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Abstract: Background: Leaves are the main organs involved in photosynthesis. They
capture light energy and promote gas exchange, and their size and shape affect yield.
Identifying the regulatory networks and key genes that control citrus leaf size is essential
for increasing citrus crop yield. Methods: In this study, transcriptome sequencing was
performed on three leaf materials: the ‘Cuimi’ kumquat (Nor) variety and its leaf variants,
larger-leaf (VarB) and smaller-leaf (VarS) varieties. Results: Correlation and principal
component analyses revealed a relatively close correlation between Nor and VarS. A total
of 7264 differentially expressed genes (DEGs), including 2374 transcription factors (TFs),
were identified, and 254 DEGs were common among the three materials. GO and KEGG
enrichment analyses revealed significant enrichment in glucose metabolism, cell wall
composition, starch biosynthesis, and photosynthesis pathways. WGCNA identified three
specific modules related to the different leaf sizes of these three citrus materials. Fifteen
candidate genes related to leaf size, including three transcription factors, Fh5g30470 (MYB),
Fh7g07360 (AP2/ERF), and Fh5g02470 (SAP), were identified on the basis of connectivity
and functional annotations. Conclusions: These findings provide a theoretical foundation
for a deeper understanding of the molecular mechanisms underlying citrus leaf size and
offer new genetic resources for the study of citrus leaf size.
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1. Introduction
Citrus holds a prominent economic position in China as the fruit with the largest

cultivation area and yield [1]. Leaves play a pivotal role in photosynthesis and are essential
plant organs that show significant morphological diversity, originating from the shoot apical
meristem (SAM) [2]. Leaf size directly impacts light capture and photosynthesis levels [3].
Larger leaves can absorb more light energy, can accommodate more chlorophyll, and have
a larger surface area, thereby improving the plant’s utilization of light and increasing the
efficiency of photosynthesis and thereby obtaining more nutrients and energy to support
growth [4]. In general, leaves are essential to the growth and survival of plants, so changes
in leaf size reflect natural selection for functional operation; thus, leaf size is considered
closely related to leaf photosynthesis. Therefore, to maximize the capture of light energy,
plants widen their leaves as much as possible, and to facilitate gas exchange, leaves need
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to be as thin and flat as possible [5]. However, leaves do not widen unconditionally; if
the leaves are too large, they will be overexposed to the sun, resulting in excessive leaf
temperature. Moreover, the leaf shape and vein pattern are closely related, influencing
each other during their development. Thus, leaf development and the size of the leaf
area are key factors influencing crop growth and development, stress resistance, and yield.
These factors are vital for research on physiology, biochemistry, genetic breeding, and crop
cultivation and serve as indicators of crop growth, development, yield formation, and
variety characteristics [6]. The regulatory mechanisms governing leaf size have been widely
investigated, with a focus on four key cell development processes: cell quantity in the leaf
primordium, the cell proliferation rate and duration, the cell expansion rate and duration,
and the extent of meristem division [7–9]. Variations in these processes can impact either
cell quantity or cell size, ultimately influencing the overall size of leaves. Precise regulation
of cell proliferation and cell expansion is essential for determining leaf size. However, the
molecular mechanisms influencing citrus leaf size remain unclear, as this trait is complex
and is affected by the expression of multiple genes and environmental factors.

Advancements in sequencing technology have provided increasing evidence that RNA
transcriptional regulation plays an important role in plant growth and development [10,11].
RNA-seq, a popular second-generation high-throughput sequencing technique, is extensively
used in plant growth and development research [10–12]. Coexpression network analysis,
a systems biology approach, analyzes gene expression correlations and constructs a gene
coexpression network to identify functionally relevant gene modules [12–14]. For example, the
gene regulatory network of banana fruit ripening transcriptome analysis has been revealed [15].
Additionally, a transcriptional regulatory network was constructed using a chickpea time series
transcriptome dataset, identifying key modules and candidate genes for seed size/weight [16].
RNA-seq of citrus from six developmental stages (the last of which was the mature fruit stage)
and four major tissues (yellow cortex, white cortex, tunicate, and juice cells) revealed the role
of the abscisic acid (ABA) signaling regulatory network during citrus fruit development and
ripening. Several key genes involved in sucrose accumulation and citric acid metabolism
have been identified [17]. Through a pangenome map of the citrus subfamily combined
with transcriptome analysis, the transcription factor CitPH4, which contains an R2R3-MYB
domain, was identified. CitPH4 promotes citric acid accumulation by binding to and activating
the tonoplast proton pump gene PH5 [18]. WGCNA of transcriptome data from ‘Newhall’
oranges revealed that the transcription factor CsESE3 was coexpressed with multiple lipid
metabolism pathway genes, suggesting its involvement in the synthesis of citrus waxes and
jasmonic acid (JA) [19].

Research on citrus plants has focused predominantly on stress resistance and fruit
development, whereas few studies have addressed leaf-related regulatory mechanisms
and related gene functions [20–22]. Leaves, as crucial photosynthetic organs, are vital for
plant growth and are the most important “source” of photosynthesis. Previous studies
have explored the correlation between leaf size and morphology in model plants such as
rice and Arabidopsis thaliana, but no reports have addressed this correlation in citrus [23–25].
To fill this gap, RNA-seq sequencing of leaves from ‘Cuimi’ kumquat (Fh, Fortunella hindsii)
(Nor) and its leaf variants—larger-leaf (VarB) and smaller-leaf (VarS)—was conducted.
Cluster differential expression analysis was performed on the sequencing data. In this
study, a weighted gene coexpression network was constructed, and potential candidate
genes associated with citrus leaf size were identified. This research offers a theoretical basis
for advancing our comprehension of the molecular mechanisms controlling citrus leaf size
and provides new genetic resources for citrus research.
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2. Materials and Methods
2.1. Plant Material

The experimental materials selected in this study were Nor ‘Cuimi’ kumquats (variety
‘Cui Mi Jin Gan’ produced by a natural variation in the Huapi Jin Gan in Rong’an County,
approval number: Guishen Guo 2014003) and three materials with enlarged leaves (VarB)
and smaller leaves (VarS). Leaves were collected from each material (each sample was
replicated 6 times, 3 replicates were used for RNA-seq, and 3 replicates were used for qRT-
PCR), and the samples were quickly frozen in liquid nitrogen for subsequent experiments.

2.2. RNA Extraction, cDNA Library Preparation, and Sequencing

RNA was isolated using the TRIzol method, and its quality was assessed via 1%
agarose gel electrophoresis. The total RNA was preserved at −80 ◦C and subsequently
shipped on dry ice to Xinjiang Aidesen Biotechnology Co., Ltd. (Urumqi, China) for
sequencing. A total of 1 µg of RNA per sample was used as input material for the RNA
sample preparations. The sequencing libraries were generated via the Hieff NGS Ultima
Dual-mode mRNA Library Prep Kit for Illumina (Yeasen Biotechnology Co., Ltd., Shanghai,
China). mRNA was enriched using oligo (dT)-containing magnetic beads, which bind to the
polyA tail of mRNA through A–T complementary pairing. Subsequently, a fragmentation
buffer was introduced to cleave the mRNA into shorter fragments. The initial cDNA strand
was generated via six-base random hexamers (Invitrogen, Carlsbad, CA, USA), with the
mRNA serving as the template. A mixture of buffer, dNTPs, and DNA polymerase I was
subsequently employed to synthesize the second cDNA strand. The resulting double-
stranded cDNA was purified via AMPure XP beads (Beckman Coulter, Beverly, CA, USA).
Then, 3 µL of USER Enzyme (NEB, Ipswich, MA, USA) was used with size-selected,
adaptor-ligated cDNA at 37 ◦C for 15 min, followed by 5 min at 95 ◦C before PCR. Then,
PCR was performed with Phusion High-Fidelity DNA polymerase, universal PCR primers
and Index (X) primers. Finally, the PCR products were purified (AMPure XP system), and
library quality was assessed on an Agilent Bioanalyzer 2100 system. Once the library’s
effective concentration exceeded 2 nM, sequencing in PE150 mode was carried out using
the Illumina HiSeq 2500 platform. The data were subjected to filtering and quality control
procedures via fastp software (version 0.23.4), with the obtained clean data being employed
for subsequent analysis [26]. The reads were aligned in HISAT2 using the citrus genome
Hongkong kumquat (https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_004802465.
1/ (accessed on 15 November 2023)) as a reference, and String Tie was used to quantify the
aligned reads [27,28].

2.3. Identification of Differentially Expressed Genes

Gene expression levels were quantified using the fragments per kilobase of transcript
per million mapped reads (FPKM) method. DESeq2 was then applied to determine the
differential expression of genes across various samples on the basis of their expression
levels [29]. An FDR ≤ 0.01 and an absolute value of log2-fold change ≥ 1 were used
as the standards for screening differentially expressed genes (DEGs) [30]. The amino
acid sequences of all the DEGs were submitted to the KEGG (https://www.genome.jp/
kegg/ (accessed on 28 January 2024)) database. The whole-genome sequence of citrus was
submitted to PlantTFDB (http://planttfdb.cbi.pku.edu.cn/ (accessed on 7 February 2024))
for transcription factor prediction.

2.4. Construction of the Coexpression Network

The gene expression profiles (FPKM) of the differentially expressed genes (DEGs)
were analyzed using the dynamic branch cutting method in the R language WGCNA

https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_004802465.1/
https://www.ncbi.nlm.nih.gov/datasets/genome/GCA_004802465.1/
https://www.genome.jp/kegg/
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Genes 2025, 16, 97 4 of 16

package [31]. To achieve a scale-free network distribution, the weight coefficient β should
exhibit a correlation coefficient close to 0.8 and possess a specific level of gene connectivity.
In this study, a weight coefficient of β = 4 was chosen. The network was established
via the automatic network construction function for blockwise modules. Various valid
modules were generated, each containing a different number of genes. Modules exhibiting
a similarity of 0.75 were merged using minModuleSize = 30 and Merge Cut Height = 0.25
as the criteria. The module eigengene (ME) characteristic vector and correlation coefficients
between different samples were then computed. The coexpression network was visualized
using Cytoscape (version 3.10) software. The gene interaction network of key modules was
constructed using Cytoscape 3.10 software, and the MCC algorithm of the CytoHubba plug-
in in the software was used to screen the top five hub genes in the network as candidate
genes [32].

2.5. qRT-PCR

Total RNA was isolated via an RNA extraction kit (Tiangen, Beijing, China). The
concentration of each RNA sample was assessed using a NanoDrop 2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA), and the integrity of the RNA was verified
via gel electrophoresis. One microgram of isolated RNA was subsequently used to obtain
first-strand cDNA via reverse transcription using the PrimeScript™ RT Kit with gDNA
Eraser (Takara Bio Inc., Shiga, Japan). qRT-PCR analysis was performed using a Roche
LC480 instrument (Roche Diagnostics GmbH, Mannheim, Germany) and SYBR Green
(Takara Bio Inc.). A two-step PCR amplification program was employed, including initial
denaturation at 95 ◦C for 30 s, followed by 40 cycles of denaturation at 95 ◦C for 5 s and
annealing at 60 ◦C for 35 s. Roche LC480 software automatically generated amplification,
melting, and standard curve data. The results were analyzed for relative quantification
using the 2−∆∆Ct method [33]. The internal reference gene was β-actin [34] (GenBank:
cb250364), and three biological replicates were performed for each program. All primers
used in this study are listed in Table S1.

3. Results
3.1. Overall Analysis of RNA-Seq Data

RNA-seq was performed on nine samples from three materials, yielding 121.73 Gb
of raw bases. After filtering, a total of 117.33 Gb of effective bases were obtained. Each
sample produced at least 8.96 Gb of effective bases. The Q20 base percentages ranged
from 98.18% to 98.85%, with an average of 98.38%. The Q30 base percentages ranged
from 94.89% to 96.80%, with an average of 95.51%. The alignment rates with the reference
genome ranged from 92.67% to 95.86%, with an average alignment rate of 94.21% (Table S2).
The correlation coefficients between the biological replicates exceeded 0.96 (Figure 1a),
indicating high reproducibility. Cluster analysis placed Nor and VarS on the same branch,
with correlation coefficients greater than 0.81. The results of principal component analysis
(PCA) confirmed that the biological replicates clustered together, with Nor and VarS
showing close relationships (Figure 1b). In summary, the RNA-seq data were reliable and
reproducible, and the relationships between Nor and VarS were relatively close.

To confirm the accuracy of the transcriptome expression profiles, qRT-PCR validation
of six randomly selected genes confirmed a significant correlation with the RNA-seq data
(R = 0.92, p < 0.01), indicating the reliability of the transcriptome sequencing data (Figure 2).
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Figure 2. Scatter plot of the correlations of the transcriptome data with the qRT-PCR gene expression
levels.

3.2. Differential Expression Analysis

To investigate the transcriptional regulation of citrus leaf size, we identified differ-
entially expressed genes (DEGs) in the leaves of different materials. There were 4913 dif-
ferentially regulated genes identified between Nor and VarB, with 2156 upregulated and
2757 downregulated genes. Among the Nor and VarS genes, 4283 differentially regulated
genes were identified, among which 2113 were upregulated and 2170 were downregulated.
There were 2636 differentially regulated genes identified between VarS and VarB, among
which 801 were upregulated and 1835 were downregulated (Figure 3a). Unique DEGs
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numbered 932 between VarS and VarB, 694 between Nor and VarS, and 1324 between Nor
and VarB (Figure 3b). A total of 254 DEGs were common across all three materials.
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3.3. Enrichment Analysis

To clarify the functions of the DEGs, GO and KEGG enrichment analyses were per-
formed on the DEGs between materials (Figure 4). The 4913 DEGs between Nor and
VarB were significantly enriched in the following biological processes: the carbohydrate
metabolic process, chlorophyll biosynthetic process, starch biosynthetic process, the auxin-
activated signaling pathway, and photosynthesis (Figure 4a). The 4913 DEGs between
VarS and VarB were significantly annotated in the cell cycle, phenylpropanoid biosyn-
thesis, carotenoid biosynthesis, starch and sucrose metabolism, circadian entrainment,
and photosynthesis pathways (Figure 4b). The 4283 DEGs between Nor and VarS were
significantly enriched in the following biological processes: carotenoid biosynthetic pro-
cess, photorespiration, photomorphogenesis, photosystem II assembly, and carbohydrate
transport (Figure 4c). The 4283 DEGs between Nor and VarS were significantly anno-
tated in the cell cycle, the MAPK signaling pathway, fatty acid degradation, glycoly-
sis/gluconeogenesis, the pentose phosphate pathway, and the photosynthesis pathway
(Figure 4d). The 2636 DEGs between VarS and VarB were significantly enriched in the
following biological processes: the carbohydrate metabolic process, xylan biosynthetic
process, lignin catabolic process, cell wall biogenesis, and auxin polar transport (Figure 4e).
The 2636 DEGs between VarS and VarB were significantly annotated in plant hormone
signal transduction, starch and sucrose metabolism, the MAPK signaling pathway, fructose
and mannose metabolism, and the cell cycle and the photosynthesis pathway (Figure 4f).

GO and KEGG enrichment analyses were performed on the upregulated and down-
regulated DEGs (Figure 5). The biological processes in which the upregulated DEGs were
significantly enriched were carbohydrate metabolic process, photosynthesis, chlorophyll
biosynthetic process, starch biosynthetic process, xylan biosynthetic process, and lignin
catabolic process (Figure 5a). The upregulated DEGs were significantly enriched in the cell
cycle, carotenoid biosynthesis, starch and sucrose metabolism, photosynthesis, fructose
and mannose metabolism, fatty acid degradation, glycolysis/gluconeogenesis, and the
pentose phosphate pathway (Figure 5b). The biological processes in which the downregu-
lated DEGs were significantly enriched were the auxin-activated signaling pathway, lignin
catabolic process, cell wall biogenesis, photosynthesis, auxin polar transport, carbohydrate
transport and the cell wall (Figure 5c). The upregulated DEGs were significantly enriched
in the cell cycle, phenylpropanoid biosynthesis, starch and sucrose metabolism, circadian
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entrainment, photosynthesis, plant hormone signal transduction, the MAPK signaling
pathway, and the pentose phosphate pathway (Figure 5d).Genes 2025, 16, x FOR PEER REVIEW 7 of 17 
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3.4. Transcription Factor Analysis

A total of 2374 transcription factors, including the MYB, WRKY, NAC, AP2/ERF, C3H,
bHLH, B3, GRAS, HD-ZIP, and MADS families, were identified among the 7264 DEGs
(Figure 6a). Hierarchical clustering divided the transcription factors into four distinct
expression patterns (Figure 6b). Cluster 1 presented the lowest expression level in VarS
and the highest expression level in Nor. Cluster 2 presented the lowest expression level in
Nor and the highest expression level in VarS. Cluster 3 had the lowest expression levels
in Nor and VarS and the highest expression level in VarB. Cluster 4 presented the lowest
expression level in VarB and the highest expression levels in Nor and VarS. MYB and
WRKY accounted for the greatest proportion of genes in Cluster 1 (19.96% and 16.63%,
respectively) (Figure 6c). The highest proportions of WRKY and MYB in Cluster 2 were
17.49% and 14.75%, respectively. The highest proportions of MYB and NAC in Cluster 3
were 20.73% and 13.82%, respectively. The highest proportions of WRKY, B3, and MYB in
Cluster 4 were 25.86%, 16.38%, and 16.38%, respectively.
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Figure 6. (a) Percentage pie chart of differentially expressed transcription factors. (b) Line plot of
differentially expressed transcription factor expression patterns. (c) Percentages of TOP transcription
factors in different clusters.

3.5. Construction of a Weighted Gene Coexpression Network

Weighted gene coexpression network analysis (WGCNA) identified 7264 DEGs across
the materials, forming five coexpression modules using a β soft threshold of four (scale-free
R2 > 0.8). The dynamic cutting tree method was used to merge modules with similar
expression levels, and a total of five coexpression modules were obtained. The modules
were color-coded, with the green module highly correlated with VarB (r < −0.8, p < 0.05), the
turquoise module correlated with Nor (r > 0.8, p < 0.05), and the yellow module correlated
with VarS (r > 0.8, p < 0.05) (Figure 7a,b). Gene interaction networks were constructed
for the green, turquoise and yellow modules, identifying five hub genes per module. The
hub genes included Fh7g14500, Fh7g27780, Fh7g08370, Fh5g30470, and Fh2g29560 in the
green module (Figure 7c); Fh5g09930, Fh8g04820, Fh3g38720, Fh5g42590, and Fh5g09460 in
the turquoise module (Figure 7d); and Fh7g14670, Fh6g11380, Fh4g19990, Fh7g07360, and
Fh5g02470 in the yellow module (Figure 7e).

To further explain the relationships between the 15 hub genes and citrus leaf size, the
hub genes were aligned to the Arabidopsis genome (Genome version Araport11, https:
//www.arabidopsis.org/download/list?dir=Sequences/Araport11_blastsets (accessed on
3 March 2024)) using BLAST), and the functions of the hub genes were annotated on the
basis of homologous Arabidopsis genes (Table 1). Functional annotation revealed key roles
in the regulation of leaf size via the transcription factors Fh5g30470 (MYB), Fh7g07360
(AP2/ERF), and Fh5g02470 (SAP). The Arabidopsis homologous gene AT1G01520 of

https://www.arabidopsis.org/download/list?dir=Sequences/Araport11_blastsets
https://www.arabidopsis.org/download/list?dir=Sequences/Araport11_blastsets
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Fh5g30470 is involved in regulating circadian rhythm, the Arabidopsis homologous gene
AT2G46310 of Fh7g07360 is involved in regulating the development of cotyledons and
leaves, and the Arabidopsis homologous gene AT5G35770 of Fh5g02470 is involved in
regulating the development of inflorescences, flowers, and ovules. Fh7g14500 encodes an
ATP-binding cassette transporter protein (ABC) and is involved in regulating growth and
development. Fh7g27780 encodes Trichome birefringence-like (TBL), which is involved in
the synthesis and deposition of secondary wall cellulose. Fh7g08370 encodes the micro-
tubules required for immunity. Fh2g29560 encodes an ATP-binding cassette (ABC), which
mainly regulates growth and development. Fh5g09930 encodes the rRNA biogenesis RRP-
like protein (RRP), which is involved in rRNA processing and capping in the nucleus and
cytoplasm. Fh8g04820 encodes Arabidopsis thioredoxin M-type (ATM), which is involved
in activating the cell cycle and DNA damage repair. Fh3g38720 encodes AT-Hook-Like10
(AHL10), which is able to inhibit the maturation of the shoot apical meristem. Fh5g42590
encodes TATA-box binding protein associated factor (TAF), which plays a role in seed
development. Fh5g09460 encodes a growth-regulating factor (GRF), which plays a role
in leaf development. Fh7g14670 encodes purple acid phosphatase (PAP), which regulates
cell wall synthesis. Fh6g11380 encodes the aldo keto reductase superfamily (AKR4C),
which is involved in the photosynthesis process. Fh4g19990 encodes HtrA 1 (HTA1), which
responds to various adverse stimuli. In summary, we screened 15 candidate genes related
to citrus leaf size through RNA-seq analysis. The results provide a theoretical basis for a
deeper understanding of the molecular mechanism of citrus leaf size and offer new genetic
resources for the study of citrus leaf size.
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Table 1. Functional annotation and sources of candidate genes related to citrus leaf size.

Gene id Arabidopsis thaliana
Homologous Gene Gene Name Gene Annotation Source Leaf Phenotype

Fh7g14500 AT3G48770 ATP-binding cassette
transporter proteins (ABC)

Regulates growth and
development VarB larger leaves

Fh7g27780 AT1G60790 Trichome birefringence-like
(TBL)

Synthesis and deposition of
secondary wall cellulose VarB larger leaves

Fh7g08370 AT3G52900 RAB6-interacting golgin
(GORAB)

Microtubules required for
immunity VarB larger leaves

Fh5g30470 AT1G01520 Transcription Factor (MYB) Regulates circadian rhythms VarB larger leaves

Fh2g29560 AT1G30410 ATP-binding cassette (ABC) Regulates growth and
development VarB larger leaves

Fh5g09930 AT1G12650 rRNA biogenesis RRP-like
protein (RRP)

Processing and capping of
rRNA in the nucleus and

cytoplasm
Nor Normal leaves

Fh8g04820 AT2G15570 Arabidopsis thioredoxin
M-type (ATM)

Involved in activating the cell
cycle and DNA damage

repair
Nor Normal leaves

Fh3g38720 AT2G33620 AT-Hook-Like10 (AHL10) Can inhibit the maturation of
shoot apical meristems Nor Normal leaves

Fh5g42590 AT1G02680 TATA-box binding protein
associated factor (TAF)

Plays a role in seed
development Nor Normal leaves

Fh5g09460 AT2G36400 Growth-regulating factor (GRF) Plays a role in leaf
development Nor Normal leaves

Fh7g14670 AT5G23690 Purple acid phosphatase (PAPs) Regulates cell wall synthesis VarS smaller leaves

Fh6g11380 AT2G37770 Aldo keto reductase
superfamily (AKR4C) Participates in photosynthesis VarS smaller leaves

Fh4g19990 AT5G54640 HtrA 1 (HTA1) Response to various adverse
stimuli VarS smaller leaves

Fh7g07360 AT1G12980 Transcription Factor (AP2/ERF) Involved in regulating
embryogenesis VarS smaller leaves

Fh5g02470 AT5G35770 Stress-Associated Protein (SAP)
Regulates inflorescence,

flower and ovule
development

VarS smaller leaves

3.6. qRT-PCR

The expression patterns of the 15 hub genes in different materials were detected via
qRT-PCR (Figure 8). The expression levels of 10 genes (Fh7g14500, Fh7g27780, Fh7g08370,
Fh5g30470, Fh2g29560, Fh8g04820, Fh5g42590, Fh7g14670, Fh6g11380, and Fh7g07360) in
VarB and VarS were significantly lower than those in Nor. Among them, the expression
levels of five genes (Fh7g14500, Fh5g30470, Fh7g14670, Fh6g11380, and Fh7g07360) in VarS
were the lowest. Three genes (Fh5g09930, Fh3g38720, and Fh5g09460) were most highly
expressed in VarB, and two genes (Fh4g19990 and Fh5g02470) were most highly expressed
in VarS.

Genes 2025, 16, x FOR PEER REVIEW 12 of 17 
 

 

 

Figure 8. Analysis of hub gene expression patterns in different materials. (Error bars represent the 
mean ± SE of three replicates, * p < 0.05; ** p < 0.01). 

4. Discussion 
Leaves are vital for photosynthesis, serving as the primary location for this process 

and ranking among the essential photosynthetic organs in plants. The size of leaves di-
rectly affects the area of light received by the plant and thus has a direct effect on crop 
yield [35]. The yield of crops is generally affected by two factors, namely, the potential of 
the “source” and the size of the “sink” [36]. The main factor affecting the potential of the 
“source” is photosynthetic efficiency, whereas the main factors affecting the size of the 
“sink” include the shape of the panicle and the size of the grain or fruit [37]. Leaves are 
among the most important photosynthetic organs of plants and the most important 
“source” in the growth process of plants. Studies have shown that approximately 95% of 
the dry matter in crop production comes from photosynthetic products [38]. Flag leaves, 
second leaves and third leaves play vital roles in the yield of grass crops [39]. Rice flag leaf 
photosynthesis provides up to 60% of the carbohydrates needed for endosperm for-
mation. Studies on rapeseed have shown that adequate potassium nutrition can increase 
the photosynthetic rate by increasing the leaf area, thereby increasing crop yield [40]. 
CsRAXs regulate the content of free auxin in leaves through CsUGT74E2-mediated auxin 
glycosylation to regulate leaf size and stem thickness, thereby affecting cucumber yield 
[41]. In this study, transcriptome sequencing of leaves from ‘Cuimi’ kumquat (Nor) and 
two grafted materials with larger leaves (VarB) and smaller leaves (VarS) was performed. 
A total of 7264 DEGs were identified in the three materials, including 2374 transcription 
factors, and 254 genes were differentially expressed among the three materials. The DEGs 
were enriched in pathways related to sugar metabolism, cell wall composition, starch bi-
osynthesis, and photosynthesis. Weighted gene coexpression network analysis revealed 
15 candidate genes associated with citrus leaf size, including three encoded transcription 
factors: Fh5g30470 (MYB), Fh7g07360 (AP2/ERF), and Fh5g02470 (SAP). Relative to Nor, 
Fh7g14500 (FhABC) and Fh5g42590 (FhTAF) were downregulated in both VarB and VarS. 
Fh7g08370 (FhGORAB), Fh7g27780 (FhTBL), Fh2g29560 (FhABC), Fh7g14670 (FhPAPs), 
Fh6g11380 (FhAKR4C), and Fh7g07360 (FhAP2/ERF) were mildly downregulated in VarB 
and VarS. Fh5g30470 (FhMYB) was downregulated in VarB and VarS, but its expression 
level in VarS was lower than that in VarB. Fh5g09930 (FhRRP) is mildly downregulated in 
VarS but upregulated in VarB. Fh3g38720 (FhAHL10) and Fh5g09460 (FhGRF) were upreg-
ulated in VarB and VarS, but their expression levels in VarB were greater than those in 

Figure 8. Analysis of hub gene expression patterns in different materials. (Error bars represent the
mean ± SE of three replicates, * p < 0.05; ** p < 0.01).



Genes 2025, 16, 97 11 of 16

4. Discussion
Leaves are vital for photosynthesis, serving as the primary location for this process

and ranking among the essential photosynthetic organs in plants. The size of leaves directly
affects the area of light received by the plant and thus has a direct effect on crop yield [35].
The yield of crops is generally affected by two factors, namely, the potential of the “source”
and the size of the “sink” [36]. The main factor affecting the potential of the “source” is
photosynthetic efficiency, whereas the main factors affecting the size of the “sink” include
the shape of the panicle and the size of the grain or fruit [37]. Leaves are among the
most important photosynthetic organs of plants and the most important “source” in the
growth process of plants. Studies have shown that approximately 95% of the dry matter in
crop production comes from photosynthetic products [38]. Flag leaves, second leaves and
third leaves play vital roles in the yield of grass crops [39]. Rice flag leaf photosynthesis
provides up to 60% of the carbohydrates needed for endosperm formation. Studies on
rapeseed have shown that adequate potassium nutrition can increase the photosynthetic
rate by increasing the leaf area, thereby increasing crop yield [40]. CsRAXs regulate
the content of free auxin in leaves through CsUGT74E2-mediated auxin glycosylation to
regulate leaf size and stem thickness, thereby affecting cucumber yield [41]. In this study,
transcriptome sequencing of leaves from ‘Cuimi’ kumquat (Nor) and two grafted materials
with larger leaves (VarB) and smaller leaves (VarS) was performed. A total of 7264 DEGs
were identified in the three materials, including 2374 transcription factors, and 254 genes
were differentially expressed among the three materials. The DEGs were enriched in
pathways related to sugar metabolism, cell wall composition, starch biosynthesis, and
photosynthesis. Weighted gene coexpression network analysis revealed 15 candidate genes
associated with citrus leaf size, including three encoded transcription factors: Fh5g30470
(MYB), Fh7g07360 (AP2/ERF), and Fh5g02470 (SAP). Relative to Nor, Fh7g14500 (FhABC)
and Fh5g42590 (FhTAF) were downregulated in both VarB and VarS. Fh7g08370 (FhGORAB),
Fh7g27780 (FhTBL), Fh2g29560 (FhABC), Fh7g14670 (FhPAPs), Fh6g11380 (FhAKR4C), and
Fh7g07360 (FhAP2/ERF) were mildly downregulated in VarB and VarS. Fh5g30470 (FhMYB)
was downregulated in VarB and VarS, but its expression level in VarS was lower than that
in VarB. Fh5g09930 (FhRRP) is mildly downregulated in VarS but upregulated in VarB.
Fh3g38720 (FhAHL10) and Fh5g09460 (FhGRF) were upregulated in VarB and VarS, but their
expression levels in VarB were greater than those in VarS. Fh4g19990 (FhHTA1) is mildly
downregulated in VarB but upregulated in VarS. Fh5g02470 (FhSAP) was upregulated in
VarB and VarS, but its expression level in VarS was greater than that in VarB. Fh5g09930
(FhRRP) had the highest expression level in VarB, the middle expression level in Nor, and
the lowest expression level in VarS, indicating that Fh5g09930 (FhRRP) may be a positive
regulator of citrus leaf size. Fh4g19990 (FhHTA1) had the lowest expression level in VarB,
the middle expression level in Nor, and the highest expression level in VarS, indicating that
Fh4g19990 (FhHTA1) may be a negative regulator of citrus leaf size. Although Fh5g09460
(FhGRF) and Fh7g07360 (FhAP2/ERF) presented the highest or lowest expression levels in
Nor, their expression levels were consistent with the phenotypes of different leaf sizes, and
these genes could also be used as important candidate genes for the positive regulation of
citrus leaf size. Further evaluations of these findings are undoubtedly the goal of future
functional genomics research.

Sugar metabolism is an important biochemical process in plant leaves and plays an
important role in plant leaf development, providing energy and carbon for construction,
growth and the maintenance of physiological metabolism [42]. Sugars promote cell wall
synthesis and influence cell wall plasticity and relaxation, impacting leaf expansion and
growth [43]. Moreover, sugars can also regulate the plasticity and relaxation of the cell wall,
affecting the expansion and growth of leaves. Sugar metabolism plays an important role in
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chloroplast development and chlorophyll synthesis [44]. Chloroplasts are the main site of
photosynthesis, and they need to synthesize and accumulate enough chlorophyll to effec-
tively absorb light energy. Sugars, as the main source of glucose and other sugars, provide
energy and carbon sources and affect the formation and function of chloroplasts [45]. Pho-
tosynthesis, which converts light energy into chemical energy and synthesizes sugars and
other organic substances, is an important process that occurs in leaves. Sugar metabolism
regulates the distribution of photosynthetic products to different target organs, such as
leaves, stems, and roots [46]. This distribution determines the direction and process of plant
growth. Through enrichment analysis of the 2636 DEGs between VarS and VarB revealed
in this study, we also identified pathways such as sugar metabolism, cell wall composi-
tion, starch biosynthesis, glycolysis/gluconeogenesis, starch and sucrose metabolism, the
pentose phosphate pathway, and photosynthesis pathways. Eight of the fifteen candidate
genes (Fh2g29560 (FhABC), Fh3g38720 (FhAHL10), Fh5g02470 (FhSAP), Fh5g09460 (FhGRF),
Fh6g11380 (FhAKR4C), Fh7g14500 (FhABC), Fh7g14670 (FhPAPs), and Fh7g27780 (FhTBL))
were significantly enriched in these pathways.

The cell cycle was also significantly enriched in the enrichment analysis. Studies have
shown that during leaf development, the regulation of the cell cycle also plays an important
role in the proliferation and expansion of leaves [47]. During the formation and growth of
leaves, the number of cells must increase through cell division [48]. The G1 phase of the cell
cycle is a key stage for cell proliferation [49]. During the G1 phase, cells obtain sufficient
nutrients and growth conditions to prepare for subsequent cell division. Cells also need to
expand by increasing their volume. The G2 phase of the cell cycle is a key stage for cell
expansion, as it is the transition between cell enlargement and cell proliferation [50]. During
the G2 phase, cells continue to synthesize proteins and accumulate sufficient organelles and
cytoplasm to provide a sufficient material basis for cell division [51]. The control of the cell
cycle determines when cells stop proliferating and begin to differentiate [52]. Some studies
have shown that changes in the expression profiles of cell cycle proteins and cell cycle
regulatory genes during leaf development are closely related to cell differentiation [53].
The cell cycle is also closely related to leaf development. Different stages of the cell cycle
provide leaves with the regulatory mechanisms required for cell proliferation, expansion
and differentiation. The study of DEGs during the cell cycle helps us better understand
the molecular mechanism of citrus leaf development. Notably, we also discovered that
Fh5g30470 (FhMYB) and Fh8g04820 (FhATM) are candidate genes that are involved in
regulating plant growth and development and the cell cycle.

The AP2/ERF family of genes comprises unique transcription factors found in plants.
These genes play key roles in plant growth, hormone-induced development, the ethylene
response, and the stress response [54]. Some members of this family also play important
roles in leaf development and can regulate leaf cell proliferation and expansion, thereby
affecting leaf size. AP2/ERF transcription factors can indirectly affect leaf size by regulating
the expression of cell cycle proteins, affecting the cell division rate and cell proliferation [55].
They can also affect the regulation of cell wall biosynthesis and metabolic pathways, thereby
indirectly affecting the expansion process of cells and influencing leaf size [54]. Light
signals are important regulatory factors in plant leaf development, and some AP2/ERF
transcription factors can act as key molecules that mediate light signal transduction and
affect leaf size. In addition, some members of the AP2/ERF family can also regulate the
expression of other genes related to leaf size, such as those involved in the regulation of key
processes such as chloroplast development and chlorophyll synthesis, thereby affecting
leaf size. In Liriodendron chinense, three AP2/ERF transcription factors (LcERF94, LcERF96,
and LcERF98) are associated with early leaf development and morphogenesis, with high
expression levels in both the SAM and leaf primordia [56]. In A. thaliana and tobacco,
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overexpression of the AP2/ERF transcription factor BOLITA (BOL) leads to reductions
in cell size and number, resulting in smaller leaves [57]. In addition, SsAP2/ERFs are
widely expressed in the leaves of mature sugarcane, indicating that they play important
roles in the growth and development of sugarcane [58]. We identified a candidate gene,
Fh7g07360 (FhAP2/ERF), encoding an AP2/ERF transcription factor whose homologous
gene in A. thaliana is involved in regulating the development of cotyledons and leaves. In
summary, the pathways and candidate genes we identified can serve as the focus of citrus
leaf development research and provide important information for subsequent studies.

5. Conclusions
In this study, we performed transcriptome sequencing on the leaves of ‘Cuimi’

kumquat (Nor) and two leaf variants, namely, one with larger leaves (VarB) and one
with smaller leaves (VarS). We defined several important regulatory pathways involved
in citrus leaf development by identifying DEGs and differentially regulated transcription
factors among the materials. In addition, we screened 15 candidate genes related to citrus
leaf development through WGCNA, which included three transcription factors. However,
the exact roles of these genes in citrus leaf development remain to be determined. Our
results provide a theoretical basis for a deeper understanding of the molecular mechanism
of citrus leaf development and offer new genetic resources for citrus leaf research.
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