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Abstract: Background: Buffaloes are considered an indispensable genetic resource for
dairy production. However, improvements in lactation performance have been relatively
limited. Advances in sequencing technology, combined with genome-wide association
studies, have facilitated the breeding of high-quality buffalo. Methods: We conducted an
integrated analysis of genomic sequencing data from 120 water buffalo, the high-quality
water buffalo genome assembly designated as UOA_WB_1, and milk production traits,
including 305-day milk yield (MY), peak milk yield (PM), total protein yield (PY), protein
percentage (PP), fat percentage (FP), and total milk fat yield (FY). Results: The results
identified 56 significant SNPs, and based on these markers, 54 candidate genes were
selected. These candidate genes were significantly enriched in lactation-related pathways,
such as the cAMP signaling pathway (ABCC4), TGF-β signaling pathway (LEFTY2), Wnt
signaling pathway (CAMK2D), and metabolic pathways (DGAT1). Conclusions: These
candidate genes (e.g., ABCC4, LEFTY2, CAMK2D, DGAT1) provide a substantial theoretical
foundation for molecular breeding to enhance milk production in buffaloes.

Keywords: buffalo; milk production traits; genome-wide association study

1. Introduction
Water buffaloes hold immense significance in the dual domains of meat and milk

production, with their milk making a considerable contribution to the global dairy sector.
Specifically, buffalo milk accounts for an impressive share of over 15% of the global milk
yield, underscoring the essential role of this species in the global dairy industry. This statis-
tic highlights the importance of focusing on the welfare, productivity, and reproductive
efficiency of buffaloes to ensure the continued growth and sustainability of this critical
livestock sector [1]. Buffalo milk is distinguished by its elevated levels of fat, protein, and
minerals when compared to cattle milk, which contributes to its nutritional superiority and
economic value. This nutritional profile is a key factor in the greater prevalence of buffaloes
in Asia, where they outnumber many other livestock species. The unique composition
of buffalo milk not only enhances its suitability for dairy products but also reinforces the
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strategic importance of buffaloes in the agricultural economies of the region [2]. Further-
more, buffalo milk stands out in the market with economic significance, often fetching
a price that is double that of bovine milk, reflecting its exceptional value. This distinct
pricing advantage underscores the commercial viability of buffalo milk and its pivotal role
in supporting the livelihoods and regional economies, distinguishing it from conventional
milk sources. The premium price tag underscores the premium nutritional content and
the potential for higher-quality dairy products derived from buffalo milk [3]. However,
when it comes to average milk production, even the most productive buffalo breeds yield
significantly less than Holstein cows, as evidenced by tests conducted on milk yields. This
discrepancy highlights the substantial difference in milk-producing capabilities between
the two species [4]. Indeed, increasing buffalo milk production while simultaneously
improving its quality is a vital goal for fully realizing the economic potential of the buffalo
milk industry. This objective, if achieved, would bring about significant benefits for the
industry, making it an essential area of focus for researchers, farmers, and stakeholders.

Due to a variety of factors, including unstable estrus conditions and protracted calving
intervals, traditional breeding methods for buffaloes pose significant challenges. These
factors complicate the breeding process and necessitate innovative approaches to enhance
the efficiency and success of buffalo reproduction [5]. Modern genetic technologies have in-
troduced novel strategies for buffalo breeding, potentially simplifying the process. Among
the various genetic variations, SNPs represent the most fundamental and prevalent form.
Whole-genome sequencing is a powerful technique that enables the identification of genetic
variations across the entire genome of an organism. This approach not only provides
insights into the intrinsic genomic information but also plays a pivotal role in the study of
human diseases, as well as in the breeding of crops and livestock [6]. Whole-genome associa-
tion analysis serves as a potent tool for investigating complex genetic traits and pinpointing
candidate genes. By scrutinizing genetic variations and polymorphisms throughout the
entire genome, this method facilitates the identification of genomic regions and genes po-
tentially associated with the traits of interest [7]. Globally, in previous years, several studies
were conducted which analyzed the correlation between SNPs and milk production traits.
In their study, Islam et al. [8] embarked on a comprehensive genome-wide association
analysis involving 167 buffalo individuals, with the primary objective of discovering novel
candidate genes linked to traits such as body weight and production performance. This
analysis aimed to shed light on the genetic underpinnings of these economically important
characteristics. The study employed the 90K Axiom Buffalo SNP Array to detect SNPs
within a range of 2000 base pairs upstream of the buffalo FABP gene [9]. They identified
SNP sites within a specific region and performed an association analysis to examine the
relationship between these SNPs and various milk-related traits. Despite the increasing
interest in the application of whole-genome association analysis in studying milk-related
traits in water buffaloes, the number of studies conducted in this area remains limited when
compared to the extensive body of research in cattle. This highlights the need for further
investigation in this field to deepen our understanding of the genetic factors underlying
milk production in water buffaloes.

The primary objective of this study was to identify key factors that influence lactation
performance in water buffaloes, offering a new approach to enhancing breeding programs
for improved milk production. By understanding these factors, we aim to provide valuable
insights that will guide our future research and contribute to the development of more
effective breeding strategies.
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2. Materials and Methods
2.1. Ethics Statement

All finished work was conducted in accordance with national and international guide-
lines. The protocol for this study was approved by the Attitude of the Animal Care & Welfare
Committee of the Guangxi Buffalo Research Institute (Approval Code: GXU2019-021).

2.2. Phenotypes and Animal Resources

The data for this study were collected from 120 water buffaloes, comprising 1 local
Poyanghu water buffalo (DB), 46 hybrid water buffaloes (ZBs), 31 Murrah water buffaloes
(MBs), and 42 Nili-Ravi water buffaloes (NBs), summing up to a total of 120. Among
them, the hybrid water buffaloes are the offspring of more water buffaloes and local water
buffaloes. These water buffaloes were born between the years 2000 and 2021. They were
fed at the farm of Guangxi Buffalo Research Institute during the dry season from April to
September. All records related to milk production are collected when all the water buffaloes
are in their second calving. The initial test-day milk measurement is conducted from 5
to 70 days post-calving. The target traits of this study are 305-day milk yield (MY), peak
milk yield (PM), total protein yield (PY), total milk fat yield (FY), fat percentage (FP), and
protein percentage (PP). The calculation methods for PP and FP are as follows:

FP =
FY
MY

PP =
PY
MY

2.3. Sample Collection and Sequencing

Blood samples from water buffalo were obtained through tail vein puncture utilizing
a vacuum blood collector. The genomic DNA was extracted from the blood using the
phenol/chloroform method, and its integrity and yield were evaluated via agarose gel
electrophoresis. The DNA libraries were sequenced on the Illumina sequencing platform
(Illumina HiSeqTM 2000) by Genedenovo Biotechnology Co., Ltd. (Guangzhou, China).

2.4. Alignments and Variant Identification

The clean reads were aligned to the reference genome (UOA_WB_1) using BWA-MEM
(v0.7.17) with default settings [10]. Then, Samtools (v1.9), Picard tools (v3.1.1), and GATK
(v4.0) were used for SNP detection [11,12]. All detected SNPs underwent filtering through
the “Variant Filtration” module of GATK, using the following standard parameters: variants
with Quality Depth (QD) < 2; FS (Phred-scaled p-value using Fisher’s exact test for strand
bias detection) > 60; MQRankSum (Z-score of the rank sum of the Phred-scaled mapping
qualities) < −12.5; ReadPosRankSum (Z-score of the rank sum of the Phred-scaled position
bias estimations) < −8; MQ (root mean square of the mapping quality) < 40.0; the mean
sequencing depth of variants (across all individuals) was limited to less than 1/3× and
more than 3×; SOR (strand odds ratio) > 3.0; the maximum missing rate was less than 0.1;
and SNPs were limited to two alleles.

2.5. Variation Filtering

The presence of rare alleles (alleles with low frequency within the population), high
rates of missing data, and substantial heterozygosity at specific loci can introduce anomalies
in population analysis and whole-genome association studies. Therefore, we aligned the
processed reads to the reference genome (UOA_WB_1). Subsequently, we employed the
PLINK (v1.9) software to filter the detected loci based on standard criteria [13]. The
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filtering process involved stringent adherence to several criteria: exclusion of non-biallelic
SNPs, removal of those with a minor allele frequency below 0.05, discarding SNPs with
a missing genotype rate exceeding 20%, and further limiting the analysis to SNPs with
a heterozygosity ratio below the threshold of 0.8. This was all executed using the robust
PLINK (v1.9) software.

2.6. Principal Component Analysis

GCTA (v1.92.2) is a robust tool for the analysis of whole-genome complex traits [14].
In this study, we utilized the GCTA (v1.92.2) and PLINK (v1.9) software to perform PCA
(principal component analysis) using the selected SNP markers. This analysis enabled us to
derive the variance accounted for by each PC (principal component) and the score matrix
representing the samples’ positions within each PC.

2.7. Population Structure Analysis

Population structure analysis offers valuable insights into the ancestry and composi-
tion of individuals, rendering it an exceptionally effective approach for elucidating genetic
relationships. To validate the outcomes of PCA, we performed population structure analy-
sis. Model-based population structure inference methods typically assume that the markers
utilized for analysis are independent of one another. Consequently, prior to initiating the
analysis, it is essential to execute marker independence filtering, which is based on the
assessment of linkage disequilibrium between markers. In this analysis, we utilized the
PLINK (v1.9) and Admixture software (v1.3) to perform marker filtering for population
structure analysis. In our analysis, we implemented a 100 kb step size and a 10 nucleotide
(nt) window size, and we removed one marker from each pair of markers with an r2 value
greater than 0.2. Specifically, we removed the marker with the higher physical position
from each pair of markers with a high degree of linkage disequilibrium. As a result of
implementing the aforementioned filtering strategy, we retained a total of 99,261 markers
for the population structure analysis. Utilizing the filtered SNP markers, we conducted a
principal component analysis (PCA) using PLINK to investigate the population structure
and clustering patterns. The PCA results were visualized to illustrate the relationships
among the first three principal components, providing insights into the genetic diversity
and relatedness within the population. Additionally, we employed the Admixture software
(v1.3) to perform an in-depth analysis of population structure, estimating the proportion of
ancestry from K ancestral populations and identifying subpopulations within the dataset.
In our analysis, we explored the cross-validation (CV) error for various k-values using
the Admixture software (v1.3), ranging from 2 to 9. We utilized the PopHelper software
(v2.2.7) [15] to generate bar plots illustrating the genetic composition of each sample within
every subgroup. By systematically testing these k-value hypotheses, we aimed to identify
the optimal number of clusters that would provide the most meaningful and informative
partitioning of the studied populations.

2.8. Genome-Wide Association Mapping

Our research focused on six primary dairy production traits: MY, PM, PY, FY, PP, and
FP. By employing the TASSEL software (v5.2.54) [16], we executed the widely used General
Linear Model (GLM) (Q) for genome-wide association studies. After Bonferroni correction,
sites with p-values less than the given threshold 0.05/N (number of SNP) were selected as
significant sites. SNPs with p-values below this threshold were considered highly significant
and selected for further analysis. Subsequently, these SNPs were compared against the
reference genome to pinpoint candidate genes for further investigation. It is anticipated
that the identification of these genes will significantly contribute to a breeding program for
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buffaloes, leading to enhancements in both milk production quantity and the quality of
buffalo dairy products.

Generalized Linear Models are a widely employed and versatile statistical method
for data analysis [17]. In the present study, we utilized Generalized Linear Models for
conducting a genome-wide association analysis. The GLM (Q) analysis model is expressed
as follows:

y = Xα + Qβ + cP + e

In this formula, y is the vector of phenotypes, X is the genotype matrix, α is the
vector of genotype effects, P is the PCA variance_explained matrix, c is the vector of
PCA variance effects, e is the vector of residual effects, and Q refers to the fixed-effect
matrix, which represents calf gender, calving year, and herds. The outcomes are presented
through Manhattan plots and Q-Q plots. SNPs exhibiting p-values below the specified
threshold 0.05/N (number of SNP) are identified as highly significant SNPs. When a
reference genome is available, candidate genes are determined by including those genes
that are physically positioned within a 50 kb genomic region surrounding the significant
SNPs. DbSNP [18] is a database specifically designed by NCBI to store genetic variation
information. We use dbSNP to determine whether the SNPs we have identified are located
in the coding regions of genes.

2.9. Pathway Enrichment and Protein–Protein Interaction

Genes often work in concert to perform specific biological functions. Pathway-based
analysis is a valuable approach for understanding the roles of genes in these complex
processes. The KEGG (Kyoto Encyclopedia of Genes and Genomes) database [19] stands
as one of the foremost publicly accessible resources for pathway-related data. To iden-
tify significantly enriched metabolic and signal transduction pathways among CAGs
(Candidate-Associated Genes) relative to the entire genome context, pathway enrichment
analysis was performed. The method for calculating enrichment is consistent with that
employed in Gene Ontology (GO) [20] analysis:

P = 1 −
m−1

∑
i=0

(M
i )(

N−M
n−i )

(N
n )

In this context, N signifies the total count of genes with KEGG annotations, while n
denotes the number of CAGs within N. M represents the total number of genes annotated
to particular pathways, and m is the number of CAGs in M. Following the calculation of the
p-value, it was corrected using False Discovery Rate (FDR) adjustment, with an FDR value
of 0.05 or less being set as the threshold. Pathways that meet this criterion are categorized
as significantly enriched pathways in CAGs. Finally, we utilize the String database to
identify genes that are significantly represented in pathways and create a protein–protein
interaction map. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) analyses were performed using the OmicShare tools, a free online platform for
data analysis (http://www.omicshare.com/tools, accessed on 9 January 2025).

2.10. Statistical Analysis

In the analysis of trait correlations, we used Pearson’s correlation coefficient to quantify
the linear relationships between different traits. The Pearson’s correlation coefficient ranges
from −1 to 1, where values close to 1 indicate a strong positive correlation, values close
to −1 indicate a strong negative correlation, and values around 0 indicate no significant
correlation. Statistical analyses were performed using the SPSS 18.0 software package (SPSS
Science, Chicago, IL, USA). Experimental data were subjected to t-test and ANOVA analyses,

http://www.omicshare.com/tools
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with a significance threshold set at p < 0.05. Graphs were generated using GraphPad
Prism 8 software (GraphPad, Santiago, MN, USA). Data are presented as mean ± standard
deviation (SD).

3. Results
3.1. Phenotypic Value Statistics of the Traits

During the phenotypic evaluation of buffalo. We carried out MY, PM, PY, PP, FP, and
FY phenotypic value analysis.

For milk production traits, the mean value of MY was recorded as 2321.3 kg, while
the mean value of PM was measured as 11.4 kg. The mean value of FY was recorded as
116.1 kg, while the mean value of PY was measured as 80.8 kg. The average protein and
fat percentages in our population were 4.8% and 5.2%, respectively. The phenotypic data
statistics are presented in Table 1.

Table 1. Statistical description of lactation traits *.

Traits Mean SD Min Max

MY 2321.3 861.8 480.8 5185.3
PM 11.4 4.8 2.7 24.4
PY 80.8 41.2 4.0 275.8
FY 116.1 57.9 5.0 363.3
PP 4.8 0.4 4.4 5.8
FP 5.2 0.8 3.7 8.9

* MY, milk yield; PM, peak milk yield; PY, protein yield; FY, fat yield; PP, protein percentage; FP, fat percentage;
SD, standard deviation.

Through the correlation analysis of various lactation traits, it was found that the corre-
lation between total protein yield (PY) and total milk fat yield (FY) is the highest, reaching
above 0.9 (Figure 1). This strong positive correlation suggests a significant relationship
between the production of protein and fat in milk, indicating that these two components
tend to vary together in response to genetic or environmental factors.
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In this study, a comprehensive analysis of genome-wide variations led to the identifi-
cation of 2,208,174 genetic markers. Among the detected genetic markers, 2,012,270 were
identified as SNPs and 195,904 were classified as insertion–deletion (Indel) variants. Fol-
lowing stringent filtering criteria, a refined set of 99,261 markers was retained, comprising
93,494 SNPs and 5767 Indels.

3.2. Population Structure

Upon obtaining PCA scores, the samples under investigation can be visualized via a
scatter plot that utilizes the values of the first three principal components as axes. Referring
to Figure 2, in scatter plots Figure 2A, it is evident that the majority of individuals within
herds MB and NB are distinctly isolated from one another. In the scatter plot in Figure 2B,
we can observe clustering, particularly in groups MB and ZB, where these two clusters
overlap and are closely grouped together in multiple instances. In Figure 2A,C, it is evident
that the herds are broadly segregated into three distinct clusters. One cluster predominantly
consists of NB herds, whereas the other two clusters are primarily composed of MB, ZB,
and DB herds, respectively.
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To establish the optimal number of clusters (k), we used the Admixture software and
evaluated cross-validation error rates. The Admixture algorithm performs model-based
clustering and estimates the proportion of ancestry from K ancestral populations. By
minimizing the cross-validation error rates, we identified the value of k = 3 that best fits
our data. Figure 3 displays the line graph depicting the cross-validation error rate.
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To simulate the population classification and genetic ancestry of each sample across
varying numbers of subgroups (K = 2–9), we utilized the PopHelper software (v2.2.7) [15]
to generate bar plots illustrating the genetic composition of each sample within every
subgroup. The results are presented in Figure 4, where each color corresponds to a distinct
cluster for each K-value. From the line graph of the cross-validation error rate, it is evident
that the optimal number of clusters is K = 3. Similarly, as observed in the bar graph (Figure 3)
depicting the genetic composition of the samples, when K = 3, it is the optimal number of
clusters for these 120 buffaloes. This finding is consistent with the results obtained from
the PCA. Consequently, we conclude that these 120 buffaloes can be effectively divided
into three distinct subgroups.
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3.3. Results of the Genome-Wide Associations

Following the calculation of p-values for the SNP loci using a Generalized Linear
Model, we constructed a Manhattan plot and a Q-Q plot, as presented in Figure 5.
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Figure 5. Association analysis with milk production-related traits in water buffalo was conducted
using the GLM-Q approach. The traits investigated include MY (A), PM (B), PY (C), FY (D), PP (E),
and FP (F). The Manhattan plot on the left, created using the qqman package, illustrates the p-values
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for SNP markers across 25 chromosomes (comprising 24 autosomes and 1 X chromosome). The
blue line delineating the Manhattan plot signifies the significance threshold, determined by 0.05/N
(number of SNP). Markers that surpass this threshold are deemed significant. The plot on the right is
a Q-Q plot, where the x-axis denotes the observed values of the markers, and the y-axis represents
the expected values, which have been transformed into the −10 log scale.

The leftmost plot is a Manhattan plot, where the visually discernible blue line, running
parallel to the x-axis, serves as the critical demarcation line. In the Manhattan plot, the
points that rise above the threshold line, which is the blue line paralleling the x-axis, signify
significant loci. Upon identifying the significant loci that surpass the threshold line in
the Manhattan plot, the subsequent step involves documenting the relevant information
pertaining to these significant loci.

The plot on the right is the Q-Q plot, where the points in the bottom left corner fall
along the line, suggesting that the observed p-values align closely with the expected values.
The points exhibit a distinct upward deviation from the diagonal in the upper right corner,
which signifies that the observed p-values exceed the anticipated values. The presence of
these points, which denote significant loci, across all four plots underscores the validity of
the analytical model, suggesting its appropriateness in capturing the underlying patterns.
Following this, the genes situated within a 50 kb range of the significant loci are carefully
selected and earmarked as candidate genes.

In our GWAS, we have identified a large number of SNPs associated with FY and PY
(Figure 5). We identified 56 statistically significant SNPs and 54 candidate genes within a
50 Kb range surrounding these loci that were associated with the traits MY, PY, PP, FP, and
FY (Table 2).

Table 2. The SNPs identified via genome-wide association analysis encompass detailed information
regarding their chromosomal locations, p-values, and associated candidate genes.

Traits SNP Chr Pos p R2 Candidate Genes

MY 1 NC_037552.1 110795896 4.3 × 10−7 0.39 CNTNAP2
PY 2 NC_037545.1 45287655 4.01 × 10−7 0.36 --
PY 3 NC_037545.1 45287667 4.01 × 10−7 0.36 --
PY 4 NC_037545.1 45287677 4.01 × 10−7 0.36 --
PY 5 NC_037545.1 45287689 4.01 × 10−7 0.36 --
PY 6 NC_037545.1 155842848 6.41 × 10−7 0.43 KCNAB1
PY 7 NC_037546.1 174939089 1.82 × 10−7 0.37 TINAGL1; AZIN2
PY 8 NC_037547.1 10261615 8.43 × 10−8 0.35 RBFOX3
PY 9 NC_037548.1 58828968 3.56 × 10−7 0.33 NEDD1
PY 10 NC_037548.1 97643871 9.64 × 10−8 0.369 EEA1; PLEKHG7
PY 11 NC_037549.1 52254091 4.08 × 10−7 0.31 LEFTY2; PYCR2; -

PY 12 NC_037549.1 122104312 8.972 × 10−8 0.41
DOC2G; NUDT8; TBX10; ALDH3B1;

UNC93B1; ALDH3B1; NDUFS8;
TCIRG1

PY 13 NC_037550.1 7990287 2.51 × 10−7 0.34 CFAP126; SDHC

PY 14 NC_037550.1 109178670 1.5 × 10−9 0.48 MAP7D1; TRAPPC3; COL8A;
ADPRHL2; TEKT2

PY 15 NC_037551.1 62424439 7.20 × 10−11 0.54 --
PY 16 NC_037551.1 87385802 1.7 × 10−9 0.43 CAMK2D
PY 17 NC_037552.1 119759448 4.64 × 10−7 0.30 USP17L13
PY 18 NC_037556.1 9792358 3.18 × 10−7 0.36 --
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Table 2. Cont.

Traits SNP Chr Pos p R2 Candidate Genes

PY 19 NC_037557.1 18868198 1.71 × 10−7 0.34 ABCC4
PY 20 NC_037557.1 18868200 1.72 × 10−7 0.34 ABCC4
PY 21 NC_037557.1 18868226 1.71 × 10−7 0.34 ABCC4
PY 22 NC_037557.1 18868442 2.02 × 10−7 0.34 ABCC4
PY 23 NC_037557.1 18868443 2.02 × 10−7 0.34 ABCC4
PY 24 NC_037557.1 18868449 2.02 × 10−7 0.34 ABCC4
PY 25 NC_037557.1 18868500 1.71 × 10−7 0.34 ABCC4
PY 26 NC_037557.1 18868507 1.71 × 10−7 0.34 ABCC4
PY 27 NC_037557.1 18868523 1.71 × 10−7 0.34 ABCC4
PY 28 NC_037560.1 28753781 9.90 × 10−8 0.40 GUCY2D; LRRC32

PY 29 NC_037560.1 35600620 3.36 × 10−8 0.40 OR52Z1; OR51V1; OR51V1;
OR52A5; OR52K1; OR52K1

PY 30 NC_037560.1 60745000 4.5 × 10−10 0.44 TMPRSS5
PY 31 NC_037560.1 74611905 1.48 × 10−8 0.38 CNTN5
PY 32 NC_037562.1 12469915 1.04 × 10−8 0.43 --
PY 33 NC_037564.1 56654985 8.12 × 10−8 0.39 --
PY 34 NC_037564.1 56655021 8.12 × 10−8 0.39 --
PY 35 NC_037565.1 13765148 1.19 × 10−7 0.37 CTNNB1
PY 36 NC_037566.1 61557795 1.04 × 10−7 0.37 KCNG2; PQLC1; TXNL4A; YVCT
PY 37 NC_037567.1 17641416 1.31 × 10−8 0.39 TLL2; TM9SF3
PY 38 NC_037567.1 17641470 1.91 × 10−8 0.39 TLL2; TM9SF3
PY 39 NC_037567.1 17641671 1.31 × 10−8 0.39 TLL2; TM9SF3
PY 40 NC_037567.1 44281645 8.32 × 10−8 0.34 --

FY 41 NC_037550.1 109178670 8.94 × 10−8 0.37 MAP7D1; TRAPPC3; COL8A;
ADPRHL2; TEKT2

FY 42 NC_037551.1 62424439 1.7 × 10−8 0.42 --
FY 43 NC_037557.1 18651732 2.48 × 10−7 0.32 ABCC4
FY 44 NC_037560.1 60745000 4.44 × 10−7 0.32 TMPRSS5
FY 45 NC_037560.1 74050792 3.67 × 10−7 0.36 --
PP 46 NC_037556.1 50669172 3.34 × 10−8 0.43 --
FP 47 NC_037545.1 35877328 4.11 × 10−7 0.30 --
FP 48 NC_037546.1 6705158 3.44 × 10−7 0.27 --
FP 49 NC_037548.1 4405934 6.25 × 10−8 0.33 FAM118A; UPK3A; KIAA0930
FP 50 NC_037552.1 24460 6.65 × 10−8 0.29 --
FP 51 NC_037552.1 112491377 3.27 × 10−8 0.32 ZNF777; ZNF746
FP 52 NC_037552.1 113607118 2.36 × 10−8 0.33 ABCB8; ASIC3
FP 53 NC_037555.1 29774524 2.45 × 10−7 0.28 PRKCH
FP 54 NC_037559.1 81684074 5.71 × 10−8 0.32 DGAT1; HSF1
FP 55 NC_037564.1 36725181 9.35 × 10−8 0.31 LINGO1
FP 56 NC_037569.1 5832499 2.09 × 10−8 0.35 KAL1

3.4. Kyoto Encyclopedia of Genes and Genomes Pathway Analysis of Candidate Genes

GO and KEGG analyses were conducted to examine the functional pathways for
DEGs. The top 20 GO terms, classified by –log10 (p-value), were significantly enriched in
candidate genes compared to the genome background GO. The top 20 GO terms included
eight biological processes (BPs), a cellular component (CC) and one molecular function (MF).
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The BP terms were enriched in growth (GO:004007), developmental processes (GO:0032502),
cellular processes (GO:0009987), metabolic processes (GO:0008152), and cellular component
organization or biogenesis (GO:0071840) (Figure 6A, Supplementary Table S1).
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Figure 6. GO and KEGG analysis of candidate genes. (A) GO bar plot diagram showing the top
20 enriched GO terms. GO categories, including cellular component, biological process, and molecular
function. (B) The enrichment circle diagram shows the KEGG analysis of the top 20 pathways. Four circles
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from the outside to the inside. First circle: the classification of enrichment; outside the circle is the
scale of the number of genes. Different colors represent different categories. Second circle: number
and p-values of the classification in the background genes. The more genes, the longer the bars; the
smaller the value, the redder the color. Third circle: bar chart of the total number of candidate genes.
Fourth circle: rich factor value of each classification (number of candidate genes in this classification
divided by the number of background genes). Each cell of the background helper line represents 0.1,
and the color coding signifies the statistical significance of the corresponding enrichment.

The functional enrichment cycle diagram displays the top 20 KEGG pathways
(Figure 6B, Supplementary Tables S2 and S3), classified by –log10 (p-value), which reveals
that the candidate genes were mainly enriched in five KEGG_A_class pathways, including
metabolism, environmental information processing, cellular processes, organismal systems,
and human diseases. Among these pathways, environmental information processing in-
cluded ABC transporters (ko02010), the cAMP signaling pathway (ko04024), the TGF-β sig-
naling pathway (ko04350), and the wnt signaling pathway (ko04310); metabolism included
arginine and proline metabolism (ko00330) and phenylalanine metabolism (ko00360);
biosynthesis of amino acids (ko01230) and metabolic pathways was involved (ko01100);
and cellular processes included signaling pathways regulating pluripotency of stem cells
(ko04550). In conclusion, our data suggest that the identified candidate genes play a cru-
cial role in regulating lactation performance, particularly in terms of milk fat yield (FY),
protein percentage(PP), fat percentage (FP), and protein yield (PY), by modulating the
tgf-β signaling pathway, wnt signaling pathway, metabolic pathways, and cAMP signaling
pathway. These findings provide valuable insights into the molecular mechanisms underly-
ing dairy production and could inform future breeding strategies to enhance milk quality
and quantity.

3.5. Significant Association of Milk Protein Content with SNP Validation

Table 3 presents the results of individual genotyping for four key loci in water buffalo:
NC_037557.1:18868198 (ABCC4), NC_037549.1:52254091 (LEFTY2), NC_037559.1:81684074
(DGAT1), and NC_037551.1:87385802 (CAMK2D). The analysis reveals significant differ-
ences in milk protein content across different genotypes at these loci.

Table 3. The results of individual genotyping *.

Candidate Genes SNP (Chr:Pos)
Milk Protein Yield

Homozygous
Mutation

Heterozygous
Mutation Reference Genotype

ABCC4 NC_037557.1:18868198
A/A G/A G/G

73.46 ± 29.68C 103.97 ± 47.99B 144.57 ± 65.04A

LEFTY2 NC_037549.1:52254091
A/A G/A G/G

73.87 ± 31.82B 97.07 ± 19.41B 151.03 ± 74.08A

DGAT1 NC_037559.1:81684074
T/T C/T C/C

67.01 ± 38.53B 90.62 ± 45.36B 125.61 ± 71.25A

CAMK2D NC_037551.1:87385802
C/C C/T T/T

62.03 ± 48.35C 95.85 ± 58.65B 133.24 ± 79.52A
* The phenotypic values of milk protein content are expressed as “least squares mean ± standard deviation”.
Different letters in the same column indicate significant differences (p < 0.05); the same letter or no letter indicates
no significant difference (p > 0.05). The genotypes of SNP loci are arranged in the order of homozygous mutant,
heterozygous, and reference types.

For ABCC4 (NC_037557.1:18868198), the A/A genotype is associated with significantly
lower milk protein yield compared to the G/A and G/G genotypes.
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For LEFTY2 (NC_037549.1:52254091), both the A/A and G/A genotypes exhibit signif-
icantly lower milk protein yield compared to the G/G genotype.

For DGAT1 (NC_037559.1:81684074), the T/T and C/T genotypes are associated with
significantly lower milk protein yield compared to the C/C genotype.

For CAMK2D (NC_037551.1:87385802), the T/T genotype shows significantly lower
milk protein yield compared to both the CT and C/C genotypes.

These findings highlight the influence of specific genotypes on milk protein yield, pro-
viding valuable insights for genetic selection and breeding programs aimed at improving
milk quality in water buffalo.

4. Discussion
4.1. Population Stratification

Population stratification is a pivotal factor in GWASs, as it significantly influences
the findings due to disparities in ancestral origins. These differences can give rise to
discrepancies in allele frequencies across populations, potentially generating spurious
association signals [21,22]. To mitigate the risk of false-positive findings in our analysis, it
is imperative to acknowledge the existence of population stratification. PCA is capable of
diminishing the complexity of a dataset while keeping its covariance structure intact [23].
To assess the classification effectiveness of the first 10 principal components, we calculated
the proportion of variance explained by each component using the filtered SNP markers
with PLINK. This analysis helped us understand how well the principal components
capture the genetic variation within the population. Furthermore, we used the Admixture
software to perform K-cluster analysis and evaluated the cross-validation error (CV-error)
to determine the optimal number of subpopulations. By minimizing the CV-error, we
identified the most appropriate value of K for population stratification. Though these
buffaloes are raised on the same farm, their origins differ: the Nili-Ravi buffalo hails from
Pakistan, while the Murrah buffalo originates from India. From our PCA plot, we observe
clustering, particularly between groups MB and ZB, where these two clusters overlap and
coalesce in several instances. This indicates that the buffaloes in these two groups may
have a closer genetic relationship compared to the other groups. Overall, these groups can
be generally categorized into two distinct segments. The plot depicting cross-validation
error suggests that the optimal value of K, which corresponds to the lowest cross-validation
error, is 3. Therefore, it is concluded that these 120 water buffaloes should be divided into
three subgroups.

The simple linear model serves as a valuable instrument for conducting SNP and
phenotype analysis, concurrently managing population stratification by incorporating the
relevant population structure as a covariate [24]. Typically, the models used in GWAS
analysis are adjusted based on the genetic background and stratification of the dataset. In
general, after correcting for population stratification, the inflation factor should approach
a value of 1 in instances that adhere to a normal distribution [24]. In our experimental
outcomes, the inflation factor for MY was 1.056, that for PM was 1.1, that for PY was 0909,
that for PP was 1.06, that for FP was 1.12, and that for total FY was 0.916. These findings
suggest that our model’s adjustment for population stratification is valid.

4.2. Genome-Wide Association Analysis of Milk Production-Related Traits

Enhancing milk production and quality in water buffalo has emerged as a critical
research priority within the dairy industry. Water buffalo play a vital role in global dairy
production, particularly in regions where they are the primary milk source. However, there
is a significant research gap in understanding the lactation traits of water buffalo. Unlike
Holstein cows, which have been extensively studied through detailed production records
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and numerous genome-wide association studies (GWASs), water buffalo have received
considerably less attention in these areas. This disparity in research means that key aspects
of water buffalo genetics, such as the identification of candidate genes and pathways
influencing milk yield, protein content, and fat composition, remain underexplored. As
a result, breeding programs for water buffalo are not as advanced or effective as those
for other dairy species, limiting the potential for improving milk production and quality.
Addressing this research gap is essential for developing targeted breeding strategies and
enhancing the overall productivity of water buffalo dairy operations.

For milk production traits, this investigation assessed and quantified the MY as well as
the PM. The mean values were 2321.3 kg and 11.4 kg, respectively. This investigation also
assessed and quantified the PY, PP, FP, and FY. The mean values were 80.8 kg, 4.8%, 5.2%,
and 116.1 kg, respectively. The mean milk yield (MY) of our buffalo population is lower
than that of Mediterranean buffaloes (2321.3 kg) but higher than that of Brazilian buffaloes
(1578.90 kg). In contrast, the mean values for peak milk yield (PM), fat yield (FY), and
protein yield (PY) are more closely aligned with those of Mediterranean buffaloes [25,26].
Therefore, we are confident that our production record measurements are within the normal
range and can be converted into corresponding phenotype vectors in the model. We carried
out an association analysis for each of the phenotypic traits.

In the association analysis of PY and FY, we identified a total of 54 candidate genes.
Lactation is a highly complex process involving the coordinated action of multiple signaling
pathways. Among the identified genes, several are associated with key pathways, including
the cAMP signaling pathway (ABCC4), TGF-β signaling pathway (LEFTY2), Wnt signaling
pathway (CAMK2D), and metabolic pathways (DGAT1).

The ABCC4 gene, located on chromosome NC_037557.1, encodes ATP-binding cassette
(ABC) transporters. These proteins are essential for modulating platelet aggregation, a
critical process in blood clotting and hemostasis [27]. Moreover, ABCC4 has been detected in
milk from the early stages of lactation [28]. Our findings indicate that ABCC4 may regulate
milk production by influencing the cAMP signaling pathway, suggesting its potential
importance in lactation biology.

The TGF-β signaling pathway (LEFTY2) plays a pivotal role in mammary gland
development and lactation [29–31]. Studies have shown that the TGF-β pathway not
only regulates the proliferation and differentiation of mammary epithelial cells but also
influences the synthesis and secretion of milk components. Specifically, TGF-β promotes the
self-renewal of mammary stem cells while inhibiting excessive cell proliferation, ensuring
the proper development and function of mammary tissue.

The Wnt signaling pathway is a complex regulatory network that plays a crucial role
in controlling cell growth, differentiation, and tissue development. In particular, breast
development is intricately linked to lactation performance, as the proper formation and
function of the mammary gland are essential for efficient milk production. Extensive previ-
ous research has shown that the gene expression and epigenetic regulation of CAMK2D
(Calcium/Calmodulin-Dependent Protein Kinase II Delta) significantly impact the physio-
logical functions of the mammary gland. CAMK2D is involved in various cellular processes,
including calcium signaling and gene transcription, which are critical for mammary gland
development and lactation [32,33].

Milk fat provides essential fatty acids (FAs) that can contribute to various health
benefits, such as supporting cardiovascular health, enhancing nutrient absorption, and
promoting overall well-being, depending on their specific composition. Previous research
has demonstrated that polymorphisms in the DGAT1 (Diacylglycerol O-Acyltransferase
1) gene influence various milk production traits, including milk yield, fat yield, protein
yield, and the fat and protein content of milk [34–36]. Consistent with these findings, our
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study revealed that DGAT1 polymorphisms have a significant impact on fat content, further
highlighting the importance of this gene in determining milk composition.

4.3. The Mechanism of SNP Mutation and the Milk Production Traits

Among the selected SNPs, none are non-synonymous. However, we identified
base mutations in non-coding regions, specifically at positions NC_037557.1:18868198,
NC_037549.1:52254091, NC_037559.1:81684074, and NC_037551.1:87385802, which may
potentially influence milk production-related traits. These results suggest that variation
in non-coding regions may play an important role in the regulation of these important
production and quality traits. The variability of non-transcriptional regulatory sequences
(e.g., promoters, enhancers, CTCF sites) is closely related to the mechanism of non-coding
variation in cell development, but whether this rule applies to milk production traits needs
further verification [37,38].

5. Conclusions
In this investigation, genome-wide association analysis was performed on four milk

production-related characteristics in domestic water buffaloes, which included MY, PM,
PY, and FY. A total of 56 significant SNP loci were identified, and 54 candidate genes
within a 50 Kb range surrounding these loci were selected. These candidate genes were
enriched in biological processes such as the cAMP signaling pathway (ABCC4), the TGF-
β signaling pathway (LEFTY2), the Wnt signaling pathway (CAMK2D), and metabolic
pathways (DGAT1), all of which are directly or indirectly involved in the lactation process.
These findings offer a reference framework for comprehending the genetic architecture
underlying milk production and quality attributes in water buffaloes, thereby paving the
way for subsequent biological validation of the implicated genes. This is crucial guidance
for breeding and improvement programs in water buffaloes. In future studies, we will
focus on elucidating the relationships between candidate genes and metabolites involved
in the lactation process to uncover the metabolic pathways and mechanisms through which
these genes influence milk production and composition.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/genes16020163/s1: Table S1: GO biological process of candi-
date genes; Table S2: KEGG pathways of candidate genes; Table S3: KEGG pathways detail of
candidate genes.
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