Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bacterial Isolates
2.2. Antibiotic Susceptibility Tests (AST)
2.3. Whole-Genome Sequencing (WGS) and In Silico Analyses
2.4. Core-Genome MLST (cgMLST)
2.5. Conjugation Experiments
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tavares, L.; Cunha, M.; de Vasconcellos, F.; Bertani, A.; de Barcellos, T.; Bueno, M.; Santos, C.; Sant’Ana, D.; Ferreira, A.; Mondelli, A.; et al. Genomic and Clinical Characterization of IMP-1-Producing Multidrug-Resistant Acinetobacter Bereziniae Isolates from Bloodstream Infections in a Brazilian Tertiary Hospital. Microb. Drug Resist. 2020, 26, 1399–1404. [Google Scholar] [CrossRef] [PubMed]
- Reyes, S.M.; Bolettieri, E.; Allen, D.; Hay, A.G. Genome Sequences of Four Strains of Acinetobacter Bereziniae Isolated from Human Milk Pumped with a Personal Breast Pump and Hand-Washed Milk Collection Supplies. Microbiol. Resour. Announc. 2020, 9, e00770-20. [Google Scholar] [CrossRef] [PubMed]
- Grosso, F.; Silva, L.; Sousa, C.; Ramos, H.; Quinteira, S.; Peixe, L. Extending the Reservoir of Bla IMP-5: The Emerging Pathogen Acinetobacter Bereziniae. Future Microbiol. 2015, 10, 1609–1613. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, T.; Fenn, S.J.; Hardie, K.R. JMM Profile: Carbapenems: A Broad-Spectrum Antibiotic. J. Med. Microbiol. 2021, 70, 1462. [Google Scholar] [CrossRef]
- World Health Organization (WHO). WHO Bacterial Priority Pathogens List, 2024: Bacterial Pathogens of Public Health Importance to Guide Research, Development and Strategies to Prevent and Control Antimicrobial Resistance; World Health Organization: Geneva, Switzerland, 2024.
- Aurilio, C.; Sansone, P.; Barbarisi, M.; Pota, V.; Giaccari, L.G.; Coppolino, F.; Barbarisi, A.; Passavanti, M.B.; Pace, M.C. Mechanisms of Action of Carbapenem Resistance. Antibiotics 2022, 11, 421. [Google Scholar] [CrossRef]
- Guo, H.; Li, L.; Chen, Y.; He, F. Genomic Insights into a Multidrug-Resistant Acinetobacter Bereziniae Strain Co-Carrying BlaOXA-301 and BlaNDM-1 from China. J. Glob. Antimicrob. Resist. 2023, 35, 56–59. [Google Scholar] [CrossRef]
- Zander, E.; Seifert, H.; Higgins, P.G. Insertion Sequence IS18 Mediates Overexpression of BlaOXA-257 in a Carbapenem-Resistant Acinetobacter Bereziniae Isolate. J. Antimicrob. Chemother. 2014, 69, 270–271. [Google Scholar] [CrossRef]
- Bassetti, M.; Peghin, M.; Vena, A.; Giacobbe, D.R. Treatment of Infections Due to MDR Gram-Negative Bacteria. Front. Med. 2019, 6, 74. [Google Scholar] [CrossRef]
- Cheng, Y.; Li, Y.; Yang, M.; He, Y.; Shi, X.; Zhang, Z.; Zhong, Y.; Zhang, Y.; Si, H. Emergence of Novel Tigecycline Resistance Gene Tet(X5) Variant in Multidrug-Resistant Acinetobacter Indicus of Swine Farming Environments. Vet. Microbiol. 2023, 284, 109837. [Google Scholar] [CrossRef]
- Wu, W.; Feng, Y.; Tang, G.; Qiao, F.; Mcnally, A.; Zong, Z. NDM Metallo-Lactamases and Their Bacterial Producers in Health Care Settings. Clin. Microbiol. Rev. 2019, 32, e00115-18. [Google Scholar] [CrossRef]
- Instituto de Salud Pública (ISP) de Chile. Bulletin Vigilancia de Carbapenemasas En Bacterias Que Pueden Producir Infecciones Asociadas a La Atención En Salud (IAAS), Chile 2014–2017; Instituto de Salud Pública (ISP) de Chile: Ñuñoa, Santiago de Chile, 2014; p. 8. [Google Scholar]
- Shutter, M.C.; Akhondi, H. Tetracycline; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Nguyen, F.; Starosta, A.; Arenz, S.; Sohmen, D.; Dönhöfer, A.; Wilson, D. Tetracycline Antibiotics and Resistance Mechanisms. Biol. Chem. 2014, 395, 559–575. [Google Scholar] [CrossRef] [PubMed]
- Bouza, E.; Muñoz, P.; Burillo, A. How to Treat Severe Acinetobacter Baumannii Infections. Curr. Opin. Infect. Dis. 2023, 36, 596–608. [Google Scholar] [CrossRef] [PubMed]
- Gauba, A.; Rahman, K.M. Evaluation of Antibiotic Resistance Mechanisms in Gram-Negative Bacteria. Antibiotics 2023, 12, 1590. [Google Scholar] [CrossRef] [PubMed]
- Kyriakidis, I.; Vasileiou, E.; Pana, Z.D.; Tragiannidis, A. Acinetobacter Baumannii Antibiotic Resistance Mechanisms. Pathogens 2021, 10, 373. [Google Scholar] [CrossRef]
- Sun, C.; Yu, Y.; Hua, X. Resistance Mechanisms of Tigecycline in Acinetobacter Baumannii. Front. Cell. Infect. Microbiol. 2023, 13, 1141490. [Google Scholar] [CrossRef]
- Wang, Z.; Li, H.; Zhang, J.; Wang, X.; Zhang, Y.; Wang, H. Identification of a Novel Plasmid-Mediated Tigecycline Resistance-Related Gene, Tet(Y), in Acinetobacter Baumannii. J. Antimicrob. Chemother. 2021, 77, 58–68. [Google Scholar] [CrossRef]
- Langford, B.J.; So, M.; Simeonova, M.; Leung, V.; Lo, J.; Kan, T.; Raybardhan, S.; Sapin, M.E.; Mponponsuo, K.; Farrell, A.; et al. Antimicrobial Resistance in Patients with COVID-19: A Systematic Review and Meta-Analysis. Lancet Microbe 2023, 4, e179–e191. [Google Scholar] [CrossRef]
- Getahun, H.; Smith, I.; Trivedi, K.; Paulin, S.; Balkhy, H.H. Tackling Antimicrobial Resistance in the COVID-19 Pandemic. Bull. World Health Organ. WHO 2020, 98, 442–442A. [Google Scholar]
- Chen, T.L.; Siu, L.K.; Wu, R.C.C.; Shaio, M.F.; Huang, L.Y.; Fung, C.P.; Lee, C.M.; Cho, W.L. Comparison of One-Tube Multiplex PCR, Automated Ribotyping and Intergenic Spacer (ITS) Sequencing for Rapid Identification of Acinetobacter Baumannii. Clin. Microbiol. Infect. 2007, 13, 801–806. [Google Scholar] [CrossRef]
- Poirel, L.; Walsh, T.R.; Cuvillier, V.; Nordmann, P. Multiplex PCR for Detection of Acquired Carbapenemase Genes. Diagn. Microbiol. Infect. Dis. 2011, 70, 119–123. [Google Scholar] [CrossRef]
- Clinical and Laboratory Standards Institute (CLSI). Performance Standards for Antimicrobial Susceptibility Testing. M100, 32nd ed.; Clinical and Laboratory Standards Institute (CLSI): Berwyn, PA, USA, 2022; ISBN 9781684401345. [Google Scholar]
- Seifert, H.; Blondeau, J.; Lucaßen, K.; Utt, E.A. Global Update on the in Vitro Activity of Tigecycline and Comparators against Isolates of Acinetobacter Baumannii and Rates of Resistant Phenotypes (2016–2018). J. Glob. Antimicrob. Resist. 2022, 31, 82–89. [Google Scholar] [CrossRef] [PubMed]
- Xanthopoulou, K.; Carattoli, A.; Wille, J.; Biehl, L.M.; Rohde, H.; Farowski, F.; Krut, O.; Villa, L.; Feudi, C.; Seifert, H.; et al. Antibiotic Resistance and Mobile Genetic Elements in Extensively Drug-Resistant Klebsiella Pneumoniae Sequence Type 147 Recovered from Germany. Antibiotics 2020, 9, 675. [Google Scholar] [CrossRef] [PubMed]
- Wick, R.R.; Judd, L.M.; Gorrie, C.L.; Holt, K.E. Unicycler: Resolving Bacterial Genome Assemblies from Short and Long Sequencing Reads. PLoS Comput. Biol. 2017, 13, e1005595. [Google Scholar] [CrossRef]
- Richter, M.; Rosselló-Móra, R.; Oliver Glöckner, F.O.; Peplies, J. JSpeciesWS: A Web Server for Prokaryotic Species Circumscription Based on Pairwise Genome Comparison. Bioinformatics 2016, 32, 929–931. [Google Scholar] [CrossRef] [PubMed]
- Afgan, E.; Nekrutenko, A.; Grüning, B.A.; Blankenberg, D.; Goecks, J.; Schatz, M.C.; Ostrovsky, A.E.; Mahmoud, A.; Lonie, A.J.; Syme, A.; et al. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2022 Update. Nucleic Acids Res. 2022, 50, W345–W351. [Google Scholar] [CrossRef]
- Robertson, J.; Nash, J. MOB-Suite: Software Tools for Clustering, Reconstruction and Typing of Plasmids from Draft Assemblies. Microb. Genom. 2018, 4, e000206. [Google Scholar] [CrossRef]
- Gilchrist, C.; Chooi, Y. Clinker & Clustermap.Js: Automatic Generation of Gene Cluster Comparison Figures. Bioinformatics 2021, 37, 2473–2475. [Google Scholar] [CrossRef]
- Grant, J.R.; Enns, E.; Marinier, E.; Mandal, A.; Herman, E.K.; Chen, C.Y.; Graham, M.; Van Domselaar, G.; Stothard, P. Proksee: In-Depth Characterization and Visualization of Bacterial Genomes. Nucleic Acids Res. 2023, 51, W484–W492. [Google Scholar] [CrossRef]
- Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; et al. Multidrug-Resistant, Extensively Drug-Resistant and Pandrug-Resistant Bacteria: An International Expert Proposal for Interim Standard Definitions for Acquired Resistance. Clin. Microbiol. Infect. 2012, 18, 268–281. [Google Scholar] [CrossRef]
- Higgins, P.G.; Prior, K.; Harmsen, D.; Seifert, H. Development and Evaluation of a Core Genome Multilocus Typing Scheme for Whole-Genome Sequence-Based Typing of Acinetobacter baumannii. PLoS ONE 2017, 12, e0179228. [Google Scholar] [CrossRef]
- Bonnin, R.; Ocampo-Sosa, A.; Poirel, L.; Guet-Revillet, H.; Nordmann, P. Biochemical and Genetic Characterization of Carbapenem-Hydrolyzing β-Lactamase OXA-229 from Acinetobacter Bereziniae. Antimicrob. Agents Chemother. 2012, 56, 3923–3927. [Google Scholar] [CrossRef] [PubMed]
- Kyselková, M.; Chrudimský, T.; Husník, F.; Chroňáková, A.; Heuer, H.; Smalla, K.; Elhottová, D. Characterization of Tet(Y)-Carrying LowGC Plasmids Exogenously Captured from Cow Manure at a Conventional Dairy Farm. FEMS Microbiol. Ecol. 2016, 92, fiw075. [Google Scholar] [CrossRef]
- Wallden, K.; Rivera-Calzada, A.; Waksman, G. Type IV Secretion Systems: Versatility and Diversity in Function. Cell. Microbiol. 2010, 12, 1203–1212. [Google Scholar] [CrossRef] [PubMed]
- Bontron, S.; Nordmann, P.; Poirel, L. Transposition of Tn125 Encoding the NDM-1 Carbapenemase in Acinetobacter baumannii. Antimicrob. Agents Chemother. 2016, 60, 7245–7251. [Google Scholar] [CrossRef]
- Acman, M.; Wang, R.; van Dorp, L.; Shaw, L.P.; Wang, Q.; Luhmann, N.; Yin, Y.; Sun, S.; Chen, H.; Wang, H.; et al. Role of Mobile Genetic Elements in the Global Dissemination of the Carbapenem Resistance Gene BlaNDM. Nat. Commun. 2022, 13, 1131. [Google Scholar] [CrossRef]
- Coluzzi, C.; Guédon, G.; Devignes, M.; Ambroset, C.; Loux, V.; Lacroix, T.; Payot, S.; Leblond-Bourget, N. A Glimpse into the World of Integrative and Mobilizable Elements in Streptococci Reveals an Unexpected Diversity and Novel Families of Mobilization Proteins. Front. Microbiol. 2017, 8, 443. [Google Scholar] [CrossRef]
- Guedes Stehling, E.; Sellera, F.P.; Guilherme Gonçalves de Almeida, O.; Hany Lima Gonzalez, I.; Locosque Ramos, P.; Gonsales da Rosa-Garzon, N.; Regina von Zeska Kress, M.; Cabral, H.; Pedro Rueda Furlan, J. Genomic Features and Comparative Analysis of a Multidrug-Resistant Acinetobacter Bereziniae Strain Infecting an Animal: A Novel Emerging One Health Pathogen? World J. Microbiol. Biotechnol. 2024, 40, 63. [Google Scholar] [CrossRef]
- Castanheira, M.; Mendes, R.E.; Gales, A.C. Global Epidemiology and Mechanisms of Resistance of Acinetobacter Baumannii-Calcoaceticus Complex. Clin. Infect. Dis. 2023, 76, S166–S178. [Google Scholar] [CrossRef]
- Mo, X.-M.; Pan, Q.; Seifert, H.; Xing, X.-W.; Yuan, J.; Zhou, Z.-Y.; Luo, X.-Y.; Liu, H.-M.; Xie, Y.-L.; Yang, L.-Q.; et al. First Identification of Multidrug-Resistant Acinetobacter Bereziniae Isolates Harboring Bla NDM-1 from Hospitals in South China. Heliyon 2023, 9, e12365. [Google Scholar] [CrossRef]
- Chagas, T.; Carvalho-Assef, A.; Martins Aires, C.; Bertocini, R.; Asensi, M. Detection of an NDM-1-Producing Acinetobacter Bereziniae Strain in Brazil. J. Glob. Antimicrob. Resist. 2015, 3, 147–148. [Google Scholar] [CrossRef]
- Brovedan, M.; Marchiaro, P.M.; Morán-Barrio, J.; Cameranesi, M.; Cera, G.; Rinaudo, M.; Viale, A.M.; Limansky, A.S. Complete Sequence of a Bla(NDM-1)-Harboring Plasmid in an Acinetobacter Bereziniae Clinical Strain Isolated in Argentina. Antimicrob. Agents Chemother. 2015, 59, 6667–6669. [Google Scholar] [CrossRef] [PubMed]
- Brovedan, M.; Repizo, G.D.; Marchiaro, P.; Viale, A.M.; Limansky, A. Characterization of the Diverse Plasmid Pool Harbored by the BlaNDM-1-Containing Acinetobacter Bereziniae HPC229 Clinical Strain. PLoS ONE 2019, 14, e0220584. [Google Scholar] [CrossRef]
- Yamamoto, M.; Nagao, M.; Matsumura, Y.; Hotta, G.; Matsushima, A.; Ito, Y.; Takakura, S.; Ichiyama, S. Regional Dissemination of Acinetobacter Species Harbouring Metallo-β-Lactamase Genes in Japan. Clin. Microbiol. Infect. 2013, 19, 729–736. [Google Scholar] [CrossRef] [PubMed]
- Merlino, J.; Rizzo, S.; Beresford, R.; Gray, T. Isolation of Acinetobacter Bereziniae Harbouring Plasmid BlaNDM-1 in Central Sydney, Australia. Pathology 2023, 55, 867–868. [Google Scholar] [CrossRef] [PubMed]
- Pudpong, K.; Pattharachayakul, S.; Santimaleeworagun, W.; Nwabor, O.F.; Laohaprertthisan, V.; Hortiwakul, T.; Charernmak, B.; Chusri, S. Association Between Types of Carbapenemase and Clinical Outcomes of Infection Due to Carbapenem Resistance Enterobacterales. Infect. Drug. Resist. 2022, 15, 3025–3037. [Google Scholar] [CrossRef]
- Dy, R.L.; Przybilski, R.; Semeijn, K.; Salmond, G.P.C.; Fineran, P.C. A Widespread Bacteriophage Abortive Infection System Functions through a Type IV Toxin–Antitoxin Mechanism. Nucleic Acids Res. 2014, 42, 4590–4605. [Google Scholar] [CrossRef]
- Partridge, S.R.; Kwong, S.M.; Firth, N.; Jensen, S.O. Mobile Genetic Elements Associated with Antimicrobial Resistance. Clin. Microbiol. Rev. 2018, 31, e00088-1. [Google Scholar]
Strains | Disk Diffusion Test | MIC (µg/mL) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
IMP | MEM | FEP | CAZ | CTX | SAM | TZP | CIP | LEV | GEN | AMK | TET | SXT | CST | MIN | TGC | |
UCO-553 | R | R | R | R | R | R | R | R | R | R | R | R | R | ≤0.25 (I) | ≤1 (S) | ≤1 (S) |
UCO-554 | R | R | R | R | R | R | R | R | R | R | R | R | R | ≤0.25 (I) | ≤1 (S) | ≤1 (S) |
Strains | CHL (µg/mL) | IMP (µg/mL) | TET (µg/mL) | MIN (µg/mL) | TGC (µg/mL) |
---|---|---|---|---|---|
A. bereziniae UCO-553 | 8 | >32 | 256 | ≤1 | ≤1 |
A. bereziniae UCO-554 | 4 | >32 | 256 | ≤1 | ≤1 |
A. baumannii ATCC 19606 | 128 | 0.094 | 1 | ≤1 | ≤1 |
A. baumannii Tc-553 | 128 | >32 | 256 | ≤1 | ≤1 |
A. baumannii Tc-554 | 128 | >32 | 256 | ≤1 | ≤1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Opazo-Capurro, A.; Xanthopoulou, K.; Arazo del Pino, R.; González-Muñoz, P.; Matus-Köhler, M.; Amsteins-Romero, L.; Jerez-Olate, C.; Hormazábal, J.C.; Vera, R.; Aguilera, F.; et al. Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae. Genes 2024, 15, 1213. https://doi.org/10.3390/genes15091213
Opazo-Capurro A, Xanthopoulou K, Arazo del Pino R, González-Muñoz P, Matus-Köhler M, Amsteins-Romero L, Jerez-Olate C, Hormazábal JC, Vera R, Aguilera F, et al. Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae. Genes. 2024; 15(9):1213. https://doi.org/10.3390/genes15091213
Chicago/Turabian StyleOpazo-Capurro, Andrés, Kyriaki Xanthopoulou, Rocío Arazo del Pino, Paulina González-Muñoz, Maximiliano Matus-Köhler, Luis Amsteins-Romero, Christian Jerez-Olate, Juan Carlos Hormazábal, Rodrigo Vera, Felipe Aguilera, and et al. 2024. "Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae" Genes 15, no. 9: 1213. https://doi.org/10.3390/genes15091213
APA StyleOpazo-Capurro, A., Xanthopoulou, K., Arazo del Pino, R., González-Muñoz, P., Matus-Köhler, M., Amsteins-Romero, L., Jerez-Olate, C., Hormazábal, J. C., Vera, R., Aguilera, F., Fuller, S., Higgins, P. G., & González-Rocha, G. (2024). Co-Occurrence of Two Plasmids Encoding Transferable blaNDM-1 and tet(Y) Genes in Carbapenem-Resistant Acinetobacter bereziniae. Genes, 15(9), 1213. https://doi.org/10.3390/genes15091213