.SRC, LA.SRC, SUC.SRC, SC.SRC, and
CD traits showed high heritability. Our results are in agreement with those reported by Aoun
et al. [30], Gaire et al. [17], and Jernigan et al. [20], who showed similar heritability trends for
these traits. SRC, FY, and SE, in particular, have been considered highly heritable, repeatable,
and thus reliable for the evaluation of soft wheat quality in breeding stocks [14,31]. This implies
that these trait values are mostly influenced by genetic factors. Therefore, this can be a
useful result for implementing genetic selection for these traits in breeding programs to
improve the end-use quality of wheat.

4.2. Relationship among End-Use Quality Traits

The correlation values allow us to understand the relationships among various end-use
quality traits. We can leverage these correlations to access various milling, flour, and baking
qualities of wheat by analyzing a few properties/traits that show a strong correlation with
traits of interest. For instance, CD is a very important indicator of the baking quality of



Genes 2024, 15, 1177 12 of 16

soft wheat. However, we need a large amount of flour for baking cookies, and it requires
a lot of time. Instead, CD can be predicted through correlated traits such as FP, WA.SRC,
SUC.SRC, and SE [32,33], which are much easier to measure and require fewer resources.
We also found that all four traits, FP, WA.SRC, SUC.SRC, and SE, have a higher correlation
with CD than other traits. Thus, this study provides additional support in recommending
these traits for accessing CD.

We also found a significant correlation between WA.SRC, SC.SRC, and SUC.SRC,
similar to the results from Gaire et al. [17]. This correlation is reasonable, since all three
of the traits are positively correlated with damaged starch level and influence the water
absorption/holding capacity of the flour [32]. Our study also showed a significant negative
correlation between SE and KP. Large values of SE indicate soft grain texture [34]. Therefore,
soft wheat is much higher in SE but lower in KP than hard wheat [34]. A similar significant
negative correlation was also reported between FP and FY, which could be due to the
differences in the amount of energy plants require to produce protein and carbohydrate
molecules [6,35].

Moreover, FP and KP showed the highest positive correlation in the SRWW panel,
which was similar to results for SRWW from Aoun et al. [36]. This is expected, since
most of the KP is stored in the endosperm [37]. We also found a negative correlation of
SE with KP and WA.SRC. However, the correlation between SE and SUC.SRC was not
significant. Gaire et al. [17] also reported no correlation between these traits in their SRWW
panel. Additionally, KP and FP exhibited strong positive correlations with LA.SRC in
alignment with the result from Gong et al. [38]. The correlation between protein content
and LA.SRC was expected, as the latter is known to be determined by the former and
protein strength [10].

4.3. Major-Effect QTLs for End-Use Quality Traits

We identified 80 significant MTAs located on 17 different chromosomes of wheat that
were associated with all of the studied end-use quality traits except CD. PV explained by
these MTAs ranged from 0.1 to 20.6%. Thirteen major-effect QTLs were identified, which
explained ≥ 10% PV. We found several major-effect QTLs associated with two or more of the
correlated traits. For instance, major-effect QTLs QFp/Kp.uga-1D and QFp/Kp.uga-2B were
associated with both KP and FP, QSc/Suc/Wa.uga-6B was associated with SC.SRC, SUC.SRC,
and WA.SRC, and QLa/Sc.uga-1B with LA.SRC and SC.SRC traits. Recent studies [17,30]
also reported similar multi-trait associations of loci with the same and/or different end-
use quality traits. These QTLs can be a useful tool for the selection or simultaneous
improvement of these traits in wheat breeding programs.

Stable QTLs are invaluable in breeding programs, as the introgression of such QTLs
allows breeders to develop improved and adapted varieties. This also allows us to study
the adaptation mechanism of plants to varying environmental conditions. We found five
stable and major-effect QTLs in this study, QLa/Sc.uga-1B, QLa.uga-3A, QSc/Suc/Wa.uga-6B,
QSuc.uga-2D, and QSuc.uga-3B, all of which are QTLs associated with SRC traits. QLa/Sc.uga-
1B and QSc/Suc/Wa.uga-6B are of particular interest to us since these QTLs are not only
stable, but also show associations with multiple SRC traits, as mentioned earlier. Moreover,
these QTLs were also responsible for explaining the highest PV for all of the tested SRC
traits among all of the major-effect QTLs. For instance, QLa/Sc.uga-1B explained 20.6% of
PV for LA.SRC. Similarly, QSc/Suc/Wa.uga-6B explained 13.9%, 14.2%, and 11.3% of PV
for SC.SRC, SUC.SRC, and WA.SRC. As such, these two inherently stable and multi-traits
associated QTLs exhibit substantial potential for the concurrent enhancement of wheat
end-use traits while preserving its stability across diverse environmental conditions.

One of the objectives of our study was to identify novel QTLs associated with end-use
quality traits. Previously, several studies have identified genomic regions associated with
the end-use quality traits on the same chromosomes identified in this study. For instance,
the Glu-D1 gene has been identified on chromosome 1D [39]. Liu et al. [40] identified QTLs
associated with KP on chromosome 1D and 2B, namely QGpc.cd1-1D.1, QGpc.cd1-1D.2,



Genes 2024, 15, 1177 13 of 16

QGpc.cd1-1D.3, QGpc.cd1-1D.4, QGpc.cd1-2B.1, and QGpc.cd1-2B.2. Similarly, Gaire et al. [17]
identified MTA related to SE on chromosome 4B. Moreover, QTLs associated with various
SRC traits have been identified [17,20,30] on chromosomes 1B, 3A, 6A, 1D, and 3A, similar
to our findings in this study. However, none of the reported MTAs/QTLs from these
studies overlap with the major-effect QTLs identified in this study, except for QTL QTL-
SC.uga.6A. Jernigan et al. [20] identified a QTL for FP at the 612 Mb region of chromosome
6A, associated with marker Excalibur_rep_c98042_438, which is close and possibly the
same QTL to our SC QTL QTL-SC.uga.6A at 611Mb. Thus, the other 12 major-effect
QTLs identified in this investigation are considered to be putative novel loci associated
with these end-use quality traits. These results could be attributed to the limited genetic
studies addressing end-use quality traits of wheat compared to other traits such as agro-
morphological traits. In addition, there is a challenge of identifying the physical locations of
the markers associated with the QTLs from studies conducted before the reference genome
was established. This is particularly the case when these markers that have not been defined
in common databases, such as GrainGenes (https://wheat.pw.usda.gov/GG3/), that are
used by researchers for such novelty testing.

Identification of candidate genes helps us narrow down our QTLs to a few genes,
some of which govern our traits of interest. However, the identification of such genes itself
requires an extensive amount of study. Here, we speculate on the candidate genes solely
based on the proximity of the genes to our QTLs under a small window of the reference
genome. Among our 13 major-effect QTLs, we found candidate genes for eight of them.
Also, proteins produced by some of these genes were found to be associated with some
aspects of end-use quality determination in plants. For instance, TraesCS6A02G404700,
which is a candidate gene for QTL QSc.uga-6A that was associated with SC.SRC, has been
reported to play a significant role in starch accumulation and biosynthesis [41,42]. As for
SC.SRC, an indicator of starch damage in wheat, the candidate gene seems to be a potential
causative gene for the QTL. Additionally, TraesCS6B02G353300, the candidate gene for
QTL QSc/Suc/Wa.uga-6B associated with SC.SRC, SUC.SRC, and WA.SRC was annotated to
produce a metal tolerance protein that plays an important role in maintaining homeostasis
of nutrients in plants [43,44], thus making it potentially associated with the end-use quality
of wheat.

4.4. Genetic Complexity of End-Use Quality Traits and Breeding Implications of Identified QTLs

Most of the MTAs identified in this study had small effects, and few major-effect QTLs
were detected per trait. This hints towards the genetic and genomic complexity of end-use
quality traits and the selective breeding effects of these traits in soft red winter wheat
breeding programs. End-use quality traits are quantitative traits governed by many genes
with small effects, as evidenced in our MTA findings. Previous studies [17,30] similarly
detected mostly minor-effect QTLs for various end-use quality traits.

The relatively modest size of our diversity panel (230 lines used for GWAS) may have
potentially limited our ability to detect major-effect QTLs, as observed in prior research [16].
Additionally, although the D genome plays a significant role in determining wheat quality
attributes, its relative genetic homogeneity compared to the A and B genomes may have
further reduced polymorphisms for detecting QTLs located in the D genome [45–47].
Notably, our SWAMP panel also had fewer SNPs and MTAs within the D genome than
both the A and B genomes.

Among the major-effect QTLs, the favorable alleles of seven of the major-effect QTLs
were in high frequency, reflecting continuous high selection pressure for these alleles in
SRWW breeding programs. Aoun et al. [30] reported such frequency of favorable alleles in
soft white wheat and speculated them to be the result of long-term phenotyping, selection,
and pyramiding of favorable alleles across breeding populations. As the favorable alleles
become increasingly fixed within breeding populations, the polymorphism associated
with the QTL becomes harder to detect and is often filtered out to improve the quality of

https://wheat.pw.usda.gov/GG3/
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genotyping data. This fixation of major alleles may further explain the high heritability
obtained for most of the traits [30].

Given that the SWAMP panel utilized in this GWAS comprises elite lines adapted to
the US southeast, the lines possessing favorable alleles for the major-effect QTLs can be
utilized directly in regional breeding programs. Molecular marker technologies, such as
Kompetitive Allele-Specific PCR (KASP), can be developed for these QTLs to facilitate the
selection of progenies carrying these desirable alleles across successive breeding genera-
tions. This marker-assisted selection approach for end-use quality traits not only conserves
resources, but also reduces the time required for laboratory analyses [6]. Moreover, breeders
can augment their breeding strategies by integrating genomic selection methods, which
enable the simultaneous utilization of both major- and minor-effect QTLs to predict the
end-use quality of wheat lines with greater accuracy and efficiency.

5. Conclusions

In summary, we conducted a GWAS to investigate ten end-use quality traits in a
diversity panel of 266 SRWW lines that showed significant variation for all evaluated
traits. Most of these traits showed high heritability, indicating significant genetic control
of these traits. In total, 27,466 SNPs were used for GWAS, and QTLs associated with the
traits were identified across 17 chromosomes of wheat. Thirteen major-effect QTLs were
identified, twelve of which were deemed to be putative novel loci. Candidate genes were
also identified for these QTLs, some of which were associated with certain aspects of
wheat quality. Overall, these results, upon further validation, can be a useful resource for
researchers and breeders to improve the end-use quality of wheat through the development
of molecular markers associated with the major-effect QTLs and using them in marker-
assisted/genomic selections in wheat improvement programs. However, further studies to
validate these findings under different environmental conditions are warranted.
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//www.mdpi.com/article/10.3390/genes15091177/s1. Table S1: Phenotypic data of 266 wheat lines
characterized for ten end-use quality traits in four individual environments; Table S2: Descriptive
statistics and analysis of variance results for studied end-use quality traits on 266 advanced soft red
winter wheat lines; Table S3: Genotypic data of SRWW lines used in the study; Table S4: 80 MTAs
identified in the study that were resolved into 53 QTLs and Table S5: Total number of MTAs per
chromosome.

Author Contributions: Conceptualization, M.S. and M.M.; Data curation, M.S. and B.-K.B.; Formal
analysis, M.S.; Funding acquisition, M.M.; Investigation, M.S. and J.W.B.; Methodology, M.S., B.L.,
B.-K.B. and M.M.; Project administration, M.M.; Resources, B.L., B.-K.B., M.A.B. and M.M.; Software,
M.S.; Supervision, M.M.; Visualization, M.S.; Writing—original draft, M.S.; Writing—review and
editing, M.S., J.W.B., B.L., B.-K.B., M.A.B. and M.M. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The GBS SRA data generated for this panel can be accessed at NCBI
using accession number PRJNA578088 (https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088,
accessed on 3 March 2022).

Acknowledgments: The authors would like to thank the USDA Soft Wheat Quality Laboratory
for facilities and support and acknowledge Amy Bugaj, Anthony Karcher, Thomas Donelson, and
Taehyun Ji for their assistance in various quality analyses. The authors are also thankful to Steve
Sutton, Hunter Donahue, and Drew Sutton, associated with the Small Grains Breeding Program at
UGA, for their help with experimental design and sample collection.

Conflicts of Interest: The authors declare no conflicts of interest.

https://www.mdpi.com/article/10.3390/genes15091177/s1
https://www.mdpi.com/article/10.3390/genes15091177/s1
https://www.ncbi.nlm.nih.gov//bioproject/PRJNA578088


Genes 2024, 15, 1177 15 of 16

References
1. Baenziger, P.S. Wheat Breeding and Genetics. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2016; p.

B9780081005965030018. ISBN 978-0-08-100596-5.
2. Blanco, A.; Pasqualone, A.; Troccoli, A.; Fonzo, N.D.; Simeone, R. Detection of Grain Protein Content QTLs across Environments

in Tetraploid Wheats. Plant Mol. Biol. 2002, 48, 615–623. [CrossRef]
3. Guo, Y.; Zhang, G.; Guo, B.; Qu, C.; Zhang, M.; Kong, F.; Zhao, Y.; Li, S. QTL Mapping for Quality Traits Using a High-Density

Genetic Map of Wheat. PLoS ONE 2020, 15, e0230601. [CrossRef] [PubMed]
4. Huang, X.Q.; Cloutier, S.; Lycar, L.; Radovanovic, N.; Humphreys, D.G.; Noll, J.S.; Somers, D.J.; Brown, P.D. Molecular Detection

of QTLs for Agronomic and Quality Traits in a Doubled Haploid Population Derived from Two Canadian Wheats (Triticum
Aestivum L.). Theor. Appl. Genet. 2006, 113, 753–766. [CrossRef]

5. Faridi, H.; Faubion, J.M. (Eds.) Wheat End Uses around the World; American Association of Cereal Chemists: Saint Paul, MN, USA,
1995.

6. Subedi, M.; Ghimire, B.; Bagwell, J.W.; Buck, J.W.; Mergoum, M. Wheat End-Use Quality: State of Art, Genetics, Ge-nomics-
Assisted Improvement, Future Challenges, and Opportunities. Front. Genet. 2023, 13, 1032601. [CrossRef] [PubMed]

7. Alamri, M.; Manthey, F.; Mergoum, M.; Elias, E.; Khan, K. Assessing Spring Wheat Quality Using the Glutograph Instrument.
Cereal Foods World 2009, 54, 124–131. [CrossRef]

8. Joppa, L.R.; Du, C.; Hart, G.E.; Hareland, G.A. Mapping Gene(s) for Grain Protein in Tetraploid Wheat (Triticum Turgidum L.)
Using a Population of Recombinant Inbred Chromosome Lines. Crop Sci. 1997, 37, 1586–1589. [CrossRef]

9. Turner, A.S.; Bradburne, R.P.; Fish, L.; Snape, J.W. New Quantitative Trait Loci Influencing Grain Texture and Protein Content in
Bread Wheat. J. Cereal Sci. 2004, 40, 51–60. [CrossRef]

10. Kweon, M.; Slade, L.; Levine, H. Solvent Retention Capacity (SRC) Testing of Wheat Flour: Principles and Value in Predicting
Flour Functionality in Different Wheat-Based Food Processes and in Wheat Breeding—A Review. Cereal Chem. J. 2011, 88, 537–552.
[CrossRef]

11. Carter, A.H.; Garland-Campbell, K.; Morris, C.F.; Kidwell, K.K. Chromosomes 3B and 4D Are Associated with Several Milling and
Baking Quality Traits in a Soft White Spring Wheat (Triticum Aestivum L.) Population. Theor. Appl. Genet. 2012, 124, 1079–1096.
[CrossRef]

12. Slade, L.; Levine, H. Structure Function Relationships of Cookie and Cracker Ingredients. Sci. Cookie Cracker Prod. 1994, 9, 23–141.
13. Finney, K.F.; Morris, V.H.; Yamazaki, W.T. Micro versus macro cookie baking procedures for evaluating the cookie quality of

wheat varieties. Cereal Chem. 1950, 27, 42–49.
14. Souza, E.J.; Sneller, C.; Guttieri, M.J.; Sturbaum, A.; Griffey, C.; Sorrells, M.; Ohm, H.; Van Sanford, D. Basis for Selecting Soft

Wheat for End-Use Quality. Crop Sci. 2012, 52, 21–31. [CrossRef]
15. Simons, K.; Anderson, J.A.; Mergoum, M.; Faris, J.D.; Klindworth, D.L.; Xu, S.S.; Sneller, C.; Ohm, J.-B.; Hareland, G.A.; Edwards,

M.C.; et al. Genetic Mapping Analysis of Bread-Making Quality Traits in Spring Wheat. Crop Sci. 2012, 52, 2182–2197. [CrossRef]
16. Cabrera, A.; Guttieri, M.; Smith, N.; Souza, E.; Sturbaum, A.; Hua, D.; Griffey, C.; Barnett, M.; Murphy, P.; Ohm, H.; et al.

Identification of Milling and Baking Quality QTL in Multiple Soft Wheat Mapping Populations. Theor. Appl. Genet. 2015, 128,
2227–2242. [CrossRef] [PubMed]

17. Gaire, R.; Huang, M.; Sneller, C.; Griffey, C.; Brown-Guedira, G.; Mohammadi, M. Association Analysis of Baking and Milling
Quality Traits in an Elite Soft Red Winter Wheat Population. Crop Sci. 2019, 59, 1085–1094. [CrossRef]

18. Pradhan, S.; Babar, M.A.; Bai, G.; Khan, J.; Shahi, D.; Avci, M.; Guo, J.; McBreen, J.; Asseng, S.; Gezan, S.; et al. Genetic Dissection
of Heat-Responsive Physiological Traits to Improve Adaptation and Increase Yield Potential in Soft Winter Wheat. BMC Genom.
2020, 21, 315. [CrossRef]

19. AACC. International Approved Methods of the AACCI, 11th ed.; Cereals & Grains Association: St. Paul, MN, USA, 1999.
20. Jernigan, K.L.; Godoy, J.V.; Huang, M.; Zhou, Y.; Morris, C.F.; Garland-Campbell, K.A.; Zhang, Z.; Carter, A.H. Genetic Dissection

of End-Use Quality Traits in Adapted Soft White Winter Wheat. Front. Plant Sci. 2018, 9, 271. [CrossRef]
21. Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research. Northwest. Univ. Evanst. Ill. 2018.
22. Bates, D.M. Lme4: Mixed-Effects Modeling with R; Springer: Berlin/Heidelberg, Germany, 2010.
23. Subedi, M.; Bagwell, J.W.; Ghimire, B.; Lopez, B.; Sapkota, S.; Babar, M.A.; Mergoum, M. Identifying Genomic Regions Associated

with Key Agro-morphological Traits in Soft Red Winter Wheat Using Genome-wide Association Study. Crop Sci. 2024, 64,
2316–2335. [CrossRef]

24. Liu, X.; Huang, M.; Fan, B.; Buckler, E.S.; Zhang, Z. Iterative Usage of Fixed and Random Effect Models for Powerful and Efficient
Genome-Wide Association Studies. PLoS Genet. 2016, 12, e1005767. [CrossRef]

25. Benjamini, Y.; Yekutieli, D. The Control of the False Discovery Rate in Multiple Testing under Dependency. Ann. Stat. 2001, 29,
1165–1188. [CrossRef]

26. Bradbury, P.J.; Zhang, Z.; Kroon, D.E.; Casstevens, T.M.; Ramdoss, Y.; Buckler, E.S. TASSEL: Software for Association Mapping of
Complex Traits in Diverse Samples. Bioinformatics 2007, 23, 2633–2635. [CrossRef]

27. IWGSC; Appels, R.; Eversole, K.; Stein, N.; Feuillet, C.; Keller, B.; Rogers, J.; Pozniak, C.J.; Choulet, F.; Distelfeld, A.; et al. Shifting
the Limits in Wheat Research and Breeding Using a Fully Annotated Reference Genome. Science 2018, 361, eaar7191. [CrossRef]

28. Ma, S.; Wang, M.; Wu, J.; Guo, W.; Chen, Y.; Li, G.; Wang, Y.; Shi, W.; Xia, G.; Fu, D.; et al. WheatOmics: A Platform Combining
Multiple Omics Data to Accelerate Functional Genomics Studies in Wheat. Mol. Plant 2021, 14, 1965–1968. [CrossRef] [PubMed]

https://doi.org/10.1023/A:1014864230933
https://doi.org/10.1371/journal.pone.0230601
https://www.ncbi.nlm.nih.gov/pubmed/32208463
https://doi.org/10.1007/s00122-006-0346-7
https://doi.org/10.3389/fgene.2022.1032601
https://www.ncbi.nlm.nih.gov/pubmed/36685944
https://doi.org/10.1094/CFW-54-3-0124
https://doi.org/10.2135/cropsci1997.0011183X003700050030x
https://doi.org/10.1016/j.jcs.2004.03.001
https://doi.org/10.1094/CCHEM-07-11-0092
https://doi.org/10.1007/s00122-011-1770-x
https://doi.org/10.2135/cropsci2011.02.0090
https://doi.org/10.2135/cropsci2012.03.0175
https://doi.org/10.1007/s00122-015-2580-3
https://www.ncbi.nlm.nih.gov/pubmed/26188588
https://doi.org/10.2135/cropsci2018.12.0751
https://doi.org/10.1186/s12864-020-6717-7
https://doi.org/10.3389/fpls.2018.00271
https://doi.org/10.1002/csc2.21261
https://doi.org/10.1371/journal.pgen.1005767
https://doi.org/10.1214/aos/1013699998
https://doi.org/10.1093/bioinformatics/btm308
https://doi.org/10.1126/science.aar7191
https://doi.org/10.1016/j.molp.2021.10.006
https://www.ncbi.nlm.nih.gov/pubmed/34715393


Genes 2024, 15, 1177 16 of 16

29. Alaux, M.; Rogers, J.; Letellier, T.; Flores, R.; Alfama, F.; Pommier, C.; Mohellibi, N.; Durand, S.; Kimmel, E.; Michotey, C.; et al.
Linking the International Wheat Genome Sequencing Consortium Bread Wheat Reference Genome Sequence to Wheat Genetic
and Phenomic Data. Genome Biol. 2018, 19, 111. [CrossRef] [PubMed]

30. Aoun, M.; Carter, A.H.; Morris, C.F.; Kiszonas, A.M. Genetic Architecture of End-Use Quality Traits in Soft White Winter Wheat.
BMC Genom. 2022, 23, 440. [CrossRef]

31. Walker, C.; Campbell, K.G.; Carter, B.; Kidwell, K. Using the Solvent Retention Capacity Test When Breeding Wheat for Diverse
Production Environments. Crop Sci. 2008, 48, 495–506. [CrossRef]

32. Duyvejonck, A.E.; Lagrain, B.; Dornez, E.; Delcour, J.A.; Courtin, C.M. Suitability of Solvent Retention Capacity Tests to Assess
the Cookie and Bread Making Quality of European Wheat Flours. LWT-Food Sci. Technol. 2012, 47, 56–63. [CrossRef]

33. Gaines, C.S. Prediction of Sugar-Snap Cookie Diameter Using Sucrose Solvent Retention Capacity, Milling Softness, and Flour
Protein Content. Cereal Chem. 2004, 81, 549–552. [CrossRef]

34. Gaines, C.S.; Finney, P.F.; Fleege, L.M.; Andrews, L.C. Predicting a Hardness Measurement Using the Single-Kernel Characteriza-
tion System. Cereal Chem. 1996, 73, 278–283.

35. Blanco, A.; de Giovanni, C.; Laddomada, B.; Sciancalepore, A.; Simeone, R.; Devos, K.M.; Gale, M.D. Quantitative Trait Loci
Influencing Grain Protein Content in Tetraploid Wheats. Plant Breed. 1996, 115, 310–316. [CrossRef]

36. Aoun, M.; Carter, A.; Thompson, Y.A.; Ward, B.; Morris, C.F. Environment Characterization and Genomic Prediction for End-use
Quality Traits in Soft White Winter Wheat. Plant Genome 2021, 14, e20128. [CrossRef]

37. Payne, P.I.; Holt, L.M.; Lawrence, G.J.; Law, C.N. The Genetics of Gliadin and Glutenin, the Major Storage Proteins of the Wheat
Endosperm. Qual. Plant. Plant Foods Hum. Nutr. 1982, 31, 229–241. [CrossRef]

38. Gong, W.; Wang, X.; Wang, F.; Wang, J. Correlation Analysis between Wheat Flour Solvent Retention Capacity and Gluten
Aggregation Characteristics. Foods 2023, 12, 1879. [CrossRef]

39. Mohamed, I.E.S.; Kamal, N.M.; Mustafa, H.M.; Abdalla, M.G.A.; Elhashimi, A.M.; Gorafi, Y.S.A.; Tahir, I.S.A.; Tsujimoto, H.;
Tanaka, H. Identification of Glu-D1 Alleles and Novel Marker–Trait Associations for Flour Quality and Grain Yield Traits under
Heat-Stress Environments in Wheat Lines Derived from Diverse Accessions of Aegilops Tauschii. Int. J. Mol. Sci. 2022, 23, 12034.
[CrossRef] [PubMed]

40. Liu, J.; Huang, L.; Wang, C.; Liu, Y.; Yan, Z.; Wang, Z.; Xiang, L.; Zhong, X.; Gong, F.; Zheng, Y.; et al. Genome-Wide Association
Study Reveals Novel Genomic Regions Associated With High Grain Protein Content in Wheat Lines Derived From Wild Emmer
Wheat. Front. Plant Sci. 2019, 10, 464. [CrossRef]

41. Wang, J.-L.; Li, T.-T.; Elsheikha, H.M.; Liang, Q.-L.; Zhang, Z.-W.; Wang, M.; Sibley, L.D.; Zhu, X.-Q. The Protein Phosphatase 2A
Holoenzyme Is a Key Regulator of Starch Metabolism and Bradyzoite Differentiation in Toxoplasma Gondii. Nat. Commun. 2022,
13, 7560. [CrossRef]

42. Zhu, G.-R.; Yan, X.; Zhu, D.; Deng, X.; Wu, J.-S.; Xia, J.; Yan, Y.-M. Lysine Acetylproteome Profiling under Water Deficit Reveals
Key Acetylated Proteins Involved in Wheat Grain Development and Starch Biosynthesis. J. Proteom. 2018, 185, 8–24. [CrossRef]
[PubMed]

43. Tanwar, U.K.; Stolarska, E.; Rudy, E.; Paluch-Lubawa, E.; Grabsztunowicz, M.; Arasimowicz-Jelonek, M.; Sobieszczuk-Nowicka,
E. Metal Tolerance Gene Family in Barley: An in Silico Comprehensive Analysis. J. Appl. Genet. 2023, 64, 197–215. [CrossRef]

44. Vatansever, R.; Filiz, E.; Eroglu, S. Genome-Wide Exploration of Metal Tolerance Protein (MTP) Genes in Common Wheat (Triticum
Aestivum): Insights into Metal Homeostasis and Biofortification. BioMetals 2017, 30, 217–235. [CrossRef]

45. Akhunov, E.D.; Akhunova, A.R.; Anderson, O.D.; Anderson, J.A.; Blake, N.; Clegg, M.T.; Coleman-Derr, D.; Conley, E.J.; Crossman,
C.C.; Deal, K.R.; et al. Nucleotide Diversity Maps Reveal Variation in Diversity among Wheat Genomes and Chro-mosomes.
BMC Genom. 2010, 11, 702. [CrossRef] [PubMed]

46. Echeverry-Solarte, M.; Kumar, A.; Kianian, S.; Simsek, S.; Alamri, M.S.; Mantovani, E.E.; McClean, P.E.; Deckard, E.L.; Elias,
E.; Schatz, B.; et al. New QTL Alleles for Quality-Related Traits in Spring Wheat Revealed by RIL Population Derived from
Supernumerary × Non-Supernumerary Spikelet Genotypes. Theor. Appl. Genet. 2015, 128, 893–912. [CrossRef] [PubMed]

47. Nelson, J.C.; Andreescu, C.; Breseghello, F.; Finney, P.L.; Gualberto, D.G.; Bergman, C.J.; Peña, R.J.; Perretant, M.R.; Leroy, P.;
Qualset, C.O.; et al. Quantitative Trait Locus Analysis of Wheat Quality Traits. Euphytica 2006, 149, 145–159. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s13059-018-1491-4
https://www.ncbi.nlm.nih.gov/pubmed/30115101
https://doi.org/10.1186/s12864-022-08676-5
https://doi.org/10.2135/cropsci2007.06.0348
https://doi.org/10.1016/j.lwt.2012.01.002
https://doi.org/10.1094/CCHEM.2004.81.4.549
https://doi.org/10.1111/j.1439-0523.1996.tb00925.x
https://doi.org/10.1002/tpg2.20128
https://doi.org/10.1007/BF01108632
https://doi.org/10.3390/foods12091879
https://doi.org/10.3390/ijms231912034
https://www.ncbi.nlm.nih.gov/pubmed/36233335
https://doi.org/10.3389/fpls.2019.00464
https://doi.org/10.1038/s41467-022-35267-5
https://doi.org/10.1016/j.jprot.2018.06.019
https://www.ncbi.nlm.nih.gov/pubmed/30003963
https://doi.org/10.1007/s13353-022-00744-6
https://doi.org/10.1007/s10534-017-9997-x
https://doi.org/10.1186/1471-2164-11-702
https://www.ncbi.nlm.nih.gov/pubmed/21156062
https://doi.org/10.1007/s00122-015-2478-0
https://www.ncbi.nlm.nih.gov/pubmed/25740563
https://doi.org/10.1007/s10681-005-9062-7

	Introduction 
	Materials and Methods 
	Plant Materials and Experimental Design 
	Trait Measurement 
	Phenotypic Data Analysis 
	Genotyping, Linkage Disequilibrium, and Population Structure 
	GWAS Analysis 
	Candidate Gene Discovery and Novelty Testing 

	Results 
	Phenotypic Analysis 
	GWAS 
	Major Effect QTLs for Milling and Baking Traits 
	Allelic Effect of Major-Effect QTLs 
	Candidate Gene Discovery 

	Discussion 
	Variation and Heritability of End-Use Quality Traits 
	Relationship among End-Use Quality Traits 
	Major-Effect QTLs for End-Use Quality Traits 
	Genetic Complexity of End-Use Quality Traits and Breeding Implications of Identified QTLs 

	Conclusions 
	References

