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Abstract: With the increasing power of DNA sequencing, the genomics-based approach is becoming
a promising resolution to dissect the molecular mechanism of domestication of complex traits in trees.
Genus Camellia possesses rich resources with a substantial value for producing beverage, ornaments,
edible oil and more. Currently, a vast number of genetic and genomic research studies in Camellia
plants have emerged and provided an unprecedented opportunity to expedite the molecular breeding
program. In this paper, we summarize the recent advances of gene expression and genomic resources
in Camellia species and focus on identifying genes related to key economic traits such as flower
and fruit development and stress tolerances. We investigate the genetic alterations and genomic
impacts under different selection programs in closely related species. We discuss future directions
of integrating large-scale population and quantitative genetics and multiple omics to identify key
candidates to accelerate the breeding process. We propose that future work of exploiting the genomic
data can provide insights related to the targets of domestication during breeding and the evolution of
natural trait adaptations in genus Camellia.

Keywords: domestication; genomics; Camellia; transcription factors; quantitative trait locus;
genome-wide association study; fruit development

1. Introduction

Domestication of wild plants has resulted in substantial phenotypic changes related to molecular
changes of key regulatory genes. Understanding the genetic basis of domestication can provide
insights into the mechanism of rapid evolution of traits influenced by human demands. Using forward
genetics, researchers have identified many important genes contributing to various processes relevant
to plant development and growth in several crop species. In addition, to achieve some human
desirable traits, mutations of homologous genes in different plants have occurred [1,2]. For instance,
the domestication of the loss of seed shattering in sorghum is found to be controlled by mutations of
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a YABBY transcription factor [3] and the modifications of orthologs in rice and maize were revealed to
be involved in shattering domestication [3]. Therefore, convergent selection of gene alleles related to
important regulators provides a promising insight into revealing the trait domestication in different
selection programs of plants [4,5].

However, in perennial woody plants, the approach from phenotypes to genetic modification is
merely successful due to the long breeding cycles and inbreeding depression. Recent advances in
genomics have facilitated the unraveling of the evolution history and selection signatures of cultivated
tree crops. In fruit trees, genome sequencing, and re-sequencing have provided essential evidence
of genomic signatures of domestication such as gene family expansion, genomic diversity, genome
selective sweep and more [6–9]. In a recent study, combined analyses of large-scale re-sequencing and
transcriptomics in pears have led to the identification of valuable candidate genes underlying fruit
quality [10]. Therefore, the genome sequencing and global expression analyses in tree plants provide
a useful means for understanding how traits are domesticated and how they have evolved.

The genus Camellia includes more than 250 species and is the largest genus in the plant
family Theaceae [11,12]. Camellia species are generally evergreen shrubs or small trees and most
of them originate from Southeastern Asia. A majority of these species is native to China. Despite
the disagreements of different taxonomic systems, cultivars of wild Camellia species are currently
known all over the world. In Camellia plants, the human selection of favorable traits such as leaf
metabolism, floral development, and seed oil content has resulted in substantial genetic alterations in
commonly-seen cultivars when compared to their wild ancestors. The understanding of the genetic
and genomic characteristics under the breeding process is of great significance for dissecting trait
evolution and domestication to facilitate Camellia breeding.

In recent years, the breakthrough of DNA sequencing technology has greatly expedited the basic
research of understanding the molecular domestication process in Camellias. Progress in generating
high-quality and in-depth genomics databases were made in Camellia plants. Particularly, two reference
genomes of tea trees were released [13,14], which could facilitate the future research in unraveling
the mechanisms of evolution and domestication of Camellia plants. A number of RNA-sequencing
(RNA-seq) studies were reported in several wild and cultivated Camellia plants. In this review, we aim
to provide a timely summarization of advances in genomic and genetic studies of large-scale gene
expression profiling (Table 1). We go over recent progresses of genomics research in Camellia plants and
focus on pathways related to traits with significant economic values. We survey the studies utilizing
high-throughput sequencing technology for investigating global gene expression profiling, small RNA
identification, and other types of protein coding and noncoding genes. We also pay a close look at
the field of population genetics approaches in Camellia plants including the genome-wide association
study (GWAS) and quantitative trait locus (QTL) mapping analyses even though research at present
still lacks a meaningful scale to isolate key DNA regions (Figure 1). We propose that building up
high-quality reference genomes in several representative species is pivotal for molecular dissection
of domestication and for promoting the breeding of new varieties. Furthermore, the system biology
approach integrated diverse analyses of high-throughput omics datasets, which will accelerate the
discovery of key regulatory genes.
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Table 1. A list of recent transcriptomics studies in Camellia species related to trait variations and domestication.

Species Traits Methods Key Pathways & Genes Reference Database Accessment
(from NCBI)

C. sinensis seven tissue types Transcriptome/Illumina flavonoid, theanine, and caffeine
biosynthesis pathways [15] SRX020193,

HP701085-HP777243

Responses of Biotic and Abiotic Stress in Camellia Plants

C. sinensis Cold acclimation 454 GS-FLX Cold-related genes [16] SRA061043, SRX020193
C. sinensis Same as above Illumina AP2/ERF family TFs [17] Not found

C. sinensis
Leaves with different treatment

time of 4 or 38 ◦C
temperature stress

Illumina WRKY gen family [18] Not found

C. japonica mature leaves after 40 d natural
low temperature Illumina

α-linolenic acid and jasmonic acid
biosynthesis pathways respond to

cold acclimation
[19] SRP076436

C. sinensis Drought stress and salt stress
young leaves Illumina Response to drought stress and salt stress [20] PRJEB11522

C. sinensis Germination seed of different
dehydrate treatment Illumina Mechanism of seed dehydration sensitivity [21] SRP096975

C. sinensis (NH4)2SO4 treatment buds,
leaves and root Illumina Nitrogen utilization genes [22] SRP077092

C. sinensis Pollen tubes at 25 ◦C and 4 ◦C or
with NO treatment Illumina

Potential mechanisms of the participation of
NO in pollen tube responses to

low temperature
[23]

SRR3270364, SRR3270376,
SRR3270829, SRR3270928,
SRR3270974, SRR3270993,
SRR3270997, SRR3271001,

SRR3271002

C. sinensis Leaf tissues of blister
blight transition Illumina Blister Blight defense [24] SRP067826, PRJNA306068

C. sinensis Insect feeding treatment Illumina Defense response to insect (Ectropis. oblique) [25] SRX998353, SRX1543038

Transcriptomic Analyses in the Control of Secondary Metabolism in Camellia

C. sinensis
13 different tissue samples from

various organs and
developmental stage

Illumina Secondary metabolite biosynthesis pathways [26]

SRR1053623, SRR1051214,
SRR1054007, SRR1055110,
SRR1055182, SRR1054086,
SRR1054152, SRR1055108,
SRR1055109, SRR1055932,
SRR1055933, SRR1055934,

SRR1055944
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Table 1. Cont.

Species Traits Methods Key Pathways & Genes Reference Database Accessment
(from NCBI)

C. taliensis Tender shoots, young leaves,
flower buds, and flowers Illumina Secondary metabolic biosynthesis pathways [27] PRJNA274899

C. sinensis Buds, 2nd leaves, mature leaves
and young roots Illumina Catechins metabolic pathways [28] Not found

C. sinensis Leaf tissues of four tea
plant cultivars Illumina Catechins biosynthesis pathways [29] Not found

C. asssamica Leaf at the purple and
green stages Illumina Anthocyanin biosynthesis pathway [30] Not found

C. nitidissima Floral buds at five different
developmental stages Illumina Carotenoids and flavonols glucosides

biosynthesis pathways [31] SRP112181

C.nitidissima,
C. chuongtsoensis Young shoot tip or leaves Illumina Floral pigmentation and flowering timing [32] PRJNA389977,

PRJNA400646

Transcriptomics Studies Related to Floral Patterning, Flowering Timing and Bud Dormancy

C. japonica Double flower development Illumina
ABCE genes, miR156, and targeted

squamosa promoter binding
protein-likes (SPLs)

[33]

C. azalea Floral buds Illumina Conserved and lineage-specific miRNA [34] PRJNA257896, SRP045386
C. sinensis Axillary buds Illumina Bud dormancy regulation mechanism [35] SRR5040773, SRR5040784

C. sinensis Bud tissues of different
developmental stages ABI PRISM 3730 Dormancy-related genes [36] HM003230–HM003378,

GW690681–GW691037

C. azalea Three stages of floral
bud development: Illumina Floral dormancy-associated

MADS-box genes [37] PRJNA257896, SRP045386

C. sinensis Three opening stages of flowers Illumina WRKY, ERF, bHLH, MYB and MADS-box
family relate to flower development [38]

SRR5487532, SRR5487531,
SRR5487530, SRR5487529,
SRR5487528, SRR5487527,

C. sinensis Two and a buds in July
and December Illumina Regulatory mechanism of non-deciduous

habit in winter [39] Not found

C. sinensis Shading leaves
(yellow leaf phenotype) Illumina Chloroplast development, chlorophyll

biosynthesis pathway [40] SRX1078570

C. sinensis Adventitious roots from IBA
treatment cuttings Illumina Potential mechanisms involved in

adventitious root formation [41,42] PRJNA240661,
JK990996-991074
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Table 1. Cont.

Species Traits Methods Key Pathways & Genes Reference Database Accessment
(from NCBI)

Transcriptomics in oil Camellia Plants

C. oleifera Four tissues 454 GS-FLX Lipid metabolism [43]
SRR1472854, SRR1472847,
SRR1472843, SRR1472842,

GBHI00000000
C. oleifera Drought treatment leaves Illumina Drought stress genes [44] SRP094080
C. oleifera Seed Illumina Oil content and fatty acid composition [45] SRP111395

C. oleifera
Leaves at different elevations

of Lu Mountain and
Jinggang Mountain

Illumina Cold acclimation genes [46]

SRR2146977, SRR2146978,
SRR2146979, SRR2146980,
SRR2146973, SRR2146974,
SRR2146975, SRR2146976

C. chekiangoleosai Seeds, flowers and leaves 454 GS FLX Anthocyanin biosynthesis
pathway genes [47] Not found

C. oleifera,
C. meiocarpa

Mature seed of different
moisture content Illumina Fatty acid biosynthesis and

accumulation pathway [48] Not found

C. oleifera,
C. chekiangoleosa,

C. brevistyla
Flower buds 454 GS FLX Secondary metabolites pathway, CHS

gene, FAD2 gene [49] HQ704701.1

Markers Development Based on RNA-sequencing (RNA-seq)

C. sinensis Three developmental growth
stages leaves 454 GS FLX

Plant growth, development, secondary
metabolite, and (expressed sequence

tag–simple sequence repeats
(EST-SSR) markers

[50]
SRA052793,

KA279444–KA304315,
HP701085–HP777243

C. sinensis Different flower organizations
at the big bud stage Illumina SSR Markers, SSR-based linkage map [51] SRA053025,

GAAC01000001–GAAC01052919
C. flavida,

C. achrysantha Flower buds Illumina SSR markers [52] Not found

C. oleifera Lipid synthesis phase seed Illumina SSR markers [53] Not found
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2. Genetics and Genomic Resources in Genus Camellia Empowered by
High-Throughput Sequencing

Genus Camellia displays an extraordinary natural diversity in morphology, metabolites, habitats,
etc. The artificial breeding of Camellia species results in excellent cultivars for producing beverages,
ornamental flowers, and edible oil (Figure 1). These are the main purposes of breeding and cultivation
of Camellia varieties and the related research is also carried out around these breeding targets. Camellia
sinensis var. assamica was the first species in Camellia with a high-quality genome reference in which
3.02-Gb base pairs DNA sequences were assembled [14]. In 2018, the genomic sequence of C. sinensis
var. sinensis was reported [13]. Through the study of two C. sinensis genomes, the researchers found
that whole-genome duplication events and subsequent paralogous duplications had major impacts
on the gene family members related to the biosynthesis of secondary metabolites such as catechins,
theanine, and caffeine [13,14]. The high-quality genomes in Camellia will greatly facilitate fundamental
research relevant to trait variations through the analyses of comparative and functional genomics.
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Figure 1. An illustrated cartoon summarizing the domestication in Camellia species. (A) The leaves,
flowers, and fruits (seeds) of Camellia plants are useful organs to produce economic products for
human living. Major domestication targets of each organ and representative species are listed.
(B) The domestication process yields some valuable alleles contributing to trait variations in cultivars.
To identify underlying genes or associated molecular makers, strategies based on germplasm collection
(natural or forced hybridization populations) are subjected to various types of analyses such as
genome-wide association study (GWAS), multiple omics tools, genome re-sequencing, and quantitative
trait locus (QTL) mapping. The uncovered markers and genes associated with key traits are pivotal for
understanding the mechanism of domestication and improving new varieties in Camellia. With the
support of maker assisted selection and genome selection approaches, the domestication program of
Camellia plants can be more efficiently and precise for breeding cultivars of economic values.

Transcriptomics studies in various Camellia plants were performed extensively in both wild and
cultivated plants. The first comprehensive transcriptome analysis in C. sinensis by the second generation
sequencing was reported in 2011 using an Illumina GA II sequencing platform [15]. This work sequenced
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a mixed sample containing seven tissue types and yielded 127,094 uni-genes, which provided a dataset
for gene discovery not only for tea plants but also other Camellia species [15]. Along with the rapid
development of sequencing technology, the RNA-seq studies of Camellia were applied dramatically to
enhance our understanding of how genes are expressed under various conditions. In this case, we
focus on transcriptomics studies in Camellia plants under a variety of experimental designs (Table 1).

2.1. Responses of Biotic and Abiotic Stress in Camellia Plants

Various RNA-seq analyses targeting biotic and abiotic stresses in C. sinensis were performed
to identify responsive genes. In those RNA-seq analyses, the majority of them characterize abiotic
stress responsive genes including temperature, drought, salinity, nitrogen, etc. Genes responsive to
a low temperature were identified in C. sinensis by several RNA-seq analyses, which revealed some
potential signaling pathways underlying cold acclimation [16]. Among the 1770 differentially expressed
transcripts, potential cold sensors, detoxification enzyme genes, and transcription factors were
identified [16]. Based on the previously mentioned transcription database, the 89 APETALA2/ethylene
responsive factor (AP2/ERF) and 50 putative WRKY proteins, which might be related to abnormal
temperature stress, were identified [17,18]. In Camellia japonica, the cold responses were compared
between cold sensitive and cold hardy genotypes through a transcriptomics analysis and α-linolenic
acid and jasmonic acid biosynthesis pathways were proposed as key factors related to low temperature
acclimation [19]. Salinity and drought tolerance is another focus of plant breeding and cultivation
and has an important influence on plant growth [54]. To understand the gene expression profiles,
the RNA-seq experiments under drought and salt stress treatments of C. sinensis were conducted,
and 3936 and 3715 differentially expressed genes (DEGs) were identified upon drought and salt
stress, respectively [20]. Further comparative analyses of DEGs indicated that these two stresses
had some common molecular effects, which indicates that shared pathways were involved [20].
The seed germination process of Camellia was also found to be sensitive to drought stress. Through
transcriptomics analysis under the dehydration treatments, 91,925 non-redundant uni-genes were
obtained. A series of genes that have been reported to function in the dehydration process were
found to be downregulated including ABA biosynthesis and signal transduction, transcription factor,
antioxidant enzyme, etc. [21].

Nitrogen (N) is one of three essential factors in higher plants, which is critical for plant growth.
The transcriptomes of buds, leaves, and the root of C. sinensis with or without (NH4)2SO4 treatments
were studied and 196 and 29 common DEGs in roots and leaves were identified, respectively [22].
Through quantitative reverse transcription PCR (RT-qPCR) analysis, some N uptake and assimilation
genes were validated [22]. Nitric oxide (NO) was found to be an important signaling factor regulating
plant growth under a stress condition [55] especially in low temperature stress [56,57]. In order to
reveal potential mechanisms of NO responses to a low temperature, transcriptomes of pollen tubes at
25 ◦C (CK) and 4 ◦C (LT) or with NO treatment (NO) were studied [23] and 766,497 and 929 DEGs
were found among CK-VS-LT, CK-VS-NO, and LT-VS-NO comparisons [23]. These results provided
molecular evidence of linking N assimilation and cold stress in Camellia plants.

Most of Camellia species originate from Southeastern Asia, which has a warm and humid climate
that is particularly suitable for pest and disease propagation. In such an environment, Camellia
plants generally have strong biotic resistance. The disease resistance ability is an important index in
the Camellia plant Breeding. Artificial cultivation of a single species weakened Camellia plant biotic
resistance. Some diseases and insect pests seriously affect the economic value of Camellia plants such as
tea blister blight (BB), anthracnose, Ectropis oblique, etc. The tea BB has a great influence on the quality
of tea [58]. The molecular mechanism of the C. sinensis defense against the BB disease was studied [24].
The transcriptomes of BB transition leave tissues were analyzed along with 149 DEGs including defense
related enzymes, resistance genes, multidrug resistant transporters, etc. It was suggested that they
have a role in defending against BB [24]. Anthracnose is one of the most important diseases restricting
the development of Oil Camellia species [59]. The correlations of Camellia oleifera disease resistance
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and the enzyme (peroxidase, catalase, superoxide dismutase, and polyphenol oxidase) activity were
analyzed. It is found that infection of pathogenic bacteria caused the significant changes of the activity
of defensive enzymes in different Camellia varieties [60]. To elucidate the molecular mechanisms of
the response to E. oblique in tea plants, the transcriptomes of E. oblique damage-induced leave tissues
were analyzed and 1859 DEGs were identified [25]. Upon further analysis, this DEGs found that genes
involved in secondary metabolites and signaling pathways were differentially regulated after feeding
by E. oblique [25].

2.2. Transcriptomic Analyses in the Control of Secondary Metabolism in Camellia

Transcriptomics studies were applied to understand various developmental processes of Camellia
plants. Particularly in tea plants, global gene expression profiling along with the development of
leaf, flower, and seed germination were effective in identifying potential regulatory genes (Table 1).
Camellia is rich in many secondary metabolites including flavonoids, catechins, theanine, anthocyanins,
etc. Many of these secondary metabolites are not only essential to the flavors of tea drinks but also
have a significant impact on horticultural value of Camellia. There were many RNA-seq studies related
to secondary metabolites of Camellia. For example, the transcriptomes of 13 different samples from
various organs and developmental stages of C. sinensis were studied and 347,827 uni-genes were
assembled and annotated in which 1719 uni-genes were identified as being involved in the secondary
metabolic pathways [26]. In Camellia taliensis, the transcriptomes of tender shoots, young leaves, flower
buds, and flowers were studied and candidate genes for major metabolic pathways were found [27].
The biosynthetic pathway of catechins were also studied [28,29]. Through the transcriptomics analysis
of leaf tissues from four tea plant cultivars (C. sinensis), 146,342 pairs of putative orthologs were
generated and 217 common DEGs were found [29]. A similar work characterized the four tissue types
of C. sinensis in which 36 catechins and flavonoids biosynthesis were identified [28]. These studies
indicated that the biosynthesis pathways of secondary metabolites in different Camellia species were
largely conserved and the changes of regulatory genes might play a key role in the diversity of
chemical compositions.

The diverse pigments of Camellia plants are attractive to breeders. Some ornamental traits such as
purple leaves, golden flowers, and double flowers were characterized through different transcriptomics
approaches. To understand the alterations of the leaf color of C. sinensis var. assamica, a transcriptomics
comparison between green and purple leaves was performed, which yielded 2250 DEGs that were
potentially related to the biosynthesis of anthocyanins [30]. In yellow Camellia (Camellia nitidissima)
species, the transcriptomes of floral buds at five different developmental stages were investigated
and, through characterization of DEGs, the accumulation of carotenoids and flavonols glucosides in
the petals was revealed as potential underlying floral pigments [31]. A recent work investigated two
transcriptomic datasets in C. nitidissima and Camellia chuongtsoensis [32]. Comparative analyses of gene
expression profiles in yellow and red flowered Camellia species revealed that the direct glucosidation
of flavonols was a key regulatory step of accumulating yellow pigments [32].

2.3. Transcriptomics Studies Related to Floral Patterning, Flowering Timing, and Bud Dormancy

The double flower formation in Camellia is a major aesthetic trait for ornamental Camellia plants.
An integrative analysis using small RNA, transcriptome, and degradome sequencing technologies
in wild and domesticated double flower cultivars was performed [33]. Through gene expression
and functional enrichment analyses, the formation of double flowers was found to be controlled
by a coordination of micro RNAs (miRNAs) and some floral regulators [33]. There were only
a few works reported in Camellia characterizing the miRNA genes. Through small RNA-seq of
different floral organs in C. azalea, 175 miRNAs were identified and 12 Camellia specific miRNAs
were revealed [34]. The differentially expressed miRNAs and their targets were analyzed and
some miRNA-target regulations were identified as important factors in the control of floral organ
development in Camellia [34].
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Bud dormancy is an important evolutionary adaptation to local climatic conditions, which enables
the survival in winter or dry seasons. In C. sinensis, cold winter dormancy also affected the economic
output of the tea plant [35]. The transcriptomes of bud tissues (C. sinensis) of different developmental
stages were studied. The putative role of identified genes in growth and dormancy of tea were
discussed [36]. Transcriptomes of axillary buds (C. sinensis) of different dormancy types and bud
flush stages were identified and 16,125 DEGs were identified in different measured conditions,
which suggested that the dormancy regulation of the tea plant were consistent with that of Poplar [35].
In Camellia azalea, which is a newly discovered species with unique and prolonged blooming periods,
the transcriptomes of floral buds at different developmental stages were investigated and the dormancy
associated MADS-box genes were further analyzed, which showed that Short Vegetative Phase (SVP-)
and Agamous-like24 (AGL24-) genes played critical roles during floral bud development [37]. In Camellia
sinensis, a transcriptomic analysis of flower development revealed several types of transcription
factors including WRKY, the Ethylene Responsive Factor (ERF), the basic Helix-Loop-Helix (bHLH),
the Myeloblastosis (MYB), and the MADS-box family, which were related to floral transition [38].

Some other transcriptomic studies were conducted to understand environmental or hormonal
regulations in Camellia plants. In order to understand the non-deciduous habit of C. sinensis,
transcriptomes of buds in July and December were analyzed and 24,700 uni-genes were obtained,
which were related to the operation of winter tolerance [39]. In a transcriptomics study of shading
treatment of “Baijiguan” (C. sinensis) leaves, 1993 and 2576 DEGs were identified in plants treated with
three and six days of shading, respectively [40]. It is postulated that the high light intensity might
affect PSII stability, chloroplast development, and chlorophyll biosynthesis by inhibiting the expression
of the photosystem II10-k Da protein (Psb R) [40]. The transcriptomes of adventitious roots (C. sinensis)
with and without Indole-3-Butyric Acid treatment were compared [41,42] and 656 up-regulated and
435 down-regulated genes were identified. Functional annotation analysis revealed the potential
mechanism relevant to the control of the adventitious rooting process [42].

2.4. Transcriptomics in Oil Camellia Plants

Almost all of Camellia seeds have some certain oil contents. Oil Camellia referred to a kind
of Camellia species that the main cultivated purpose was seeds oil content including C. oleifera,
Camellia meiocarpa, Camellia chekiangoleosa, etc. C. oleifera was the most important species in oil
Camellia. In C. oleifera, about 60 million RNA-Sequence reads from four tissues were generated
and assembled into 104,842 non-redundant putative transcripts [43]. This work greatly increased
the transcripts sequences for gene discovery and identified 3022 pairs of orthologs compared with
C. sinensis [43]. The transcriptomes of C. oleifera leaves under drought treatments were studied. A series
of DEGs associated with drought stress responsive pathways were identified among which 789 DEGs
were transcription factors [44]. In a recent study, transcriptomes of C. oleifera seeds at different oil
accumulation stages were characterized and valuable DEGs that were associated with the seed oil
accumulation were uncovered [45]. By studying the transcriptomes of C. oleifera leaves at different
elevations of Lu Mountain and Jinggang Mountain in China, abundant simple sequence repeats (SSRs),
Single nucleotide polymorphisms (SNPs), and insertion/deletions were identified and many DEGs at
different environmental temperatures were discovered [46].

Different varieties of oil Camellia had their own characteristics. In order to reveal the mechanism
of phenotypic differences, the transcriptomes of various oil Camellia cultivars were analyzed.
C. chekiangoleosa was a kind of oil Camellia with red flowers. In C. chekiangoleosa, RNA-Seq datasets
and Expressed Sequence Tag (EST) library were generated to study genes involved in anthocyanin
and seed oil biosynthesis [47]. The transcriptomes of C. meiocarpa and C. oleifera seeds, which have
different moisture contents, were analyzed. In addition, 244 genes involved in fatty acid synthesis and
accumulation were identified and gene ontology enrichment indicated that fatty acid accumulation is
essential in C. meiocarpa and C. oleifera during the natural drying process [48]. A comparative study
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using C. oleifera, C. chekiangoleosa, and Camellia brevistyla was performed. The expression levels of
Chalcone Synthase (CHS) and Fatty Acid Desaturase 2 (FAD2) were compared in different cultivars [49].

2.5. Markers Development Based on RNA-Sequencing

RNA-sequence data were widely used in the development of the molecular markers of Camellia.
To facilitate the molecular breeding in Camellia plants, the database of transcriptome of C. sinensis was
used for the development of SSR molecular markers. Wu et al. (2012) identified 3767 EST-SSRs potential
molecular from C. sinensis leaf transcriptome [50]. The transcriptomes of different floral organs (petals,
pistils, and stamens) of C. sinensis were analyzed and 75,531 uni-genes were assembled and generated
431 novel polymorphic SSR markers [51]. In Camellia flavida, 38 polymorphic microsatellite loci were
identified based on the transcriptome sequencing and polymorphic alleles between C. flavida and
C. nitidissima were revealed [52]. In C. oleifera, molecular markers were also developed and 6949
putative SSR motifs were discovered from a seed transcriptome from which 15 polymorphic genic-SSR
markers were verified [53].

3. GWAS and QTL Mapping of Key Traits in Camellia Plants

Quantitative trait locus mapping is a powerful method for identifying the key genome regions
related to the traits of interest [61]. Previously, QTL analyses were performed in many major crops
through the marker-assisted breeding methods [62–66]. Genetic linkage maps constructed with
various molecular markers are particularly useful for mapping of QTLs. To date, over 10 genetic maps
were constructed in tea plants based on different types of markers such as Random Amplification
of Polymorphic DNA (RAPD), the Inter-Simple Sequence Repeat (ISSR), Amplified Fragment
Length Polymorphism (AFLP), SSR, SNP, and more [51,67–77]. In addition, QTLs for tea plant
yield [73], timing of spring bud flush, young shoot color [77], catechins content [75], drought
tolerance [67], etc., were mapped. However, these previously mentioned genetic maps were constructed
with a low resolution due to the limits in genotyping methods and the size of segregating populations.
The research of QTL mapping in tea plants is at a preliminary stage and needs more in-depth
developments of molecular markers and linkage maps.

To our knowledge, the genetic map construction and QTL mapping in other Camellia species are
not reported. There are two potential reasons limiting the study in Camellia plants. First, it requires
a large population to achieve sufficient segregations of allelic variations [78], which causes vast
efforts for data collecting. Second, the commonly appearing polyploidization of Camellia cultivars
increases the difficulty of fine QTL mapping. In recent years, the high-throughput sequencing
technology allows genome-wide genetic variation discovery and genotyping in a highly efficient
way [79]. It can greatly increase the resolution of QTL mapping and reduce laborious works [80,81].
Genome-wide association study based on high-throughput sequencing technologies is considered
a favorable resolution to explore the allelic variation in a broader scope for extensive phenotypic
diversity and as a complementary and powerful tool for connecting the genotype-phenotype map as
well. GWAS overcomes the cross-population limitation of QTL mapping and evaluates the association
between genotypes and phenotypes of interest based on the natural population with a large number of
unrelated individuals. This approach was pioneered in human genetics more than 10 years ago [82]
and were now routinely applied in plants including Arabidopsis [83] and crops [84–91]. In tree
plants, the genome re-sequencing of 544 Populus trichocarpa trees and GWAS analysis identified
extensive genomic regions related to adaptive trait variation [92]. Due to the abundant genetic
diversity and rapid Linkage Disequilibrium (LD) decay, the out-crossing species are suitable for
GWAS such as Camellia species. However, up to now, GWAS analysis in Camellia plants was not
reported yet. Due to the complexity of the Camellia genome, the genome-wide analysis of Camellia
population genetics is unfinished and the extensive heterozygosity in the Camellia genome makes the
polymorphism calling technically challenging. The further efforts of GWAS in cultivated Camellia plants
are needed. There are some precautions in cultivated Camellia GWAS work when the reference genome
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is available. First, the population size and sequencing coverage are fundamental in an experimental
design. Large samples and high coverage will increase GWAS power generally and also enable most
allelic variants to be identified. However, it is not always more or better in sampling (especially in plant
samples) because the diversity and the individual relationship can greatly affect the effect of GWAS [79].
To achieve cost optimizations, a balance between sequencing depth and sample size should be made.
Phenotyping is the most laborious and important work in Camellia GWAS. A well-defined trait will
increase GWAS power. To ensure the quality of phenotype data, it would be much better to generate
phenotype data in several successive years with replications and careful field designs. When a trait
is strongly confounded by genetic backgrounds, the power of GWAS will be greatly reduced [79].
An appropriate statistical model can reduce spurious genotype–phenotype associations and increase
GWAS power. Computational models including mixed linear, multi-locus mixed, and multi-trait
mixed models, which integrate the population structure matrix and pairwise relatedness kinship
within populations, have been developed, improved, and optimized to control the rate of spurious
genotype–phenotype associations [93–97]. Lastly, in the light of a high-quality reference genome of
Camellia species, the integration of GWAS and QTL would provide more accurate information of
regulatory genes underlying the complex traits. It is expected that, with the support of population,
association, and designated omics datasets, the casual loci could be identified.

4. Functional Characterization of Genes Related to Key Pathways of Camellia Plants

The enormous amount of transcriptomics studies in Camellia plants facilitated the in-depth
analysis of genes or gene families related to some fundamental pathways such as floral and
fruit development, secondary metabolites, or stress tolerances. For instance, the members of
Uridine 5′-diphospho (UDP)-glycosyltransferases in tea (132 transcripts in total) were systematically
identified based on transcriptome sequencing [98] and functional analyses revealed that three
UDP-glucuronosyltransferases (UGTs) were involved in the biosynthesis of β-glucogallin and
glycosylated flavonols [98]. Furthermore, a comparative transcriptomics work that focused on two
yellow Camellia species (C. nitidissima and C. chuongtsoensis) suggested that the group C clade of the
UGT family was expanded in yellow Camellia plants, which was consistent with higher flavonoids
levels [32]. These results have highlighted the importance of various genomic datasets in genus
Camellia to understand the evolutionary adaptations of natural traits.

Yet, current research in Camellia plants is hampered by a lack of sufficient molecular tools to
validate the functions of underlying genes. Detailed characterization of gene functions in Camellia
plants remains scarce. To dissect the important economic traits of Camellia cultivars, versatile
molecular biology toolkits are of significant importance. Currently, transgenic analysis of model
plants (e.g., Arabidopsis, tobacco) and in vitro protein assays are most commonly used. In a recent
study, the enzymatic activities of Lipoxygenases (LOX) from C. sinensis were evaluated and the efforts
of gene expression and subcellular localization indicated CsLOX genes were related to diverse stress
responses [99,100]. To study the formation of double flowers in C. japonica, homologs of classic ABC
model genes were identified and characterized. Through the gene expression and transgenic Arabidopsis
analyses, it was found that the expression levels of A class genes were positively correlated with the
degree of floral doubleness [101] while the C class homolog displayed distinct expression patterns
in different types of double flowers in cultivated Camellia [102]. It is not clear how the ABC genes
are domesticated at the molecular level during double flower formation. The integrative analyses of
small RNAs and their targets in doubled Camellia cultivars suggested that miRNAs-target regulations
played a critical role in the floral organ development of double flowers [33]. Hence, the development
of double flowers in Camellia required multiple types of regulatory genes including ABC function
genes, miRNAs, targets, and other factors.

The Camellia fruits were artificially selected mostly for the production of edible oil of seed kernels.
It was found that Camellia oil is unique in a high level of unsaturated fatty acids and other metabolites
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beneficial for human health [45]. There was a great diversity of fruit structure of Camellia plants used
for oil production (Figure 2).
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Figure 2. A comparison of oil-Camellia fruits and their lignification patterns. The fruits at the stage of
rapid enlargement (from left to right, C. meiocarpa, C. oleifera, and C. chekiangoleosa) are presented on
the upper panel. The lignification pattern of fruits is revealed by a red color of phloroglucinol-HCl
staining on the lower panel.

Besides the plants domesticated from C. oleifera, other species with a distinct floral color and
flowering time (e.g., C. chekiangoleosa, Camellia polyodonta, Camellia reticulata) were also commonly used
for oil production. The comparison of fruit anatomy and a lignification pattern indicated that the
genetic alterations of regulatory pathways were underlying the fruit development and ripening during
the evolutionary and domestication processes (Figure 2). However, few genes related to Camellia fruit
development were characterized at present. Taking advantage of the diversity of fruit shape, size,
and metabolite in closely related species (Figure 2), which is the fruit development of Camellia, served
as an ideal system to study the molecular regulation of seed oil biosynthesis, secondary metabolism,
lignification, etc.

Genetic factors regulating fruit development were uncovered mostly based on studies in model
plants such as the Arabidopsis silique development and tomato ripening processes [103–105] (Figure 3).
Currently, several types of transcription factors were found to work coordinately to regulate hormone
signaling, lignification, and secondary metabolite biosynthesis during fruit development [106–108].
In Arabidopsis, three MADS-BOX transcription factors (FUL, SHP1, and SHP2) formed a central
regulatory node directing the patterning of fruit development [109]. The homolog of SHP1/2 in
tomatoes was found to regulate a diverse process during fruit development and ripening [110].
The bHLH type transcription factors (Lc, Alcatraz) were also revealed as key regulators during
fruit development in petunia and Arabidopsis [111–113]. Moreover, NAC (no apical meristem
(NAM), activating factor1,2 (ATAF1,2), and cup-shaped cotyledon2 (CUC2)) and MYB transcription
factors played important roles in the biosynthesis of the cell wall and secondary metabolites
in fruits, which together formed a complex network governing the formation of different fruit
morphologies [114–116].
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Figure 3. A proposed diagram of transcription factors in the control of fruit development in
C. chekiangoleosa. A typical fruit of C. chekiangoleosa consists of a variety of tissue types that are
labeled by yellow boxes. During the development of fruit, some processes including fruit expansion,
fruit ripening, lignification, and biosynthesis of secondary metabolites are found to be controlled by
several types of transcription factors, according to the studies from diverse plant species. The yellow
ellipse indicates the dehiscence zone.

The genetic model was found to be useful for investigating the regulation of fruit development in
other types of fruits [117–119]. The Camellia fruit development shares some common processes with
other plants such as the lignification of endocarp and flavonoid biosynthesis, which suggests that these
transcription factors may also be involved (Figure 3). We examined the structure of C. chekiangoleosa
fruits and showed that the endocarp and seed coat were lignified at the fruit ripening stage, which were
potentially regulated by MADS-BOX and NAC types of transcription factors (Figure 3). The pericarp
of C. chekiangoleosa was enriched in flavonoids, which could be directed by MYB type transcription
factors (Figure 3). It is not clear how the transcriptional regulation participates in the fruit development
in Camellia plants. Future work of functional analyses of the transcription factors is needed to reveal
the diversity of Camellia fruit development.

The regulatory genes related to biotic and abiotic stresses in Camellia were essential to cultivate
new varieties with enhanced environmental resilience and field performance. Presently, regulatory
genes, particularly transcription factors and their targets, were discovered extensively in Camellia
species [16–18,120]. However, only a few genes of transcription factors were characterized through
transgenic analysis in model species. For example, a basic region/leucine zipper (bZIP) transcription
factor in C. sinensis (CsbZIP6) was studied. Enhanced tolerances of freezing stress were revealed in
transgenic Arabidopsis plants [121]. Further studies indicated that CsbZIP6 might induce downstream
cold-responsive genes in Arabidopsis [121]. A dehydration-responsive element-binding protein
(DREB) transcription factor (CsDREB) was identified and characterized [122]. Overexpression of
CsDREB in Arabidopsis revealed that CsDREB was involved in salt and drought tolerances via both
ABA-dependent and ABA-independent pathways [122]. In Camellia plants, the lack of an efficient
transformation system hampered the functional analysis of key regulators. However, transient
expression or callus transformation approaches might be effective for addressing the regulatory
functions of transcription factors related to stress tolerances.

5. Future Perspectives: A Roadmap for Camellia

As the demand for Camellia products continues to increase, the current breeding work is facing
a challenge of obtaining cultivars with enhanced environmental resilience and productivity. To meet
the challenges, the large-scale gene expression analysis is becoming a prevalent methodology in
the field of Camellia research, which greatly facilitates the molecular characterization of important
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gene families. With the support from large natural or hybridized populations, it is expected that
more and more genetic factors or loci will be available for improving the efficiency of breeding new
varieties (Figure 1). However, a deep understanding of the molecular mechanism of trait evolution
and domestication relies on the capability of functional tools. The facile genetic transformation or
transient assay systems in Camellia plants are essential to test the hypothesis relevant to candidate gene
functions. Lastly, the genome editing technology together with other molecular breeding technologies
will enable a precise and targeted innovation of new traits and genetic variations.

We propose a practical roadmap for Camellia research including four key steps. (1) A large-scale
collection of germplasms of native and hybrid populations is necessary to advance Camellia
research. (2) Database initiatives and analyzing platforms for genomics, metabolites, and phenotypes.
An international cooperation platform will facilitate the storage, sharing and analysis of
high-throughput data, and provide opportunities for generating standardized pipelines for various
Camellia breeding programs. (3) With the support of reference genomes in Camellia plants,
the application of genomics tools through whole-genome level analyses (such as QTL mapping,
GWAS, and genome re-sequencing) will allow an efficient identification of molecular markers or gene
alleles associated with trait variations. (4) Take advantage of the molecular information. The maker
assisted selection can help locate important genomic fragments underlying key economic traits. At the
same time, the genome selection method is a promising approach to shorten the breeding cycle and
integrate elite traits efficiently based on models from whole-genome analyses of molecular makers.
Presently, a large number of wild Camellia resources are still underutilized and it is expected that,
with the support of genomic technologies, the domestication of Camellia plants can promote the
breeding of elite varieties with enhanced resistances and economic values in the near future.
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