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Abstract: Rare diseases impose a significant burden on affected individuals, caregivers,
and healthcare systems worldwide. Developing effective therapeutics for these small
patient populations presents substantial challenges. Antisense oligonucleotides (ASOs)
have emerged as a promising therapeutic approach that targets the underlying genetic
cause of disease at the RNA level. Several ASOs have gained FDA approval for the
treatment of genetic conditions, including use in personalized N-of-1 trials. However,
despite their potential, ASOs often exhibit limited clinical efficacy, and optimizing their
design is a complex process influenced by numerous factors. Machine learning-based
platforms, including eSkip-Finder and ASOptimizer, have been developed to address these
challenges by predicting optimal ASO sequences and chemical modifications to enhance
efficacy. eSkip-Finder focuses on exon-skipping applications, while ASOptimizer aims to
optimize ASOs for RNA degradation. Preliminary in vitro results have demonstrated the
promising predictive power of these platforms. However, limitations remain, including
their generalizability to alternative targets and gaps in their consideration of all factors
influencing ASO efficacy and safety. Continued advancements in machine learning models,
alongside efforts to incorporate additional features affecting ASO efficacy and safety, hold
significant promise for the field. These platforms have the potential to streamline ASO
development, reduce associated costs, and improve clinical outcomes, positioning machine
learning as a key tool in the future of ASO therapeutics.

Keywords: antisense oligonucleotides (ASOs); machine learning; design; eSkip-Finder;
ASOptimizer; rare disease

1. Introduction
Rare diseases, commonly referred to as “orphan diseases”, are defined by a prevalence

of fewer than 1 in 2000 individuals [1]. Although each disease affects only a small number
of people, there are approximately 8000 identified rare diseases, collectively impacting
an estimated 3.5–5.9% of the global population [2,3]. Around 80% of these diseases are
attributed to genetic causes, many of which manifest in early stages of life and can
be associated with reduced survival [4–6]. In the United States alone, the economic
burden of rare diseases, encompassing both direct medical expenses and indirect costs,
is estimated to approach USD 1 trillion annually [7,8]. The limited patient populations
for rare diseases pose significant challenges in developing treatments and conducting
meaningful clinical trials [9]. Pharmaceutical companies are often reluctant to invest in these
treatments due to the low expected revenues from such a small patient group. Although
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legislative initiatives and government funding have enhanced efforts toward rare disease
therapeutics [9,10], additional challenges remain. These include the use of suboptimal
endpoints, lack of appropriate controls, and difficulties in recruiting patients for clinical
trials [11,12]. Consequently, only 5% of patients with rare diseases currently have access to
potentially disease-modifying treatments [13]. There is a critical need to improve processes
for researching and developing therapeutics for rare diseases, accelerating their time to
market while reducing associated costs.

Antisense oligonucleotides (ASOs) have emerged as promising therapeutic strategies
for rare diseases due to their versatility [14]. By modulating the splicing or degradation
of target RNA with high specificity, ASOs hold the potential to address a broad range
of rare diseases [15]. Several ASOs have already received FDA approval for treating rare
genetic conditions [16–19]. Furthermore, collaborative efforts with the FDA have enabled
multiple patients to access personalized N-of-1 ASOs, which has subsequently led to the
establishment of guidelines for N-of-1 ASO development [20]. Despite these advances,
there is still significant room to improve the clinical efficacy of ASOs. Designing optimal
ASOs is intrinsically complex, requiring careful consideration of a vast array of potential
sequences and numerous factors that impact their safety and effectiveness [21]. Historically,
identifying the most effective sequence and chemistry relied on labor-intensive and
time-consuming experimental trials [22–25]. However, the importance of optimizing ASO
design has become increasingly evident, as ASOs with optimized target sequences have
demonstrated greater efficacy than many currently FDA-approved counterparts [25–27].

To leverage the extensive experimental data available on ASO efficacy, encompassing
parameters such as target sequence and chemical modifications, machine learning-based
platforms have been developed [21,28]. These platforms hold significant potential to
predict the efficacy of novel ASOs, paving the way for the identification of more effective
therapies [29]. A previous review primarily focused on providing an overview of a single
machine learning-based platform [29]. In contrast, this review provides a comprehensive
overview of ASOs, their application in N-of-1 trials, the challenges associated with
optimizing ASO design, and current machine learning-based platforms that have been
developed in an attempt to improve ASO design. Apart from a brief introduction covering
the history of the first FDA-approved ASO, the focus is specifically on short ASOs targeting
genetic diseases. Alternative RNA-based therapeutics, such as siRNAs and mRNA vaccines,
operate on distinct design principles and mechanisms of action and are, therefore, beyond
the scope of this review.

2. Antisense Oligonucleotides (ASOs)
Initially discovered in 1978 [30], ASOs are single-stranded, RNA- or DNA-like

molecules that are capable of regulating gene expression through a range of mechanisms [31].
They are typically composed of between 12 and 25 nucleotides that are complimentary to
a specific region of the target mRNA and/or pre-mRNA. Through Watson–Crick pairing,
ASOs bind to their targets, where, with high specificity, they can regulate RNA processing
and translation [15].

2.1. Chemical Modifications

Although these versatile molecules are highly specific, they face significant challenges in
penetrating biological membranes to reach target cells in vivo when they are unmodified [32].
In addition, the presence of the phosphodiester bond on unmodified ASOs causes them
to be relatively unstable due to degradation by nucleases [33]. To improve their stability,
safety, and overall efficacy, numerous chemical modifications have been identified that can
be applied to some or all nucleotides, depending on the desired mechanism of the ASO. The
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first chemical modification utilized to improve ASO stability, known as phosphorothioates
(PS) ASOs, was made by replacing the non-bridging oxygen of the phosphodiester bond
with a sulfur group [34]. PS ASOs have a significantly longer half-life than unmodified
ASOs due to their ability to evade degradation by nucleases [35,36]. However, the PS
modifications reduce an ASO’s binding affinity for its target, which can be improved by
combining PS modifications with modifications to the sugar moiety [37]. ASOs commonly
used possessing chemical modifications to their sugar component include locked nucleic
acids (LNAs), 2′-O-methyl (2′-OME), 2′-O-methoxyethyl (2′-MOE), and 2′fluoro ASOs. LNA
modifications are composed of a methylene link that creates a bridge between the 2′ oxygen
and 4′ carbon of the sugar moiety, which locks the nucleotide in a conformation that
substantially increases the ASO’s affinity for its target RNA [38]. Alternatively, 2′-OME,
2′-MOE, and 2′fluoro ASOs are created through modifications to the 2′ position of the
ribose ring [39]. These 2′ substituents promote the molecule’s stability by protecting
it from nuclease degradation, as well as improving its target affinity [40,41]. 2′-OME
and 2′-MOE modifications are also associated with improved safety due to limited
immune activation [15]. Additional chemical modifications, including phosphorodiamidate
morpholino oligonucleotides (PMOs) and peptide nucleic acids (PNAs), result in a more
substantial change to the overall nucleotide chemistry. Specifically, PMOs are charge-neutral
ASOs that utilize a six-membered morpholine ring in place of the natural five-membered
ribose ring, linked through phosphorodiamidate bonds [42]. PNAs are composed of an
N-2-aminoethyl backbone [43]. Both PMOs and PNAs are resistant to nuclease degradation
and have improved target binding affinity [44,45]. The neutral charge uniquely associated
with these ASOs improves their safety by reducing immune stimulation and allows them
to be conjugated to cell-penetrating-peptides for the potential to improve delivery [37,46].

2.2. Mechanisms of Action

ASOs are highly versatile therapeutic tools capable of employing various mechanisms
to mitigate the effects of a wide range of pathogenic mutations. These mechanisms can be
broadly classified into two primary categories: RNA degradation (RNase H-dependent)
and steric blockage (RNase H-independent) [15]. Depending on the desired mechanism of
action, ASOs can be chemically modified and designed to target specific RNA regions to
achieve their intended therapeutic effects [47,48].

RNase H-dependent RNA degradation is particularly effective for addressing diseases
caused by gain-of-function mutations, where reducing or eliminating the production of
the mutated protein can improve the disease phenotype [49]. RNase H is an endogenous
enzyme that plays an important role in cleaving RNA when it becomes hybridized to
DNA [50]. ASOs, due to their DNA-like qualities, exploit this natural mechanism to
target and degrade disease-causing mRNA (Figure 1). To enable RNase H-mediated
degradation, ASOs must retain some unmodified regions, as full chemical modification
prevents recognition by RNase H [51,52]. However, PS modifications can be applied to
all nucleotides in an ASO without compromising RNase H recognition [53]. To balance
the advantages of additional chemical modifications with the need for RNase H activity, a
specialized ASO design known as a gapmer is used. In this configuration, the central region
of the ASO remains unmodified to allow RNase H recognition, while the flanking regions
incorporate alternative chemical modifications for enhanced stability and efficacy [54,55].
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Figure 1. Mechanisms by which ASOs can be utilized to treat genetic diseases and their standard
structural configurations to achieve the desired mechanism. Chemically modified nucleotides
are depicted in dark blue while unmodified nucleotides are shown in light blue. (A) Standard
gapmers, consisting of chemically modified nucleotides flanking a central segment of unmodified
nucleotides, as well as fully unmodified ASOs, bind to target RNA, recruiting RNase H to induce
RNA degradation. (B) Fully chemically modified ASOs can bind to target RNA to block splicing or
translation machinery, facilitating exon-skipping or inclusion and translation inhibition, respectively.

In cases where a disease arises from a loss-of-function mutation that disrupts the
production of functional proteins, ASOs can regulate pre-mRNA splicing to compensate
for these pathogenic mutations [56]. These ASOs are designed to bind to specific
regions of pre-mRNA typically recognized by splicing factors. By sterically blocking the
binding of splicing machinery, ASOs can modulate the inclusion or exclusion of specific
exons to achieve the desired therapeutic effect [57]. ASO-mediated exon-skipping has
received significant interest due to its ability to exclude cryptic exons, exons containing
pathogenic mutations, exons adjacent to large out-of-frame deletions, or poison exons
from the final mRNA transcript, offering a powerful approach to treating genetic
diseases [58–60]. Additionally, ASOs can promote exon inclusion, although this strategy
presents greater technical challenges, as identifying effective target regions to promote
exon inclusion is more complex [61]. To avoid RNase H-mediated degradation of RNA,
ASOs designed for steric blockage are typically fully chemically modified to not be detected
by RNase H [62,63]. These fully modified ASOs have also proven effective in inhibiting
translation by sterically blocking the interaction of translation machinery with the bound
RNA, further broadening their therapeutic potential [64,65].

2.3. FDA-Approved ASOs

There are currently many ASOs that have received FDA approval, utilizing different
chemical modifications and mechanisms of action to treat genetic diseases (Table 1).
Fomiversen provided the first clinical proof of concept of the effectiveness of ASOs
in patients and was approved for the treatment of cytomegalovirus (CMV) retinitis,
particularly for patients with acquired immune deficiency syndrome (AIDS) [16]. It
is composed of 21 nucleotides with PS backbone modifications, targeting the major
immediate-early (MIE) gene of the virus to prevent the translation of critical proteins for
its replication [66,67]. Through intravitreal injections, Fomiversen was found to effectively
prevent the progression of CMV retinitis in affected patients, with a tolerable safety
profile [68,69]. Despite its promising results in early clinical studies, the approval of highly
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active antiretroviral therapy (HAART) led to its FDA approval being withdrawn in 2001, as
HAART was effective in curing or preventing CMVR in patients with AIDS [70,71].

Table 1. Overview of FDA-approved ASOs, highlighting the diseases they treat, their RNA targets,
chemical modifications, and mechanisms of action used to alleviate symptoms.

Therapy Name Disease Target RNA Mechanism of Action Chemical
Modifications

Fomiversen CMV retinitis MIE RNA degradation PS
Mipomersen HoFH APOB RNA degradation PS and 2′-MOE

Eteplirsen DMD DMD (exon 51) Splice switching PMO
Nusinersen SMA SMN2 (exon 7) Splice switching PS and 2′-MOE
Inotersen hATTR TTR RNA degradation PS and 2′-MOE

Golodirsen DMD DMD (exon 53) Splice switching PMO
Viltolersen DMD DMD (exon 53) Splice switching PMO
Casimersen DMD DMD (exon 45) Splice switching PMO

Tofersen ALS SOD1 RNA degradation PS and 2′-MOE
CMV, cytomegalovirus; HoFH, homozygous familial hypercholesterolemia; DMD, Duchenne muscular dystrophy;
SMA, spinal muscular atrophy; hATTR, hereditary transthyretin amyloidosis; ALS, amyotrophic lateral sclerosis.

In recent years, additional ASOs utilizing RNase H-dependent RNA degradation
have received FDA approval for the treatment of disease. Mipomersen, approved in
January 2013, is designed for homozygous familial hypercholesterolemia (HoFH), a genetic
condition characterized by an impaired ability to clear low-density lipoproteins (LDL),
placing patients at high risk for heart disease [17]. Mipomersen is a PS gapmer with
2′-MOE-modified ends, targeting ApoB-100 mRNA for RNase H-mediated degradation [72].
By reducing ApoB translation, Mipomersen is effective in reducing very-low-density
lipoprotein and subsequently lowering the levels of circulating LDLs [73]. Similarly,
Inotersen, also a PS gapmer with 2′-MOE-modified ends, targets transthyretin (TTR) mRNA
to prevent the production of dysfunctional TTR proteins, which accumulate as deposits
causing sensorimotor and autonomic neuropathy in hereditary transthyretin amyloidosis
(hATTR) [74,75]. Inotersen received FDA approval in October 2018 [74]. Most recently,
Tofersen, employing the same chemical modifications as Mipomersen and Inotersen, was
approved in April 2023 for amyotrophic lateral sclerosis (ALS) associated with SOD1 gene
mutations [76].

Alternatively, several ASOs designed to regulate RNA splicing have been FDA
approved for treating rare diseases. Among these, four ASOs with PMO chemical
modifications, designed to enhance stability and safety, have been approved for Duchenne
muscular dystrophy (DMD) [18]. DMD typically arises from mutations in the DMD gene
that disrupt the reading frame, preventing the production of functional dystrophin [77,78].
Patients with in-frame mutations, including large deletions spanning multiple exons, often
present with the milder Becker muscular dystrophy phenotype [79]. ASOs can restore
the reading frame by promoting the exclusion of exons flanking the disrupted region,
allowing for the production of truncated but partially functional dystrophin [80]. Since
these DMD-causing frame-shift mutations occur throughout the DMD gene [81,82], each
exon-skipping approach targets specific subsets of DMD patients [83]. Eteplirsen, targeting
exon 51, became the first ASO approved for DMD in September 2016 [19]. This was followed
by the approvals of Golodirsen and Viltolarsen, both targeting exon 53, and Casimersen,
targeting exon 45 [84].

Splice-switching ASOs have also been approved for spinal muscular atrophy (SMA), a
severe rare disease caused by pathogenic mutations in the SMN1 gene [85]. Unlike ASOs
for DMD, which target the mutated gene, these ASOs modulate the splicing of SMN2,
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a pseudogene that differs from SMN1 by a single C-to-T transition in exon 7, leading
to its exclusion in most SMN2 transcripts [86]. Nusinersen, approved in December 2016,
promotes the inclusion of exon 7 in SMN2 transcripts, effectively compensating for the loss
of SMN1 function [42]. As this therapeutic targets SMN2 pre-mRNA, its applicability is
independent of the specific mutations in the SMN1 gene.

2.4. ASOs as N-of-1 Therapies

Recent advances in N-of-1 therapeutics, designed to target disease-causing mutations
unique to a single patient or very small groups, have provided hope for individuals with
ultra-rare genetic conditions. ASOs have emerged as a promising approach for such cases
due to their high specificity, ability to address the root cause of disease, and demonstrated
safety profile [15]. With their growing popularity and recent FDA approvals, the processes
for preclinical ASO testing and evaluating relevant potential adverse effects are now well
established [87]. As the focus on personalize medicine grows and regulations evolve to
enable single-patient clinical trials, ASOs have started to become accessible to patients
through N-of-1 trials (Table 2).

Table 2. Overview of ASOs evaluated through N-of-1 clinical trials with published data reporting
their results highlighting the diseases they treat, their RNA targets, chemical modifications, and
mechanisms of action used to alleviate symptoms.

Therapy Name Disease Target Mechanism of
Action

Chemical
Modifications

Milasen Batten Disease CLN7 (intron 6) Splice Switching PS and 2′-MOE
Atipeksen HoFH ATM (exon 53) Splice Switching PS and 2′-MOE

HoFH, homozygous familial hypercholesterolemia.

Milasen represents a landmark in N-of-1 therapeutics as the first ASO designed to treat
a single patient [88]. Mila, a 6-year-old girl at the time of the study in 2017, was experiencing
a rapid health decline, including sudden blindness, ataxia, seizures, and developmental
delay. Genetic testing revealed that she carried two distinct mutations in each allele of
the CLN7 gene, associated with Batten disease [89]. Batten disease is associated with the
accumulation of lipofuscin in the nervous system, leading to severe neurological symptoms
and premature death [90]. One mutation Mila possessed had been previously reported. The
other mutation was a unique SINE-VNTR-Alu (SVA) insertion in intron 6, which caused
the inclusion of a cryptic intronic sequence in the final mRNA product [91], resulting in
a dysfunctional protein. Milasen, a 22-nucleotide 2′-MOE-modified ASO, was designed
to target the intron 6 cryptic splice-acceptor site. Preclinical in vitro and in vivo studies
demonstrated that Milasen improved the ratio of wild-type CLN7 mRNA [88]. With Mila’s
health beginning to deteriorate, the N-of-1 trial was approved by the FDA, following
a dosing regimen like Nusinersen due to similarities in chemistry, target tissue, and
mechanism of action. While Milasen significantly reduced the frequency of Mila’s seizures
without adverse effects, she ultimately succumbed to Batten disease three years after
treatment began. Despite this outcome, the rapid development of Milasen, completed
within a year of identifying Mila’s unique variant, set a powerful precedent for the use of
ASOs in personalized medicine for rare diseases [88,92].

Following the success of Milasen, the same team developed Atipeksen, another
N-of-1 ASO, for a 1-year-old girl named Ipek diagnosed with severe ataxia–telangiectasia
(A-T) [93]. A-T, also known as Louis Bar syndrome, is a rare autosomal recessive disease
caused by mutations in the ATM gene [94], leading to progressive neurodegeneration,
immune dysfunction, and significantly shortened life expectancy [95]. Ipek was found to
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have compound heterozygous ATM mutations, one of which created a splice donor site
in exon 53 that prevented the entire exon 53 from being included in the final transcript,
resulting in a frameshift [93]. To restore normal splicing, 32 novel 2′-MOE-modified ASOs
were evaluated, targeting either the aberrant splice donor site or an adjacent splice silencer
site. After further functional testing, a single ASO, named Atipeksen, was identified as the
most effective candidate. Following animal safety studies, Atipeksen was approved for the
clinical trial in Ipek and was administered intracerebroventricularly every three months
for three years. By age six, Ipek exhibited only mild symptoms of A-T, with no reported
adverse effects from the treatment [92].

To date, Milasen and Atipeksen are the only N-of-1 ASOs that have received
official or academic publication [92]. However, reports from patient-run sites and
news articles suggest additional N-of-1 ASOs are being developed to address unique
mutations [92]. Since the promising preliminary findings from these N-of-1 trials, the FDA
has introduced specific guidelines for N-of-1 ASO development to streamline the process
for patients without existing treatment options [20]. These guidelines include requirements
for a non-clinical report involving the results of short-term animal studies; a chemistry,
manufacturing, control report outlining the drug’s known structure and properties; as well
as a clinical considerations report [92]. By addressing the regulatory challenges inherent in
personalized drug development, the FDA’s efforts are expected to pave the way for more
N-of-1 ASOs in the future.

Despite the promising advancements in N-of-1 therapies and improvements to
regulatory systems for N-of-1 ASOs, financial and ethical challenges remain. A major
ethical concern is the inequity of patient access [96–98]. Participation in N-of-1 trials is
often limited to motivated, well-informed patients who have established connections
with experts in the field [99]. These inequities are exacerbated by the financial burden of
private-pay requirements and the logistical challenges of travel [100]. Consequently, access
to these trials is largely restricted to patients with substantial time and resources. Beyond
these access disparities, there are ethical concerns regarding the limited evidence generated
through rapid preclinical testing and assumptions about safe dosing [101]. Questions also
arise about whether patients can truly provide informed consent, given the uncertainties
surrounding the risks of these personalized treatments [99]. As efforts to improve and
expand N-of-1 trials progress, it is crucial to address these ethical considerations to promote
equitable access and ensure patients are fully informed when making decisions about their
participation.

2.5. Challenges Associated with ASO Design

Despite the recent successful transitions of many ASOs from the bench to the bedside,
there remains considerable room for improvement in their clinical efficacy. For instance,
Eteplirsen’s effectiveness in treating DMD remains a subject of ongoing debate [19]. Patients
receiving weekly 30 mg/kg doses of Eteplirsen demonstrated functional benefits, such
as improved performance on a 6 min walk test and a reduced incidence of ambulation
loss [102]. However, the small sample size and reliance on historical control data
significantly limit the reliability of these findings. Additionally, treated patients achieved
an average of up to only 1% functional dystrophin protein restoration in muscle tissues and
showed no improvement in dystrophin expression in cardiac tissues after at least 48 weeks
of therapy [19,103]. Whether Eteplirsen can prevent long-term disease progression at this
dose remains uncertain.

It has been well established that various factors in ASO design profoundly impact
their safety and ability to achieve the intended RNA-targeting effects. These factors include
RNA secondary structure, ASO binding energy, chemical modifications, conjugation to
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alternative molecules, and the specific tissues being targeted [104–107]. For example, the
length of an ASO is a critical factor influencing its efficacy. While increasing the number
of nucleotides it is composed of can enhance binding energy and improve overall efficacy
at the target site, it may also reduce target specificity [108,109]. Consequently, current
guidelines for ASO design generally recommend lengths ranging from 18 to 22 nucleotides
to balance efficacy and specificity [108]. Designing effective ASOs is inherently challenging
due to the vast number of potential RNA sequences that could theoretically serve the same
purpose [21]. This complexity is further compounded by the integration of diverse chemical
modifications, which introduce additional hurdles in the design process. For instance,
the chirality of the phosphorous atom in the PS backbone has been shown to influence
both RNAse H activity and immune stimulation [110,111]. Controlling the chirality of PS
ASOs is critical, as it can significantly impact the overall therapeutic efficacy [112,113].
Optimizing ASO design is further complicated when considering the incorporation of
different combinations of chemical modifications, which bring additional challenges to the
design process [21].

Historically, ASO design has primarily relied on basic methods and guidelines derived
from analyses of previously published ASO data, focusing on the relationship between
sequence, length, and efficacy [108,114–119]. These guidelines typically recommend
designing ASOs with a purely reverse complement sequence to the target mRNA
and provide recommendations for specific parameters such as ASO length and GC
content. However, even when these guidelines are followed, a significant number of
potentially effective ASOs can be generated for a single RNA target, necessitating
substantial experimental effort to identify the most effective candidates.

Improving ASO design remains a critical barrier to achieving more clinically
effective therapies. Studies have demonstrated that optimized ASO sequences can be
significantly more effective than current FDA-approved options. For instance, in silico
predictive screening tools have been utilized to refine ASO sequences targeting exon 51
of DMD pre-mRNA for exclusion [27]. These tools, using statistical modeling approaches,
successfully identified a sequence that increased exon 51 skipping by 12-fold compared to
Eteplirsen analogs in vitro. However, while numerous in silico tools have been developed
to improve ASO sequence design [120–122], they currently lack the ability to account for
the impact of chemical modifications and other critical factors on ASO efficacy [28].

3. Machine Learning-Based Platforms to Improve Antisense
Oligonucleotide Design

To address the complexities and challenges of designing ASOs, machine learning-based
platforms have been developed to optimize ASO design by leveraging insights from
previous studies. For this review, the search terms “Machine Learning” and “Deep
Learning”, in combination with “Antisense Oligonucleotide Design”, were used to identify
relevant literature in PubMed. The search specifically aimed to identify platforms with
the potential to be broadly applicable across diverse mRNA targets, leading to the
identification of two recently developed tools: ASOptimizer and eSkipFinder. ASOptimizer
was developed for designing ASOs utilizing RNase-H dependent RNA degradation, while
eSkip-Finder focuses on optimizing the design of splice-switching ASOs [21,28]. As ASOs
gain popularity as a therapeutic strategy, extensive testing has been conducted on ASOs
with various RNA targets, with diverse lengths, sequences, and chemical modifications,
generating a wealth of experimental data [15,48]. These machine learning-based platforms
capitalize on this vast and multifaceted dataset, integrating information about key features,
such as sequence composition, chemical modifications, and experimental design, into
comprehensive databases. By training predictive models on these data, they can either
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predict the efficacy of an individual ASO or rank multiple ASOs based on their predictions
(Figure 2). This application of machine learning holds immense promise for accelerating
ASO development while enhancing their precision and effectiveness, ultimately facilitating
their transition from experimental stages to clinically viable therapies [29].
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Figure 2. Overview of machine learning-based platforms designed to enhance ASO efficacy through
sequence optimization and optimized chemical engineering. (A) A comprehensive database is built
using data extracted from relevant literature and patents. (B) A predictive model is trained on the
curated database, leveraging key features associated with ASO performance. (C) The trained model
predicts the efficacy of individual ASO candidates or ranks multiple ASOs based on their predicted
therapeutic potential.

3.1. eSkip-Finder

eSkip-Finder (https://eskip-finder.org) is a web-based resource that employs machine
learning algorithms to predict the efficacy of ASOs specifically designed for exon
skipping [28]. Its database was curated through the manual collection of all available
data on exon-skipping ASOs from patents and published literature. To develop a
comprehensive predictive model, the database includes information on targeted genes, ASO
sequences, chemical modifications, experimental protocols, and observed exon-skipping
efficacy. A total of 32 distinct features related to ASOs or experimental design were initially
assessed for their impact on predictive accuracy. Features with the highest importance,
determined through permutation importance methods [123], were incorporated into the
final model [28]. Given the unique effects of different chemical modifications on ASO
behavior, separate predictive models were developed for PMOs and 2′MOE ASOs.

The eSkip-Finder platform, involving a support vector regressor predictive model, was
trained using data from 566 exon-skipping trials involving 298 novel ASOs targeting DMD
pre-mRNA. The features selected for the final PMO model included ASO concentration, GC
content of exon/intron when blocked by the ASO, predicted binding energy, and predicted
accessibility scores of the 3′ end of the target [28]. Similarly, for 2′-MOE ASOs, features
such as ASO concentration, ASO GC content, distance from splice acceptor site, remaining
GC content of exon when blocked by the ASO, cumulative NI score [124], and predicted
target accessibility were incorporated into the model. To evaluate the model’s predictive
accuracy, 10% of the DMD exon-skipping values were reserved for validation. The test sets
for PMO and 2′MOE ASOs yielded R2 value of 0.6 and 0.7, respectively [28]. To further
assess the platform’s generalizability, eSkip-Finder predictions for three unique PMOs
targeting exon 72 of COL7A1 were compared with their experimental outcomes [125]. The
strong correlation between the predictions and experimental results highlight the potential
of eSkip-Finder for broader applications beyond DMD exon skipping [28].

https://eskip-finder.org
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3.2. ASOptimizer

Alternatively, ASOptimizer was developed to enhance the efficacy of ASOs designed
to treat diseases via RNase H-dependent RNA degradation [21]. Similarly to eSkip-Finder,
ASOptimizer relies on an extensive database compiled from patents and scientific
literature. This database encompasses 187,090 entries detailing ASOs targeting 67 unique
mRNA targets for degradation. Recognizing the critical importance of both sequence design
and chemical modifications, the ASOptimizer platform employs a two-stage optimization
approach. The first stage, a sequence optimizer, utilizes a linear factor model to evaluate
candidate ASOs. This model analyzes key variables influencing sequence potency, such
as GC content, length, the secondary structure of target RNA, and potential off-target
effects, to identify the most effective sequences. In the second stage, chemical modifications,
including changes to nucleotide structure and inter-nucleotide bonds, are optimized using
an edge-augmented graph transformer. This deep graph neural network identifies patterns
and relationships within previously reported combinations of chemical modifications,
enabling informed decisions about the optimal modifications for ASOs [126].

To determine its effectiveness in improving ASO design, ASOptimizer was applied to
optimize ASOs targeting indoleamine 2,3-dioxygenase 1 (IDO1) mRNA. The IDO1 gene
encodes an enzyme involved in the kynurenine pathway, which is often upregulated in
cancers, enabling the tumor to evade immune detection [127]. Initially, ASOptimizer’s
predictive performance was compared to Sfold, a widely used in silico ASO design tool
employing statistical sampling [120]. Both tools were trained using a subset of 155 ASOs
targeting IDO1 mRNA and tested on the remaining values. ASOptimizer demonstrated
superior predictive accuracy, achieving a Pearson correlation of 0.66, compared to Sfold’s
0.5 [21]. Next, ASOptimizer was used to identify six optimized 19-nucleotide sequence
candidates for improved IDO1 inhibition. Through in vitro testing, all six ASO sequences,
developed with only PS backbone modifications, were successful in reducing IDO1
expression. Subsequently, the chemical modifications for these six ASOs were optimized
in the second stage of the ASOptimizer. Current literature on ASOs targeting IDO1
predominantly employs LNA modifications with a PS backbone. As such, ASOptimizer
introduced diverse combinations of LNA modifications at the ends of the ASO to form
LNA-PS gapmers. Interestingly, several candidates lacked the typical gapmer structure,
where flanked outer regions are fully modified, and instead featured a combination of
modified and unmodified nucleotides at the end. When compared to their unoptimized
PS-ASO counterparts, the optimized LNA-PS gapmers demonstrated improved efficacy
and reduced cytotoxicity as measured by lactate dehydrogenase levels [21]. These findings
validated the effectiveness of ASOptimizer’s chemical engineering stage in enhancing both
potency and cellular safety profile of ASOs.

3.3. Limitations and Future Directions of Current Machine Learning-Based Platforms

Despite the promising potential of these machine learning-based platforms, they are
not without limitations. Both eSkip-Finder and ASOptimizer have been validated using
data from only one or two ASO targets, raising questions about the generalizability to
alternative RNA targets [28,29]. Although the Pearson correlation and R2 values achieved
in their test sets indicate their utility in optimizing ASO design [128], there remains
considerable room for improvement. Updating and expanding the databases used to train
these models could improve their predictive accuracy and robustness [28]. Additionally,
more extensive validation of these platforms’ generalizability to alternative targets is
essential to bolster confidence in their practical utility. This validation should encompass
assessing the platforms’ ability to optimize ASO design for wide range of targets and
evaluating their predictive performance for ASOs incorporating alternative chemistries
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not included in the initial testing. Such efforts would greatly enhance confidence in the
reliability and applicability of these platforms for broader use in ASO therapeutics.

Despite promising in vitro data on efficacy and cytotoxicity, these platforms currently
do not account for the effectiveness or safety of the ASOs they optimize in vivo.
Consequently, ASOs generated through these platforms still require rigorous evaluation
in vivo to ensure they achieve their intended effects without adverse outcomes [29]. While
ASOs designed using standard guidelines are generally safe at low doses, those optimized
by these platforms may incorporate novel combinations of chemical modifications, such as
the novel gapmer structures developed through ASOptimizer for IDO1 inhibition [21]. To
further solidify confidence in the clinical utility and safety of ASOs optimized by
these platforms, additional in vivo validation studies assessing both efficacy and safety
are imperative.

Significant gaps persist in the current landscape of machine learning platforms for
ASO design. For instance, no platform has been developed specifically for optimizing ASOs
intended for exon inclusion, likely because this mechanism has narrower applicability
compared to exon skipping and RNA degradation [129]. However, the increased complexity
of exon-inclusion design highlights the potential value of such a platform to enhance
sequence optimization [61].

Furthermore, while ASOptimizer effectively integrates a sequence engineering model,
it does not address critical factors such as ASO delivery to target tissues in vivo [29]. The
suboptimal delivery and cellular uptake of ASOs remain significant barriers to achieving
optimal therapeutic efficacy. Notably, ASOs exhibit varying uptake rates across different
tissues, and selective tissue targeting has proven challenging when ASOs are delivered
independently [39,130,131]. Additionally, ASOs face significant difficulty crossing the
blood–brain barrier, necessitating invasive intrathecal injections for targeting tissues
within the central nervous system [132]. To address these challenges, various non-viral
delivery systems, including lipid nanoparticles and nano-carrier-based approaches, as
well as covalent conjugation strategies using molecules such as cell-penetrating peptides,
have been explored to enhance tissue-specific delivery and cellular uptake [133–135].
As several delivery systems and conjugation with alternative molecules have resulted
in promising pre-clinical results [133,134,136], these factors will become an important
feature to incorporate into current and future ASO design platforms to improve their
therapeutic potential.

Nevertheless, these platforms hold immense promise for advancing ASO design
and development. Notably, eSkip-Finder has undergone enhancements to its predicative
algorithm since its release. A three-way voting system combining random forest, gradient
boosting, and XGBoost was shown to significantly reduce computing costs compared to
the original support vector regressor model, while also improving R2 values in the test
sets analyzed [137]. By further expanding the underlying databases and refining their
predictive algorithms, these platforms could revolutionize ASO development. They enable
the selection of highly effective ASOs through computational modeling, reducing the
need for costly and time-consuming in vitro and in vivo screening experiments. These
advancements are anticipated to substantially improve the clinical efficacy of ASOs,
particularly in time-sensitive cases such as N-of-1 trials, where rapid development is
crucial [92,93]. The ability of these platforms to accelerate the design of therapeutically
effective ASOs has the potential to modify disease progression more efficiently and enhance
patient outcomes.
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4. Conclusions
Machine learning holds immense promise in addressing the complexities of designing

effective ASOs for rare diseases [29]. Existing platforms have demonstrated success in
optimizing ASO sequences and chemical modifications by accounting for a wide range
of critical factors [21,28]. However, significant limitations remain, including the need for
further validation of their generalizability and addressing gaps in ASO design features that
are not yet incorporated into these models [29]. Advancing these machine learning-based
platforms to predict the most effective sequences and chemical structures will not only
reduce the time and costs associated with early preclinical trials, but also enhance our
ability to deliver highly efficient therapies to patients more rapidly.
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