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Abstract: The smoltification of farmed Atlantic salmon is commonly associated with mild immuno-
suppression. However, B cells may deviate from this trend, showing increased proliferation and
migration during this period. This study assessed the effects of smoltification and adaptation to
seawater in a controlled experiment. Analyses were conducted on the head kidney, spleen, gill, and
both visceral and subcutaneous fat (VAT, SAT) across four time points: parr, early and complete
smoltification, and twelve weeks post-seawater transfer. Gene expression analysis was performed to
track the distribution and developmental changes in their B cells. Expression profiles of three types of
immunoglobulins (ig), including membrane-bound and secreted forms of igm, as well as B cell-specific
markers pax1 and cd79, showed strong correlations and contrasted with profiles of other immune cell
markers. The highest levels of expression were observed in the lymphatic tissue, followed by the
VAT. Enhanced expression in the gill and adipose tissues of smolts suggested an increase in B cell
populations. Parallel sequencing of the variable region of the IgM heavy chain was used to track B cell
traffic, assessed by the co-occurrence of the most abundant sequences (clonotypes) across different
tissues. Smoltification markedly enhanced traffic between all tissues, which returned to initial levels
after twelve weeks in the sea. The preferred migration between the head kidney, spleen, and VAT
supports the role of abdominal fat as a reservoir of lymphocytes. These findings are discussed in the
context of recent studies that suggested the functional significance of B cell traffic in Atlantic salmon.
Specifically, the migration of B cells expressing secreted immunoglobulins to virus-infected hearts
has been identified as a key factor in the disease recovery and survival of fish challenged with salmon
alphavirus (SAV); this process is accelerated by vaccination. Additionally, the study of melanized foci
in the skeletal muscles revealed an association between antigen-dependent differentiation and the
migration of B cells, indicating a transfer from local to systemic immune responses. Updating the
antibody repertoire in the lymphatic and peripheral tissues of smolts may assist in their adaptation to
the marine environment and in encountering new pathogens. Emerging evidence highlights B cell
migration as an important and previously unrecognized immune mechanism in salmonids.

Keywords: atlantic salmon; B cell traffic; gene expression; IgM sequencing

1. Introduction

The life cycle of Atlantic salmon includes freshwater and seawater phases. Their
anadromous migration from the river to the sea is preceded by a complex developmental
process known as smoltification. Dramatic endocrine changes, leading to increased levels of
pituitary hormones and corticosteroids, affect salmon morphology, metabolism, osmoreg-
ulation, sensory system, and behavior, as reviewed in [1,2]. The smoltification of farmed
Atlantic salmon is associated with moderate immune suppression, which may persist for
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at least several months after seawater transfer. Transcriptome analyses have revealed this
trend in several studies performed at different research stations and farms [3–5]. However,
two published studies did not observe immune suppression [6,7], and the number and com-
position of downregulated genes varied among studies. The inconsistent nature of immune
changes in smolts suggests that these alterations likely develop as a side effect of complex
endocrine regulation, making high throughput analyses necessary for their detection.

A notable exception to the trend in immune suppression during smoltification is
the apparent increase in B cell activity. An increased abundance of immunoglobulin (Ig)
transcripts was observed as early as the first study that identified the impact of smoltifi-
cation on the immune system [3]. A longitudinal field survey of two cohorts of Atlantic
salmon produced at commercial farms found an increase in total immunoglobulin M (IgM),
circulating heterologous antibodies, and vaccine-induced bacteria-specific antibodies in
smolts, followed by a gradual decrease after seawater transfer [8]. Sequencing of the
variable region of the IgM heavy chain (Ig-seq) [9] has made it possible to investigate a
previously unknown aspect of B cell activity: directed migration between tissues. The
Ig heavy chain variable region is formed by the somatic recombination of the V, D, and J
genes, coupled with enzymatic insertions and deletions. The likelihood of two identical
sequences appearing independently in different tissues is low, especially considering that
early B cell differentiation is likely limited to the lymphatic organs. Therefore, the presence
of identical transcripts in different tissues is generally explained by B cell trafficking. Ig-seq
performed in this field study suggested that B cell migration is stimulated in smolts, mirror-
ing the profiles of plasma IgM and antibodies. Here, we report the results of a controlled
experiment that explored the effects of smoltification and seawater transfer using Ig-seq
and RT-qPCR analyses of B cell-specific gene expression, supplemented with several gene
markers of other immune cells. Analyses were conducted on parr and smolts in freshwater
and after seawater transfer. The head kidney and spleen were included in the analyses
as lymphatic tissues. The gill was chosen as a preferred tissue to monitor the interaction
between the immune system of Atlantic salmon and the environment [10]. A recently
published study [11] and transcriptome analysis indicated that visceral fat (VAT) in Atlantic
salmon serves as a depot for lymphocytes, while subcutaneous fat (SAT) is characterized
by low immune activity. The functional significance of B cell trafficking is discussed in the
context of this and previous studies.

2. Materials and Methods
2.1. Fish

Analyses were performed on Atlantic salmon from a trial reported in [12]. All opera-
tions with fish were authorized by the Norwegian Food Safety Authority (FOTS) under
general husbandry practices and ID24383. This study used fish from the group that was
kept at a constant temperature of 12 ◦C and received a commercial feed. The fish were
reared in a freshwater flow-through system (Tromsø Aquaculture Research Station, Kårvika,
Norway) at dissolved oxygen > 85% saturation, continuous feeding, and light-dark (LD)
photoperiod 24:00 until they reached a weight of 18.8 ± 2.3 g. Smoltification was induced
by light manipulation using a square wave photoperiod regime including six weeks of
winter signal (LD 12:12) followed by eight weeks of constant light, LD 24:00. This method is
standard practice in commercial Atlantic salmon aquaculture. Smoltification was assessed
using a seawater challenge test [13] and Na-K ATPase activity assay in the gill [14]. After
this 14-week period, the fish were moved to seawater flow-through tanks and the trial
continued for the next 12 weeks. Fish were sampled at weeks 0, 3, 6, 8, 14, 20, and 26. In this
study, analyses were performed on four time points: T1—parr (week 0); T4—presmolt or
smolt-1 (week 8); T5—smolt-2 (week 14); and T7—12 weeks in seawater (week 26). At T4,
salmon were able to cope with the seawater challenge in contrast to fish tested at previous
time points (T3, week 6). However, Na-K ATPase activity was lower than at subsequent
T5 (14 weeks), indicating incomplete smoltification. At each time point, six fish were
euthanized using a bath overdose of Benzocaine (Benzoak vet, 200 mg/mL, EuroPharma,
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Leknes, Norway) and were sampled. The head kidney, spleen, gill, VAT, and SAT were
stored in RNALater (Thermo Fisher Scientific, Waltham, MA, USA) at −20 ◦C.

2.2. RNA Extraction, Gene Expression

Small tissue samples (5–10 mg) were placed in tubes containing 400 µL of lysis buffer
(Qiagen, Düsseldorf, Germany), proteinase K (50 mg/mL), and beads. The samples were
homogenized using a FastPrep 96 (MP Biomedicals, Eschwege, Germany) for 120 s at
maximum shaking speed, then centrifuged and incubated at 37 ◦C for 30 min. RNA was
extracted using the Biomek 4000 robot (Beckman Coulter, CA, USA) with the Agencourt
RNAdvance Tissue kit. RNA concentration was measured with a NanoDrop One (Thermo
Fisher Scientific, Waltham, MA, USA), and quality was assessed using a Bioanalyzer 2100
(Agilent, Santa Clara, CA, USA). The RNA was treated with DNase I (Thermo Fisher
Scientific, Waltham, MA, USA), and cDNA was synthesized using the TaqMan Reverse
Transcription Reagent (Applied Biosystems, Waltham, MA, USA) with random hexamers.
RT qPCR analyses included three types of immunoglobulins: igd, igt, and membrane-bound
and secreted forms of igm (migm and sigm). The transcription factor pax5 plays an essential
role in B cell differentiation [15] and cd79 is a part of the B cell receptor [16]. Cd83 and
cd40 were included as markers of professional antigen-presenting cells [17,18]. Cd28 is a co-
stimulatory receptor of T cells. Primer sequences are provided in [11]. Ef1a was selected as
a reference gene due to homogenous distribution in Atlantic salmon tissues. PCR was run
in a QuantStudio5 real-time quantitative PCR system (Applied Biosystems, Waltham, MA,
USA), and the reaction mixture contained 4 µL (21 ng/µL) of diluted cDNA, 5 µL SYBR™
Green Master Mix (Applied Biosystems, Waltham, MA, USA), and 1 µL of the forward
and reverse primer. The program included heating for 1 min at 95 ◦C, amplification (1 s at
95 ◦C, 20 s at 60 ◦C), and a melting curve stage; the total number of cycles was 40. Each
biological sample was run in duplicates for all genes. The −∆Ct values were calculated
subtracting the Ct values of the reference gene. The data were centered by adding the mean
value of each gene in the entire dataset to the corresponding data points, ensuring that the
mean of the data was zero.

2.3. IgM Repertoire Sequencing

The CDR3 region or V(D)V junction of igmhc was sequenced. The cDNA synthe-
sis was carried out using SuperScript IV reverse transcriptase (Thermo Fisher Scientific,
Waltham, MA, USA) and oligonucleotides aligning to the constant region (CH) of At-
lantic salmon igm. (TAAAGAGACGGGTGCTGCAG). Libraries for sequencing were pre-
pared with two PCR reactions. The first PCR-amplified cDNA contained a degenerate
primer, TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTGARGACWCWGCWGT-
GTATTAYTGTG, which aligns to the 3′-end of all Atlantic salmon VH genes, and a primer
GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGGAACAAAGTCGGAGCAGTTGATGA
to the 5′-end of CH. Both primers were designed to match Illumina Nextera adaptors. The
reaction mixture (20 µL) included 10 µL 2X Platinum™ Hot Start PCR Master Mix (Thermo
Fisher Scientific, Waltham, MA, USA), 0.5 µL of each primer (10 pmol/µL), 8 µL water,
and 1 µL template. The second PCR used Nextera™ XT Index Kit v2 (Illumina, San Diego,
CA, USA), and the reaction included 2 µL of each primer and 2 µL product from the first
PCR. The PCR program included the following steps: initial heating for 1 min at 94 ◦C,
followed by amplification for 10 s at 94 ◦C, 20 s at 53 ◦C, and 20 s at 72 ◦C (30 cycles in the
first PCR and 9 cycles in the second PCR), with a final extension of 5 min at 72 ◦C. The DNA
concentration of the amplified product was measured using Qubit (Thermo Fisher Scientific,
Waltham, MA, USA). Aliquots of the libraries were combined and purified twice using a PCR
clean-up kit (Qiagen, Düsseldorf, Germany). Sequencing was carried out using the Illumina
MiSeq™ Reagent Kit v3, 150 cycles (Illumina, San Diego, CA, USA). Libraries were diluted
to 4 nM, and a PhiX control was added at a final concentration of 0.8 nM. After trimming
the Illumina adaptors and primers and removing low-quality reads, the sequences were
transferred to a relational database where the frequency of each unique sequence (clonotype)
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was evaluated. The trafficking of B cells was assessed through pairwise comparisons of
tissues. The 100 largest clonotypes were selected, and their occurrence in a second tissue was
evaluated at a threshold frequency greater than 2 × 10−5.

2.4. Statistics

Data were analyzed with ANOVA, followed by a post hoc Tukey test (p < 0.05) us-
ing Statistica 14.01.25 (TIBCO, Palo Alto, CA, USA). Normality was assessed using the
Kolmogorov–Smirnov test. The same program was used for correlation analysis and
hierarchical clustering.

3. Results
3.1. Gene Expression: Differences between Tissues and Temporal Changes

The expression profiles of all B cell-specific genes (cd79, pax5, igt, igd, migm, and
sigm) exhibited strong correlations (Figure 1A), with a Pearson correlation coefficient of
r = 0.94 ± 0.06 (mean ± SD). These genes formed a dense cluster, with sigm showing some
separation from the other four genes (Figure 1B). The lower correlation between sigm and
the other B cell markers is likely due to the presence of antibody-producing plasma cells,
which express the isoform-encoding secreted antibodies at much higher levels compared
to pax5, a regulator of differentiation, and cd79, a component of the B cell receptor. For
comparison with B cells, three genes associated with other specialized immune cells (cd28,
cd83, and cd40) were included in the analysis. As expected, these genes did not show a strong
correlation with B cell markers. The expression patterns were unique to each tissue, and even
seemingly small differences were significant (Figure 2). The expression of B cell-specific genes
was markedly higher in lymphatic tissues. Igd levels were similar in both the head kidney
and spleen. However, igt and migm expression was higher in the head kidney, while sigm
was upregulated in the spleen, which is considered a secondary lymphatic organ in teleost
fish [19]. Overall, the secreted isoform constituted the majority of igm, with the sigm-to-migm
ratio being higher in the peripheral tissues, indicating a predominance of antibody-producing
cells. While most B cells reside in specialized immune organs, the tissue distribution of other
immune cells can be less polarized. For instance, cd28 expression was highest in the gill,
while cd83 expression was highest in both the gill and spleen. B cell-specific genes did not
show significant temporal changes in the head kidney and spleen. However, sigm expression
increased in the gill, VAT, and SAT during the smolt-1 stage (T4, Figure 3) and decreased in
the gill by the end of the trial. The expression of other B cell-specific genes increased in the
gill at the end of smoltification (T5), while adipose tissue showed smaller changes.
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3.2. Sequencing of the Variable Region of igm Heavy Chain (Ig-seq) Reveals B Cell Migration

The migration of B cells is assessed by the co-occurrence of the largest clonotypes
in the compared tissues. Given the nearly unlimited sequence variation in heavy chain
CDR3, the presence of identical sequences in the variable regions of two tissues is primarily
explained by the movement of expanded B cells. We use an asymmetric metric that
prioritizes the largest clonotypes, which are likely to include recently expanded clones. In
each comparison, the hundred largest clonotypes are selected from the first tissue, and
their presence is checked in the second tissue; the values range from zero to one hundred.
The tissues are then reversed for comparison. Both individual (Figure 4A) and grouped
data (Figure 4B,C) clearly show B cell migration associated with smoltification, returning
to initial levels after three months in seawater. The low co-occurrence of clonotypes in
all tissues of parr was followed by a dramatic increase in all presmolts sampled in the
middle of the constant light period. The results indicated the active migration of B cells
in two fish at T5 and one fish at T7. The temporal profiles were similar across all tissues,
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with certain differences. Unlike other tissues, the spleen showed high co-occurrence of
the largest clonotypes already in parr, with subsequent increases being insignificant. Peak
levels in smolts were followed by a decrease at the last time point. The tendency to
decrease at T4 was noticed in all tissues, and a significant difference between T4 and T5
was observed when pooled data were analyzed (Figure 4A). The reduction after 12 weeks
in seawater was significant in all tissues except visceral fat. The directions of traffic were
compared (Figure 4D). Peripheral tissues showed equal sharing of the largest clonotypes
with other tissues; the mean values were highest in visceral fat and lowest in subcutaneous
fat. Preferred migration was observed in the lymphatic tissues. Both the head kidney and
spleen showed the highest match with each other and with visceral fat, while migration to
the gill and subcutaneous fat was weaker.
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uration. Antibody responses in fish develop slowly, especially at low water temperatures, 
and the duration of vaccine protection is relatively short [21]. Additionally, the existence 
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commercial aquaculture has significantly reduced the morbidity and mortality caused by 
infectious diseases, as well as the use of antibiotics [22–24]. This provides compelling ev-
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of heterologous antibodies (also known as natural antibodies), which are detected by their 
binding to model antigens; their titers are much higher than those of antigen-specific an-
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Figure 4. IgM sequencing. B cell migration assessed by co-occurrence of largest clonotypes. Tissues
were compared in pairs to determine how many of the largest hundred clonotypes in the first tissue
were present in the second tissue. (A): Individual data, six fish were analyzed at each of the four
time points. The number in each square means the amount of clonotypes detected in both tissues.
(B,C): Temporal changes, average numbers of clonotypes in each tissue shared with all other tissues
at every time point (B) and number of shared clonotypes in all tissues across each time point (C). Bars
not sharing common letters are significantly different (ANOVA, Tukey test, p < 0.05). Capital and
lowercase letters denote time points and tissues, respectively. (D): Overlap between tissues, averaged
across all time points. Bars not sharing common letters are significantly different (ANOVA, Tukey
test, p < 0.05).

4. Discussion

The humoral adaptive immune system of teleost fish is characterized by its relatively
low affinity for antibodies and several primitive features, such as an absence of lymph
nodes and isotype switching. The presence of germinal center-like structures in the spleen
of rainbow trout and somatic hypermutations in the variable region of IgM were recently
reported [20]. However, this process occurs on a much smaller scale compared to warm-
blooded animals, and it remains uncertain whether hypermutations lead to affinity matu-
ration. Antibody responses in fish develop slowly, especially at low water temperatures,
and the duration of vaccine protection is relatively short [21]. Additionally, the existence of
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memory B cells in fish is still unclear. Nonetheless, B cells play a crucial role in the defense
of Atlantic salmon against pathogens. The use of multicomponent vaccines in commercial
aquaculture has significantly reduced the morbidity and mortality caused by infectious
diseases, as well as the use of antibiotics [22–24]. This provides compelling evidence of the
importance and effectiveness of antibody responses. The apparent contradiction between
the low efficiency and the importance of these defenses can be partly explained by the
specific features of fish antibodies and B cells. Fish produce large amounts of heterologous
antibodies (also known as natural antibodies), which are detected by their binding to model
antigens; their titers are much higher than those of antigen-specific antibodies [25,26].
Vaccination and infection markedly increase both the levels of heterologous antibodies
and the range of antigens they recognize [27,28]. These antibodies are likely involved in
rapid defense against pathogens, providing a time gain before a more specific and effective
antibody response occurs. High-throughput parallel-sequencing of the IgM repertoire has
elucidated another aspect of teleost B cells, namely their migration between tissues.

The Ig heavy chain variable region is formed through the somatic recombination of
the V, D, and J genes, along with enzymatic insertions and deletions. The likelihood of two
identical sequences appearing independently in different tissues is low, especially consider-
ing that early B cell differentiation is most likely confined to lymphatic organs. Therefore,
the presence of identical CDR3 transcripts in different tissues is generally explained by
B cell trafficking. Combining Ig-seq with B cell-specific gene expression may reveal the
link between B cell migration and differentiation. Repertoire sequencing has raised two
important questions concerning where antibodies are produced and how they spread. It
was previously believed that the antigen-dependent differentiation of plasma cells occurs
in the lymphatic organs, with antibodies then released into the circulation. However,
transcriptomics and repertoire sequencing challenge these widely accepted views in fish im-
munology. Transcriptomic analysis using oligonucleotide DNA microarrays has shown an
association between increased igm transcripts in salmon alphavirus (SAV)-infected Atlantic
salmon hearts and virus clearance [29,30]. RNA sequencing identified a high abundance of
igm transcripts as the main difference between dead fish and survivors, with transcripts
of the secreted isoform prevailing [31]. Ig-seq demonstrated enhanced trafficking of IgM-
expressing B cells to virus-infected hearts, which was accelerated in salmon vaccinated
against SAV [28,32]. The targeted delivery of antibodies to infected tissue likely enhances
their efficacy, thus mitigating the limitations of low affinity. Evidence of antigen-dependent
B cell differentiation followed by active trafficking was obtained in a study of melanized
foci in the skeletal muscle of Atlantic salmon [11]. Previously, it was thought that B cells
migrate only from the lymphatic to peripheral tissue. However, the local differentiation of
B cells suggests that antibody responses can be initiated at each site, and the movement of
B cells converts local responses into systemic ones.

Enhanced traffic of B cells in Atlantic salmon smolts has been demonstrated in both
field studies and controlled experiments. What benefits can be gained from this? We
considered the possible spread of naïve B cells, which could constitute the first line of
humoral adaptive immunity in peripheral tissues. The membrane and secreted forms of
igm (migm and sigm) are expressed at high levels in naïve and antibody-producing B cells,
respectively. A transient increase in migm expression was observed in the gills of smolts, but
not in adipose tissues. The migm-to-sigm ratio was consistently higher in the head kidney
and spleen and did not change with increased B cell traffic. This suggests that B cells that
had already entered or completed antigen-stimulated differentiation were predominant
among migrating B cells. Overall, gene expression suggested minor developmental changes
throughout the study period. Notably, active traffic from the spleen was observed as early
as the first time point (parr), earlier than between other tissues. It is important to note that
differentiation waves could occur over short periods and remain undetected due to large
sampling intervals. Unlike [11], this study did not observe an association between antigen-
dependent differentiation and B cell migration. This issue requires further research with
more frequent sampling from the onset of constant light stimulation of smoltification to the
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end of this period. Did recruited B cells substitute or expand the peripheral populations?
The second possibility seems more likely, considering gene expression data. Transcripts
of B cell-specific genes increased in all tissues of presmolts, with a further increase in
sigm observed in the gills of smolts. The ability to recognize novel pathogens and initiate
antigen-dependent differentiation and antibody response is determined by the size and
diversity of immunoglobulins. Therefore, updating the repertoire during smoltification
may help salmon adapt to a marine environment containing many pathogens that they
have not been exposed to during their freshwater life period. To date, changes in the IgM
repertoire have been demonstrated at the transcriptional level. To determine whether these
changes improve salmon’s defense against pathogens at sea, it will be important to assess
whether the diversity of antibodies and their ability to recognize and bind to a wider range
of antigens increase in smolts.

Adipose tissue was included in the study to learn more about its role in the immune
system of Atlantic salmon. VAT transcriptome [33] indicates the presence of large lym-
phocyte populations. Reports of massive secretions of cytokines [34,35] and infiltration
of fat with leukocytes and lymphocytes [36,37] associated with obesity in mammals have
stimulated studies of the immune properties of salmonid adipose tissue. There is now more
evidence for its importance in adaptive immune responses than for the adverse effects of
inflammation. Abdominal fat harbors various cell types, including B cells expressing IgM,
IgD, and IgT at different developmental stages. It responds to adjuvants, binds antigens,
and mounts antigen-dependent antibody responses [38–40]. The IgM-secreting capacity
of adipose tissue B cells is markedly higher than that of blood B cells [38]. Changes in the
cellular composition of adipose tissue were observed after challenge with viral hemorrhagic
septicemia virus. The decreased number of IgM+ cells in parallel with elevated antibody
production was interpreted as their differentiation into plasma cells [38]. However, the
egress and migration of B cells toward infection foci could also occur. Increased movement
between various tissues and visceral fat suggests that this tissue can accumulate B cells that
release antibodies into circulation or migrate to other tissues.

5. Conclusions

Smoltification prepares salmon for life in the sea by changing their endocrine system,
osmoregulation, and behavior. The active migration of B cells, leading to an increase in the
size and complexity of the antibody repertoire, may be a new aspect of preadaptation to
the new environment. The study adds to the understanding of B cell traffic as an important
mechanism of the immune system of salmon and the immune role of adipose tissue. Future
research is needed to gain mechanistic insights into the cues driving B cell migration and to
provide more direct evidence of its importance for salmon protection against pathogens.
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