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gure S1. The human EFla promoter driving expression of the eGFP reporter gene. (a) The array of four direct repeats

the 177 Widom601 nucleosome positioning sequence [1,2] in pW601-eGFP plasmid is shown in bold italics. The

TATA box is in a solid box. The two untranslated exons (Exon 1 and Exon 2) separated by Intron-A of the EF1a promoter

ar

e shown in dotted boxes. Binding sites for transcription factors (EFP1, EFP2, Spl and Apl) are noted and underlined

[3,4]. The transcription start site is shown by asterisk. The translation start site of eGFP is noted at the 3" end of the

se

quence (ATG in bold); (b) Sequence of the 100 bp fragment amplified from pUC19 DNA and cloned into the SbfI site

between the Widom601 sequence and the EF1a promoter in plasmid pW601-100b-eGFP.
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Figure S2. Representative analysis of unassembled plasmid DNA or plasmids pre-assembled with unmodified histone
octamers. Samples containing 500 ng of plasmid DNA were evaluated on a 0.8% agarose gel in TBE buffer containing
89 mM Tris base, 89 mM Borate and 2 mM Na2EDTA. All detectable plasmid DNA (~98%) had been assembled into
chromatin, based on the ~10 ng limit of detection of DNA by ethidium bromide staining. Chromatin assembly was
performed as described in our previous studies [5,6].
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Figure S3. Representative fluorescence microscopy images and representative flow cytometry plots. (a) 143B cells
transfected with unassembled peGFP were imaged at 72 h post-transfection under sterile live cell-imaging conditions
using the EVOS FL inverted fluorescence microscope (Life Technologies). Images were taken at 10X magnification.
Scale bar equals 400 um; (b) Untransfected 143B cells (left panels) or 143B cells transfected with unassembled peGFP
(right panels) were analyzed by flow cytometry at 72 h post-transfection. Cells were trypsinized and 1x10° viable cells
were isolated, washed in 1X PBS, and resuspended in 200 pl 1X PBS as described previously. Side scatter (SCC-A) and
forward scatter (FSC-A) data were used to assess cell size and complexity. After thresholding to remove "Debris" (top
panels) ten thousand events were analyzed, and eGFP+ cells were detected through the FL-1 488 nm channel (FITC-A)
against the side scatter (SCC-A). Mean fluorescence intensity of 1x10* was set as the baseline for the FITC-A channel.
Untransfected control cells had 0.4% eGFP+ cells above baseline, while those cells transfected with peGFP had a 20.1%
eGFP+ cells at three days post-transfection. The fluorescence intensity of eGFP above baseline ranged from 1x10* to
1x107 (arbitrary units)_(Figure S3B, bottom panels), and was used to calculate the mean intensity of fluorescence signal
from the eGFP+ cells (see Materials and Methods).
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Figure S4: Impact of 100 bp spacer on transcription. (a) Map of p100-eGFP. (b) Percent eGFP+ cells at D3 were calculated
for samples transfected with the indicated “naked” plasmids, and then normalized relative to percent eGFP+ cells at
D3 from cells transfected with peGFP, which was set to 1 (Mean + STD, n = 4); (c) Mean fluorescence intensity of eGFP+
subpopulations in Figure S2B were calculated and then normalized relative to the mean fluorescence intensity at D3 of
cells transfected with peGFP, which was set to 1 (Mean + STD, n =4). Statistical significance was determined using One-

way Anova [7] and p values are from TukeyHSD post-hoc test [8].
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Figure S5: The impact of pre-
assembled nucleosomes
containing H4K16Q relative
to unmodified histones (H4)
within plasmid constructs.
Re-analysis of data from
experiment shown in Figure
4. (a,c&e) Percent eGFP+ cells
from  H4K16Q-containing
chromatin normalized
relative to percent eGFP+
cells from H4-containing
chromatin on the indicated
plasmids; (b,d&f) MFI of the
eGFP+ subpopulation from
H4K16Q-containing
chromatin normalized
relative to MFI of the eGFP+
subpopulation from H4-
containing chromatin on the
indicated plasmids.
Statistical significance was
determined as in Figure 2.
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